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Abstract 

Background:  Metagenomic sequencing technologies offered unprecedented 
opportunities and also challenges to microbiology and microbial ecology particularly. 
The technology has revolutionized the studies of microbes and enabled the high-
profile human microbiome and earth microbiome projects. The terminology-change 
from microbes to microbiomes signals that our capability to count and classify 
microbes (microbiomes) has achieved the same or similar level as we can for the biomes 
(macrobiomes) of plants and animals (macrobes). While the traditional investiga-
tions of macrobiomes have usually been conducted through naturalists’ (Linnaeus & 
Darwin) naked eyes, and aerial and satellite images (remote-sensing), the large-scale 
investigations of microbiomes have been made possible by DNA-sequencing-based 
metagenomic technologies. Two major types of metagenomic sequencing technolo-
gies—amplicon sequencing and whole-genome (shotgun sequencing)—respectively 
generate two contrastingly different categories of metagenomic reads (data)—OTU 
(operational taxonomic unit) tables representing microorganisms and OMU (opera-
tional metagenomic unit), a new term coined in this article to represent various cluster 
units of metagenomic genes.

Results:  The ecological science of microbiomes based on the OTU representing 
microbes has been unified with the classic ecology of macrobes (macrobiomes), 
but the unification based on OMU representing metagenomes has been rather limited. 
In a previous series of studies, we have demonstrated the applications of several 
classic ecological theories (diversity, composition, heterogeneity, and biogeography) 
to the studies of metagenomes. Here I push the envelope for the unification of OTU 
and OMU again by demonstrating the applications of metacommunity assembly 
and ecological networks to the metagenomes of human gut microbiomes. Specifically, 
the neutral theory of biodiversity (Sloan’s near neutral model), Ning et al.stochasticity 
framework, core-periphery network, high-salience skeleton network, special trio-motif, 
and positive-to-negative ratio are applied to analyze the OMU tables from whole-
genome sequencing technologies, and demonstrated with seven human gut metage-
nome datasets from the human microbiome project.

Conclusions:  All of the ecological theories demonstrated previously and in this article, 
including diversity, composition, heterogeneity, stochasticity, and complex network 
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analyses, are equally applicable to OMU metagenomic analyses, just as to OTU analy-
ses. Consequently, I strongly advocate the unification of OTU/OMU (microbiomes) 
with classic ecology of plants and animals (macrobiomes) in the context of medical 
ecology.

Keywords:  Operational metagenomic unit (OMU), Operational taxonomic unit (OTU), 
Metagenome ecology, Unified ecology of microbiomes and macrobiomes, Sloan 
near neutral model, Core/periphery network, High-salience skeleton network, Unified 
ecology of metagenomes and organisms (species), Medical ecology

Background
The repertoire for post-sequencing-reads pipeline analyses for metagenome data 
from whole-genome sequencing technology (also known as shotgun sequencing) is 
much smaller than those for the OTU (operational taxonomic unit) data from ampli-
con sequencing (e.g., 16s-rRNA) for two main reasons. The first is the uncertainty 
around the applicability of ecological theories given that metagenomes are assem-
blages of genes, rather than of organisms. Second, orders of magnitude more MGs 
(metagenomic genes) than the numbers of microbial species make the analyses, espe-
cially ecological network analysis, extremely challenging computationally. I demon-
strate the applicability of a set of ecological/network approaches, including Sloan 
near-neutral model, core/periphery network, high-salience skeleton network, trio-
motif and PN ratio for assessing and interpreting the relative significance of the four 
processes (drift, selection, mutation, dispersal) in shaping the assemblage patterns of 
metagenomes (similar to metacommunity of organisms or species). In our opinion, 
the time has come for accelerated efforts towards a unified medical ecology of micro-
biomes/macrobiomes and organisms/metagenomes by filling historical gaps among 
ecology, genetics, and biomedicines.

