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Abstract 

Background: Data from microbiomes from multiple niches is often collected, 
but methods to analyse these often ignore associations between niches. One interest-
ing case is that of the oral microbiome. Its composition is receiving increasing attention 
due to reports on its associations with general health. While the oral cavity includes 
different niches, multi-niche microbiome data analysis is conducted using a single 
niche at a time and, therefore, ignores other niches that could act as confounding 
variables. Understanding the interaction between niches would assist interpretation 
of the results, and help improve our understanding of multi-niche microbiomes.

Methods: In this study, we used a machine learning technique called latent Dir-
ichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA 
was used on both individual niches and all niches simultaneously. On individual niches, 
LDA was used to decompose each niche into bacterial sub-communities unveiling 
their taxonomic structure. These sub-communities were then used to assess the rela-
tionship between microbial niches using the global test. On all niches simultaneously, 
LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring opera-
tional taxonomic units (OTUs) comprising those patterns were then used to predict 
the original location of each sample.

Results: Our approach showed that the per-niche sub-communities displayed 
a strong association between supragingival plaque and saliva, as well as between the 
anterior and posterior tongue. In addition, the LDA-derived microbial signatures were 
able to predict the original sample niche illustrating the meaningfulness of our sub-
communities. For the multi-niche oral microbiome dataset we had an overall accuracy 
of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche micro-
biome dataset from the entire body, microbial niches from the oral cavity displayed 
stronger associations to each other than with those from other parts of the body, such 
as niches within the vagina and the skin.

Conclusion: Our LDA-based approach produces sets of co-occurring taxa that can 
describe niche composition. LDA-derived microbial signatures can also be instrumen-
tal in summarizing microbiome data, for both descriptions as well as prediction.
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Introduction
The human microbiome consists of trillions of microbial cells living in our body and is 
therefore comparable with the number of our own cells [1]. Those microbes are found in 
various locations like the gut, the skin, or the oral cavity, creating complex ecosystems 
of bacteria, archaea, fungi, and viruses. The oral cavity is an interesting example to be 
considered: its composition is highly dependent on biological and environmental factors 
such as the host’s genetics, diet, and oral hygiene. Its microbial composition also varies 
among different locations in the oral cavity (such as the tongue, the gingiva, the buccal 
mucosa, and various surfaces around the teeth). Recently, Next Generation Sequencing 
techniques have provided us with a plethora of new datasets, including oral microbiome 
composition from multiple oral niches. By analyzing these datasets, several studies have 
concluded that oral microbial composition is associated with oral diseases such as peri-
odontitis [2], caries, and oral cancer [3]. Other more distant associations have also been 
posited, such as depression [4], Alzheimer’s disease [5] or diabetes [6].

These studies were generally performed by studying a single oral niche at a time and 
were therefore unable to delineate potential interactions between oral niches. The sali-
vary microbiome is for example often used as a proxy for the entire oral cavity. How-
ever, interactions between bacteria found in different niches can potentially influence 
the interpretation of effects found on a single niche. By analysing multiple niches of the 
microbial environment simultaneously, we can uncover relationships between them, 
which have so far been little explored.

Analysis of microbiome data poses a challenge: models need to take into account com-
positionality, sparsity, and over-dispersion, as well as how it is normalized. Classical sta-
tistical tools can therefore not be applied [7–10]. Here we will focus on the problem of 
dimension reduction, so in summarizing a microbial profile using a smaller number of 
variables which can help interpretation. In particular, we will consider the problem of 
dimension reduction in a context where multiple microbial niches are evaluated for the 
same samples.

One way to reduce dimensions is by selecting Operational Taxonomic Units (OTUs) 
that discriminate niches the most. Current methods include those implemented in R 
packages edgeR [11], DESeq2 [12] or LEfSe [13]. However, by analyzing the OTUs 
one by one, these techniques ignore both potential relationships between OTUs, as well 
as the compositional aspect of the data. Other methods aim to take into account the 
entire composition of the microbiome, such as PERMANOVA [14], ANOSIM [15] as 
well as several indices to compare diversity between samples (alpha [16] or beta [17] 
diversity). While these approaches can discriminate microbial composition both over 
time and between niches [18], by reducing the microbiome data to a single number they 
over-simplify the problem, for example by making it harder to understand underlying 
patterns of differences between microbial niches.

Recently, several papers have proposed to use a Dirichlet-Multinomial distribu-
tion to model microbiome data [19–21]. This essentially leads to dimension reduction 
by collapsing the complete microbiome into a few bacterial sub-communities, each 
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representing a set of OTUs. Each sample is then assigned to a single sub-community, 
depending on its OTU composition. Another method recently applied to analyze micro-
biome data is Latent Dirichlet Allocation (LDA) [22, 23]. This is also proposed to col-
lapse the microbiome into sub-communities, where each sample is represented as a 
mixture of several sub-communities, rather than only one sub-community. LDA-derived 
sub-communities have been shown to display an association with covariates, such as diet 
[24], host country [25] and even soil biodiversity [26]. To the best of our knowledge, 
LDA has so far only been used to analyze microbiome of one niche at a time.

In this paper, we propose to use LDA for dimension reduction of multi-niche micro-
biome data. Our first research aim is to extract a bacterial signature composed of a set 
of different Operational Taxonomic Units (OTUs) or bacterial taxa for each niche. Sec-
ondly, we plan to describe the microbiome structure within one niche, by decomposing 
each niche into the OTUs/taxa that naturally co-occurred. These will be grouped into 
subsets, which we will call sub-communities. The third and last aim is to assess the rela-
tionship between different microbial niches.

To achieve these aims, we propose an approach to study data from multiple niches 
using both the LDA-derived sub-communities and the OTU-based microbiome. The 
approaches presented here enable researchers to both describe the taxonomic structure 
of a microbial niche by finding sub-communities that characterize it from others, and to 
find associations between different niches.

This article is organized as follows. In the Methods section, we describe our proposed 
LDA-based approach, as well as the datasets we will use. In the Results section we show 
that our approach can be used to identify signatures of microbial niches. Finally, in the 
last section we outline some remaining challenges, including how to choose the number 
of communities.

Methods
Latent Dirichlet allocation

In the context of text‑mining

The Latent Dirichlet Allocation (LDA) is a generative statistical model usually applied in 
the context of text-mining analysis for the clustering of documents, where each topic is 
treated as a cluster. For a given list of documents and the frequency of their terms, LDA 
is able to extract unobserved topics among those documents. The basic assumption is 
that documents are combinations of latent topics and topics are combinations of terms. 
In order to detect latent topics in a collection of documents by LDA, we need to intro-
duce a collection of documents as a document-term matrix, which usually is sparse and 
high-dimensional. A document-term matrix is a mathematical matrix that describes the 
frequency of terms that occur in a collection of documents. In this matrix, each row rep-
resents one document and each column represents one term (word).

On the equivalence of microbiome and document‑term matrix

In the context of microbiome data analysis, we can apply LDA to extract latent bacterial 
sub-communities by mapping a collection of microbiome samples onto a document-term 
matrix. Accordingly, if we consider that a biological sample corresponds to a document, 
then the count of a specific OTU in a sample corresponds to the number of occurrences 



Page 4 of 18Pappalardo et al. BMC Bioinformatics           (2024) 25:58 

of a specific term in this document. Finally, the common extracted topics are compara-
ble to bacterial sub-communities [27].

Since the mathematical distribution of microbiome data shares several common 
characteristics with a document-term matrix, such as being high-dimensional, sparse 
and over-dispersed compositional count data, also, we propose to use LDA to analyze 
microbiome data. The main advantage of using LDA, in this setting, is that it reduces 
the dimensions of the dataset from individual OTUs into microbial sub-communities. 
We defined microbial sub-communities as sets of OTUs that simultaneously occurred 
across samples. Note that the same OTU can appear in several sub-communities, how-
ever the importance of the OTU differs across those sub-communities and the infor-
mation that each OTU carries might be highly dependent on the other members of a 
sub-community. If we take an example from a text mining context, we can imagine that 
the word “rock” does not provide information about the topic of the document itself. 
However, we can guess the topic of the document using the co-occurring words. On the 
one hand, “rock” could be associated with “music”, “festival” and “guitar”. On the other 
hand, it could be associated with “mountain”, “stone” or “mineral”. We suggest that an 
analogous analysis can be made with microbiome and OTU: a set of co-occurring OTUs 
is more informative than a single OTU. Finally, all samples share the same set of sub-
communities, but they represent those sub-communities in different proportions, where 
the most important sub-community is the one with the highest proportion, and each 
sample can be characterized by its important sub-communities.

Microbiome theoretical generative process

In this section, we present the LDA generation process for each microbiome in a collec-
tion of samples.

For a given number K of sub-communities and a given number V of OTUs, we propose 
the following generative model:
θs,k ∼ DirK (α) , where θs,k is the proportion of sub-community k in sample s.
φk ,1≤v≤V ∼ DirV (γ ) , where φk ,1≤v≤V  is the proportion of OTU v in sub-community k.
α ∈ [0, 1] the prior weight of sub-communities k in a sample.
γ ∈ [0, 1] the prior weight of OTU v occurring in a sub-communities.
We assume both these parameters are given. The same value of α and γ was chosen for 

each sub-community k.
Then, if we denote wi,s the ith read of the sth sample and zi,s its sub-community assign-

ment, they are chosen as follows: 

(1) zi,s ∼ Mul(θs,k),

(2) wi,s ∼ Mul(φzi,s ,v).

As mentioned before, the only observable data are OTUs in the collection of samples. 
Using, LDA we assume that the collection has been generated by the aforementioned 
steps, where sub-communities and their composition in each sample are latent, i.e. 
φk ,v = P(v|k) , and θs,k = P(k|s) are unknown. To estimate these parameters we used LDA 
function from topicmodels package (version 0.2-12) R version 4.0.2 (R Development 
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Core Team 2020; R Foundation for Statistical Computing). Furthermore, for the estima-
tion, we chose collapsed Gibbs sampling method in the LDA function.

LDA was run for two different analyses. First, we applied this model to all the micro-
bial niches of one dataset at the same time. The resulting sub-communities were then 
used as explanatory variables in a predictive model to check if they would recover the 
original niches. In parallel, we applied the model to each niche separately to describe the 
microbial composition of a specific niche as well as to assess the relationship between 
niches.

Latent Dirichlet allocation in the context of microbiome study

Identification of microbial signatures of oral niches

In the same way that LDA can identify documents from the same corpus by identify-
ing common topics, we expect that LDA can recover microbiomes from the same niche 
by finding similar sub-communities. To illustrate this, we applied LDA on all the niches 
simultaneously. We fixed the number of sub-communities to K = 5. Then, we evaluated 
if these obtained sub-communities corresponded to microbial signatures of a specific 
niche. One way to check this assumption is to assess if we can recover the oral niche the 
sample originated from by only using the sub-communities resulting from LDA. Finally, 
we used a predictive model with the sub-communities as explanatory variables and the 
original niches as response variable. We implemented a multinomial logistic regression 
model using the nnet R package (see “Datasets” section) with a leave-one-out strategy.

This multi-class model classification was evaluated using several indices such as the 
F1 score, Cohen’s Kappa score, Matthew correlation coefficient, log loss and multi-class 
area under the curve (Supplementary Material 1, section 4).

The taxonomic structure of each oral niche

In this section, we run the LDA function on each niche individually. The aim here was 
primarily to reduce the dimensions of a dataset of a microbial niche. To fix the number 
of sub-communities per niche, we fitted a Dirichlet-Multinomial model between 2 and 
8 sub-communities. We chose the number of sub-communities that was minimizing the 
Laplace approximation of the evidence of the Dirichlet-Multinomial model. We used the 
dmn function from the DirichletMultinomial package to do so. All niches ended 
up with a best number of sub-communities between 2 and 4. This was used for both 
datasets analysed in this work.

The LDA-decomposed dataset was then used to find associations with another oral 
niche with a method described below.

Taxonomic association between different niches

In a study where each individual provides microbiomes from multiple niches, we 
would like to uncover relationships between microbiomes of different niches. One 
way of doing that is to study if and how sub-communities of one niche are associ-
ated with the OTUs of another niche. With this aim, we propose to test for the asso-
ciation of LDA-derived sub-communities of one niche with all OTUs from another 
niche using the global test [28]. Note that this test has the ability to test for asso-
ciation between the LDA sub-community and all OTUs in the second microbiome, 
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where the number of OTUs can be larger than the number of samples (p >> n). It, 
therefore, avoids multiple testing correction at the OTU level. The test returns a sin-
gle p-value per pair sub-community - microbiome.

If we denote by βj the regression coefficient between the jth OTU and the sub-
community, to test the association between the OTUs and the sub-community is 
equivalent to testing the hypothesis:

The global test proposes to model beta as a random effect, as follows:

and then H0 can be re-written as: H0 : σ
2 = 0.

Goeman et al. [28] show that this hypothesis can be evaluated with the following 
test statistic:

with X the explanatory variables, Y the dependent variabe, R = 1
nXX

t , µ = g−1(β0) and 
µ2 = E(Y 2|H0).

The resulting p values were then corrected for multiple testing comparisons across 
all niches with a Bonferroni correction. As we have a total of K sub-communities 
and a number of niches equal to m, all p values were multiplied by Km. Two oral 
niches were considered as significantly associated if at least one corresponding p 
value ≤ 0.05 was obtained. Note that the microbiome was transformed with an arc-
sinus hyperbolic transformation [29]. Finally, while we built our sub-communities 
with all the available samples, we only kept the samples present in both niches when 
we ran the association analysis.

The complete flowchart of our method can be found in Fig. 1.

Choosing the right number of sub‑communities K

When using LDA, the number of sub-communities needs to be chosen. While sev-
eral methods exist to do this [30–34], there is no consensus about which one is the 
best. We have used different methods, as described below.

For the analysis per niche (for both doda and HMP), we applied the method used 
in DMM for fixing the number of sub-communities and then by checking the com-
position of the sub-communities and (potentially) increasing or decreasing this 
number if some sub-communities seemed questionable. This method minimizes the 
Laplace approximation of the evidence of the DMM model with respect to the num-
ber of sub-communities K.

When analysing all niches simultaneously, the method used by DMM was used to 
yield an upper bound in the number of sub-communities. More details are given in 
the Results section.

H0 : β1 = β2 = · · · = βn = 0.

β1≤j≤n ∼ N (0, σ 2),

Q =
(Y − µ)tR(Y − µ)

µ2

−→ N (0, 1),



Page 7 of 18Pappalardo et al. BMC Bioinformatics           (2024) 25:58  

Datasets

Dutch Oral Dataset (doda)

In a previous project [35], microbial samples were collected from 268 healthy, young 
(18–32 y.o.) Dutch adults after overnight fasting and restraining from any oral hygiene 
for 24  h. The details about the inclusion and the exclusion criteria are described in 
[36]. DNA was extracted from the samples and processed for amplicon sequencing 
by barcoded sequencing of the V4 hypervariable region of the 16S rRNA gene on the 
Illumina MiSeq platform.

The complete dataset was then randomly subsampled to 10,000 reads per sample, 
and the subsampled data is available as Additional file 3. A total of 1474 samples from 
6 different oral niches (unstimulated saliva (US), anterior tongue (TCA), posterior 
tongue (TCP), supragingival plaque (PL), subgingival plaque (PS) and interproximal 
plaque (PI)) and 1188 OTUs (Operational Taxonomic Units) remained. The abbrevia-
tions (US, TCA, TCP, PL, PS and PI) will be used later in the paper. The unstimulated 
saliva microbiome dataset has already been analyzed [35]. Although saliva is not a 
niche as such, we will use this term in this paper for convenience.

HMP dataset

A publicly available dataset from the Human Microbiome Project (HMP) [37, 38] was 
used to validate our findings. This dataset was already analyzed to assess the relation-
ship between niches and OTUs [21, 39]. We then proposed to analyze this dataset as 
well to compare our results. The Human Microbiome Project carried out three phases 
of sequencing the 16S rRNA gene, which was performed using the 454 Titanium 
sequencing platform. For the datasets used here, the V3–V5 hypervariable region of 
the 16S rRNA gene was sequenced.

…

…

, …N

Fig. 1 Flowcharts of the methods illustrating the two main analyzes of our method. A LDA applied on all the 
niches simultaneously to find microbial signatures. B LDA applied on each niche separately to find taxonomic 
structures and assess relationships between niches
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This dataset was first subsampled to 3000 reads. The remaining dataset consisted of 
a total of 5637 microbial samples and 15936 OTUs coming from 18 different niches 
(anterior nares, buccal mucosa, hard palate, keratinized gingiva, left antecubital fossa, 
left retroauricular crease, mid vagina, palatine tonsils, posterior fornix, right antecu-
bital fossa, right retroauricular crease, saliva, stool, subgingival plaque, supragingival 
plaque, throat, tongue dorsum and vaginal introitus).

Some oral samples had a large proportion ( ≥ 80% ) of OTU 001 (Propionibacterium). 
While this genus is common in the skin microbiome, it is usually not present in the oral 
microbiome in a large proportion (more than 1%) [40]. As its presence at more than 1% 
is therefore likely to be due to contamination, we excluded individuals with more than 
2% of Propionibacterium in one of their oral niches from the entire analysis. The list of 
the excluded sample IDs can be found in Additional file 1, section 2.

This dataset was obtained from samples collected at 3 different visits. We only ana-
lyzed the samples of the first visit. We had a total of 2501 samples for this first visit after 
removing the sample IDs as indicated above.

Software

All analysis and figures were produced using R 4.0.2 (on a PC with Windows 10 operat-
ing system) and using the following R packages: globaltest 5.44.0, survival 3.3-1, dplyr 
1.0.9, pROC 1.18.0, MLmetrics 1.1.1, caret 6.0-93, lattice 0.20-45, forcats 0.5.2, stringr 
1.4.1, tidyr 1.2.0, nnet 7.3-17, tidytext 0.3.3, gplots 3.1.3, microbiome 1.12.0, ggplot2 
3.3.6, phyloseq 1.34.0, DirichletMultinomial 1.32.0, IRanges 2.24.1, S4Vectors 0.28.1, 
BiocGenerics 0.36.1, topicmodels 0.2-12. All random seeds used to run LDA were fixed 
to 2022.

Results
LDA is able to identify discriminatory signatures of microbial niches

We first ran LDA on all niches from the Dutch Oral Dataset (doda) dataset simulta-
neously. The aim here was to see if the resulting sub-communities can help assess 
(dis)similarities between oral niches. We run this analysis with a fixed number of 5 
sub-communities.

The sub-communities were able to discriminate the original microbial oral niches 
(Fig. 2). For example, the posterior tongue microbiome (TCP) is almost only composed 
of sub-community 4, while the interproximal plaque (PI) is mainly formed of sub-com-
munity 2. In addition, those sub-communities almost did not appear in the composi-
tion of any other oral niche, suggesting that they represent unique microbial signatures 
for their corresponding niches. Still from Fig. 2, we can see two main groups of micro-
bial oral niches sharing more similarities. On the one hand, the microbiomes that come 
from different plaque niches (supragingival—PL, subgingival—PS, and interproximal—
PI) are mostly composed of sub-communities number 1, 2, and 5. On the other hand, 
the salivary and tongue (anterior—TCA and posterior—TCP) microbiomes are mainly 
composed of sub-communities 3 and 4. Interestingly, using principal component anal-
ysis, the same separation of plaque and “mucosal” samples is obtained (see Additional 
file 1, Section 3, Figures S7 and S8), although using PCA the differences between niches 
within one group are much less clear using the first two PCs. Specifically, the fact that 
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the posterior tongue microbiome (TCP) signature is distinct from those of other niches 
is not apparent. The same is true of the interproximal plaque (PI) microbiome. Detailed 
heatmaps per niche can be found in Additional file 1 (Section 1, Figures S1 to S6).

We have also quantified how discriminative sub-communities are of their correspond-
ing niches, for all niches, by fitting a multinomial logistic regression model to the niche 
(response) using the sub-communities as predictors (explanatory variables). This was 
done using a leave-one-out cross-validation strategy to recover the original oral niche of 
a sample, using data from all remaining samples. The global accuracy was 76%, and per 
niche sensitivities ranged between 39 and 90%, with the latter obtained for the posterior 
tongue (TCP; Fig. 3). Almost all oral niches were predicted with accuracy above 76%, 
except for the subgingival plaque (PS—39% accuracy, also see “Heuristic interpretation” 
section).

Latent Dirichlet allocation can describe the taxonomic structure of microbial niches

We also ran LDA on each oral niche individually with two main aims. Firstly, we wanted 
to examine the taxonomy of each sub-community and possibly identify patterns. Sec-
ondly, we wanted to assess if sub-communities contain all information from OTUs per-
taining association between niches. We will look in this subsection at the first point, 
whilst the second will be handled in the next subsection.

From the taxonomic composition of the sub-communities (Fig.  4), we saw that the 
“mucosal” samples (saliva and tongue samples—US, TCP, TCA) globally shared more 
similarities regarding their taxonomy. In particular, the combination Prevotella-Strep-
tococcus-Veillonella was present in several sub-communities. Moreover, these niches 
seemed to have lower diversity within their sub-communities. The low abundant taxa 
were indeed less present in mucosa-derived than in the plaque samples (PI, PL and PS).

Fig. 2 Distribution and composition of the microbial signatures. A Heatmap of the proportion of the 
sub-communities from LDA across samples of the doda dataset. Sub-communities are the column, samples 
are the rows. The proportion of each sub-community is clearly discriminated by the original oral niche. 
B Microbial signature composition. Only genera (or higher level taxa) that represent at least 5% of the 
sub-community are plotted here. PI, Interproximal Plaque; PL, Supragingival Plaque; PS, Subgingival Plaque; 
TCP, Tongue Coating Posterior; TCA, Tongue Coating Anterior; US, Unstimulated Saliva
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Fig. 3 Confusion matrix of the predictive model applied to the doda dataset. Rows correspond to the 
reference, and columns to the predicted values. For example, among the 241 anterior tongue samples, 190 
were accurately predicted, 25 were wrongly predicted as posterior tongue samples and 30 were wrongly 
predicted as unstimulated saliva. Niche labels: see abbreviations

Fig. 4 Taxonomic proportion for each sub-community in the doda dataset. While the sub-communities have 
been built on OTU level, we plot here the lowest taxonomic level available for each OTU. Only the taxa that 
contributed to at least 5% of a sub-community are present here. The numbers and the percentage at the top 
of the stacked bar plot respectively correspond to the number and the proportion of samples composed of 
at least 50% of this sub-community. Niche labels: see abbreviations



Page 11 of 18Pappalardo et al. BMC Bioinformatics           (2024) 25:58  

In contrast, the plaque niches (PI, PL and PS) shared a greater diversity and an over-
representation of the Corynebacterium-Capnocytophaga as well as Actinomyces-Fuso-
bacterium-Prevotella combinations.

We conclude that LDA can highlight similarities between niches regarding their taxo-
nomic compositions.

Association between LDA sub‑communities and microbiomes

Here, we assess if sub-communities contain all information from OTUs pertaining 
association between niches. To check this, we test for association between two niche-
specific microbiomes using sub-communities of one niche and all OTUs of the other 
niche. Firstly, we use LDA to decompose each niche-specific microbiome into sub-com-
munities. Secondly, we test the association between each sub-community obtained with 
another niche’s microbiome by using the global test [28]. For example, to test if there 
is an association between the unstimulated saliva (US) and supragingival plaque (PL) 
microbiomes, we first extracted sub-communities and their proportions using saliva 
samples only. We then applied the global test using each extracted sub-community as 
response, and the supragingival plaque microbiome OTUs as explanatory variables. 
We repeated this step using each of the four salivary sub-communities as response in 
turn, and applied a Bonferroni correction on the obtained global test p values. Saliva and 
supragingival plaque microbiomes were considered to be significantly associated if at 
least one of the obtained global test p values was below 0.05. We performed this analysis 
for all pairs of niches, and considered the microbiomes of two niches to be associated if 
at least one global test remained significant (after Bonferroni correction).

First we noticed that, if one sub-community of a niche displayed association with all 
OTUs of a second niche, all other sub-communities also displayed association, accord-
ing to the global test (Additional file 2). This is a result of the compositional aspect of 
sub-communities. For example, our approach identified associations between posterior 
and anterior tongue microbiomes, as well as between unstimulated saliva and suprag-
ingival plaque microbiomes (Fig. 5). The p values reported in Fig. 5 are the lowest for 
each pairwise comparison.

Secondly, both heatmaps in Fig. 5 display a striking symmetry. For example, we found 
that saliva sub-communities were associated with the supragingival microbiome OTUs, 
as well as supragingival sub-communities were associated with saliva OTUs. This sym-
metry confirms the ability of LDA summarizing the information contained in OTUs: 
testing for association between sub-communities of niche 1 on OTUs of niche 2 leads to 
the same conclusions as testing for association between sub-communities of niche 2 on 
OTUs of niche 1.

The complete table of the p values for doda can be found in Additional file 2.
We validated these findings using the Human Microbiome Project (HMP) data-

set, consisting of 18 different niches of the body (see “HMP dataset” section for more 
details). Using LDA with 3 sub-communities per niche (see “Choosing the right number 
of sub-communities K” section), we found that the niches sharing more biological simi-
larities were usually significantly associated. For example, we can see in the right panel 
of Fig. 5 that almost all oral niches are significantly associated with each other. The same 
pattern can be observed for the vaginal niches.
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Both of these results illustrate that, and how, niche-specific sub-communities report 
relevant information, enabling them to replace the OTUs in analyses in a consistent way.

Heuristic interpretation

In the subsection “LDA is able to identify discriminatory signatures of microbial niches”, 
we extracted microbial signatures for each oral niche. Further examination showed that 
the niches were almost never composed by a single sub-community, but rather by a mix 
of several ones. We observed that a single niche tends to be represented by a main sub-
community and one or several minor sub-communities. The unstimulated saliva (US) 
microbiome provides a good example (Fig.  2). While sub-communities 3 and 4 are 
clearly dominant in the salivary microbiome, sub-community 1 (much more abundant in 
the plaque samples) is still present at a non-negligible proportion in many samples (9.3% 
on average). This finding is in line with the general knowledge that the unstimulated sali-
vary microbiome is a mix of the niches in the oral ecosystem [41], here a mix of tongue 
and plaque microbiomes.

Let us now look at the results for subgingival plaque, the only niche with a high pro-
portion (Fig. 2) of 3 different sub-communities (1, 2, and 5), which was often misclas-
sified by our prediction model. This may partly be explained by the fact that these 
sub-communities were largely present in the other plaque samples (supragingival and 
interproximal). One possible explanation for the lower predictive accuracy for this sub-
gingival niche is that it is difficult to sample subgingival plaque from healthy individuals, 
as was the case here since there would not be attachment loss or periodontal pockets. 
Thus, subgingival plaque sample was most likely polluted with supragingival or inter-
proximal plaque.

We can also examine associations in more detail. For example, we have found the 
supragingival plaque microbiome composition to be associated with that of the unstim-
ulated saliva microbiome (Fig. 5). A global test output between the supragingival plaque 
sub-community 1 and the salivary microbiome shows that this sub-community is 

Fig. 5 Heatmap of the negative logarithm of the p values of the relationship between the niches. For all 
the sub-communities versus microbiome tests the lowest p value is used. doda (left) and hmp (right) datasets. 
Niche labels: PS Subgingival plaque; PI Interproximal plaque; US Unstimulated saliva; PL Supragingival plaque; 
TCP Posterior tongue; and TCA Anterior tongue
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positively associated with genera such as Neisseria and Capnocytophaga, greatly abun-
dant in this supragingival plaque sub-community (Fig. 6). On the other hand, genera that 
were negatively correlated with this sub-community were absent in this supragingival 
plaque sub-community.

Finally, we note that our results are consistent with those obtained by others. The sali-
vary microbiome used here was previously analyzed in [35]. There, five different ecologi-
cal states were proposed depending on the microbiome composition, based on a spectral 
clustering method [Figure 1 in [35]]. In spite of our methods being mathematically very 
different, we obtained a significant association between the clusters derived from [35] 
and the proportions of our 5 sub-communities (Kruskal-Wallis test between the propor-
tion of salivary sub-communities in samples and the clusters from, p value ≤ 10−16).

Choosing the right number of sub‑communities (cont.)

When we analyzed the 6 niches simultaneously of the doda dataset, the best number 
of sub-communities according to the DMM model was 12. These 12 LDA-yielded sub-
communities were however not easy to interpret. For example, several sub-communities 
had a unique genus representing more than 80% of the total composition (Additional 
file 1, section 5, Figure S9). In addition, some sub-communities appeared to be evenly 
spread across all niches, rather than being concentrated in one or two specific niches. 
Finally, by reducing the number of sub-communities we realized that these unspecific 
sub-communities merged into other sub-communities, usually representative of a spe-
cific niche. As we were aiming to extract bacterial signatures discriminating different 
oral niches, we decided to choose a more parsimonious model with a smaller number of 
sub-communities, closer to the observed number of niches. Hence, for our analyses we 
extracted K = 5 sub-communities and used them in our predictive model. This yielded 

Fig. 6 Output of the global test between the first supragingival plaque sub-community and salivary 
microbiome. Green corresponds to a positive association and red to a negative one. Here, the presence of 
the genus Neisseria in the saliva is positively significantly (p value ≤ 1e

−10 ) associated with the development 
of the first supragingival plaque sub-community. We performed a Genus-level summary before to plot this 
output to have a clearer view of the sub-communities-genus dependency
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sub-communities that were associated with biologically related (OTU-based) microbi-
omes, as we saw in Fig. 5, in both datasets considered.

It appeared to us that K = 5 provided the most meaningful sub-communities. This is 
for example the highest number of sub-communities so that there is no overlapping on 
the two-dimensions visualization of the LDAvis package. Moreover, this number of sub-
communities is close to our number of niches which helped us to assess the sub-com-
munities - niches relationships.

To give us an idea about the impact of the number of communities chosen, we com-
pared original niche predictions obtained with K = 5 with those using K = 12 . The 
global accuracy of the prediction model was naturally higher when K = 12 was used: 
87%, compared with 76% with K = 5 used. However, this increase in predictive power 
comes with a loss of interpretability individual sub-communities often represent a single 
sample, making it harder to understand relationships between microbiomes.

Finally, we run a simulation study to check how the method used by DMM to estimate 
the number of sub-communities changes with the number of samples available. For this, 
we created 20 simulated datasets using the LDA generative process with a true number 
of sub-communities K = 5 and a total number of samples n = 1474 . We then applied 
the dmn function on each dataset and varied the number of included samples between 
n = 100 and n = 1474 for each case. We found that the number of estimated sub-com-
munities by the dmn function is highly dependent on the number of included samples. 
This number varied from Kest = 15 with n = 1474 to Kest = 5 with n = 5 . This informa-
tion encourages us to use a lower number of sub-communities than the one proposed by 
dmn when the number of samples is high. The detailed results of this simulation study 
can be found in Additional file 1, section 6, Figures S10 to S12.

Discussion and conclusion
In this study, we proposed to use Latent Dirichlet Allocation to reduce dimensions of 
multi-niche microbiome data. LDA is an unsupervised machine learning technique able 
to jointly analyze microbiomes coming from several niches. This method allows us to 
bring out microbial signatures of those niches, taking into account the multinomial and 
compositional nature of the data.

Using our approach on multiple microbial niches simultaneously, we have been able 
to better describe associations between them, by identifying niche-specific microbial 
signatures. These signatures can also be used to predict the original niche of a sample. 
We also illustrated that when analysing data from individual niches, sub-communities 
revealed the latent taxonomic structure of microbiomes and were used to assess the 
relationship between several niches.

In particular, when analysing multiple microbial niches in the oral cavity from the 
Dutch Oral Dataset, we have found that the salivary microbiome is related to suprag-
ingival plaque, but also that the salivary microbiome is sharing microbial signatures with 
the tongue and (in a lower proportion) supragingival plaque. However, tongue micro-
bial environments show relatively little association with those of plaque niches. The 
unstimulated saliva, often used to represent the entire oral cavity, has its sub-commu-
nities mostly related to that of supragingival plaque, and displays in fact little relation to 
other oral microbial niches. This result can, however, no longer be observed in the HMP 
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dataset. In this dataset, saliva samples were collected by a mixture of stimulated and 
unstimulated procedures which result in different microbial compositions [42]. Stimu-
lated saliva usually has a higher microbial diversity which might lead to more association 
with other oral niches.

Our method requires a number K of sub-communities to be given. In applications, 
where possible, we used K estimated by the DMM method [20]. However, we found evi-
dence that this estimate varies with the number of samples available, in a way that the 
resulting K̂  is not as small as it could be, making interpretation more difficult. A bet-
ter method to choose optimal K would be useful in this context. This problem is how-
ever complex, in this context where a mixture between a Dirichlet and a multinomial is 
involved.

Dimension reduction techniques, such as Principal Component Analysis (PCA), are 
widely used to analyze microbiome data. PCA has been used to visually discriminate 
microbiomes from several niches as well as overtime [18]. In that work, PCA was able to 
discriminate microbial niches, but the principal components extracted were difficult to 
interpret biologically. Moreover, PCA is built to handle continuous data, while microbi-
ome data are composed of counts and involve compositionality, sparsity and overdisper-
sion, all of which are not well handled by PCA. PCA, therefore, would require at least 
a data transformation before it can be applied to microbiome data. LDA, on the other 
hand, is suited to the inherent properties of microbiome data and can also capture non-
linear relationships.

Having said that, it has been shown that LDA can be interpreted as a multinomial PCA 
model, and therefore it can be seen as a discrete analogue to PCA [43].

Dimension reduction can also be achieved using a Dirichlet Multinomial Mixture 
(DMM), which has already been used with the same aim (decompose microbiome into 
sub-communities and assess the relationship between microbial niches) [19–21]. LDA 
and DMM are mathematically similar and yet present important differences. The main 
difference is related to the nature of sub-communities. Indeed, the DMM model assumes 
that every microbial sample belongs to a single sub-community. In contrast, using LDA 
each sample is by definition a mixture of several sub-communities with a different com-
position so that, even if the samples share some sub-communities, the proportion of the 
sub-communities differs across them. This aspect of LDA preserves the uniqueness of 
each sample. In the context of text-mining, DMM is often used to analyze short text 
such as tweets or GoogleNews [44], and in such cases, a single topic per document 
seems likely. In our case, however, since microbiomes are highly complex with several 
higher and lower abundant species, this assumption does not seem plausible enough to 
be considered. Moreover, we wanted to check the reliability of our sub-communities by 
using the sub-community proportion per sample as an independent variable in our pre-
dictive model. If each sample belongs to a single sub-community though, prediction can 
no longer be done using cross-validation.

An LDA sub-community can be defined as a repeating pattern of co-occurring OTUs 
in a collection of samples (niches/collection of niches). Note that, as an unsupervised 
method which does not use sample labels, it is up to the user to gain insight from sub-
communities. We have here illustrated that, by examining the association of sub-com-
munities and other microbiomes, further insight into their interpretation can be gained.
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Here we point out that the nature of the resulting sub-communities is dependent on 
both the data collection process and the number of sub-communities used. Like any 
other data analysis approach, pre-processing is a crucial step. For example, when per-
forming topic modeling in the context of text mining, pre-processing involves elimi-
nating words that are commonly used and therefore carry little useful information, for 
example, common verbs, articles, or punctuation. Further research on the impact of this 
pre-processing on the microbiome needs to be performed in the future.

To conclude, to analyse multiple microbial niches we proposed to use Latent Dirichlet 
Allocation. We have shown that bacterial signatures yielded can be used to discriminate 
as well as characterize niches, and to predict the original niche of a microbial sample. 
Sub-communities can replace microbial OTUs in data analyses, yielding similar conclu-
sions which are potentially easier to interpret due to dimension reduction. Finally, by 
taking into account multiple microbial niches, the analysis can shed light into relation-
ships between niches, and better inform the choice of a single niche to represent them 
all, if need be.
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