Neutral theory originated in studies on gene mutation in molecular evolution [1, 
2], and it was later extended to the field of community ecology and biogeography [3]. 
The neutral theory of evolution maintains that most variations at the molecular level 
do not have significant impacts on evolutionary fitness, and consequently the fate of 
genetic variations are mostly interpreted by stochastic drifts [4]. In the 1990s, Ste-
phen Hubbell introduced the ecological neutral theory for interpreting biodiversity 
and biogeography by assuming that organisms from different species are equivalent 
with each other, and their differences in demography (birth, death, and migration) are 
stochastic drifts [3]. However, a perfect neutral theory would contradict the princi-
ples of classic niche selection, which suggests that organisms of different species usu-
ally only live and prosper in their own niches. In other words, it is the habitat (niche) 
properties that determine (select) the composition of ecological community, rather 
than stochastic drifts as neutral theory predicts. In both fields of molecular evolution 
and biodiversity, neutral models have successfully acted as null models for assess-
ing and interpreting the relative importance of stochastic drifts versus determinis-
tic selections. Furthermore, in both fields, it is postulated that there are four classes 
of process including drift, selection, speciation (mutation), and dispersal (gene flow), 
which constitute the critical processes that shape community dynamics and bioge-
ography (synthesis of community ecology) or patterns of genetic variation (synthesis 
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of population genetics) [5–8]. Neutral theory models explicitly consider three of the 
four above-mentioned processes (excluding selection), and therefore offer potential 
tools for examining the significance of those processes, particularly if complemented 
with other tools that can effectively measure the effects of selection forces.

Inspired by the above-mentioned success of neutral theory in community ecology and 
population genetics, the present study is aimed to explore its extensions to the domain 
of ‘assemblage of metagenomes.’ An assemblage of metagenomes is similar to an assem-
blage of communities (i.e., metacommunity) in community ecology [9–11]. For exam-
ple, within a family (or cohort), each family (cohort) member is inhabited by his or her 
microbiome, and the total microbial genes carried by the microbiome can be defined 
as the individual’s metagenome. For the family (cohort), on the one hand, the assem-
blage (collection) of all microbial communities is known as a metacommunity in the 
vocabulary of community ecology; on the other hand, the ‘assemblage of metagenomes’ 
can be considered as the counterpart of ecological metacommunity [9–11]. An impor-
tant assumption in either metacommunity or metagenome assemblage is the exchange 
(dispersal or migration) of either microbes or MGs among individuals (family or cohort 
members). In the above description of family (cohort) setting, the ‘scale’ of local commu-
nity (metagenome) is individual, and consequently the metacommunity (metagenome 
assemblage) is defined for a family (cohort) or any population entity with individual or 
gene exchanges. Obviously, the scale can also be a microbiome habitat (body part) of an 
individual (e.g., gut, oral, skin, lung and vaginal of an individual); then metacommunity 
and metagenome assemblage can be defined for each individual or at individual level. 
Intuitively, I argue that the ecological theories for metacommunity can be extended to 
the metagenome assemblage, which is indeed a main objective of this article. Nonethe-
less, it should still be conscious with their difference: the basic measure in metacom-
munity is organismal taxon (e.g., species) abundances, while it is the metagenomic gene 
abundance in metagenome assemblage [9–11]. The assemblage of metagenomes is also 
different from the assemblage of gene mutations in population genetics because in the 
latter, all genes are from a single species, but in the former, it is the total genes carried by 
all species from a microbial community or a microbiome sample.

Metagenomic genes (MGs) are genes assembled and annotated from the whole-
genome (shotgun) sequencing reads of microbiome samples, and the abundances of 
MGs can be organized as metagenomic gene abundance (MGA) tables. The MGA is 
essentially a matrix with each row of elements representing for the abundances of all 
MGs contained in a microbiome samples, and each column for the abundances of 
a certain MG (metagenomic gene) across all microbiome samples of the focal pro-
ject. A fundamental difference between OTU and MGA tables is the “abundances of 
organisms or OTUs” versus “the abundances of genetic materials or MGs”. A second 
difference between the OTU table and MGA table is the magnitudes of the matrix 
elements. In general, the number of MGA matrix elements is 2–3 orders of magni-
tude larger than that of OTU (taxon) matrix elements. This seemingly nonessential 
difference turned out to have far reaching impacts on consequential data analysis 
and interpretations. The millions of MGs make the metagenomic data analyses such 
as bioinformatics, ecological and network analyses rather challenging. For exam-
ple, performing complex network analysis with millions of nodes (MGs) is beyond 
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the capacity of typical computational biology centers. In fact, the sheer size of MG 
numbers has been a major roadblock for the data analysis of whole-genome metageg-
nomic sequences. This has significantly delayed the applications of ecological and 
network analyses in the metagenome studies, and may explain the relatively few appli-
cations. To overcome the obstacle, Ma and Li (2018) proposed the concepts of MFGC 
(metagenome functional gene cluster), MF (metagenome function) and MP (metage-
nome pathway), which are similar to widely used CAG (co-abundant gene group) and 
MGS (metagenomic species, which are the CAGs with > 700 genes) but computed in 
terms of meta-transcriptomic functions or metabolomic pathways, rather than on sta-
tistical clustering based on gene abundances [9, 12, 13]. The introduction of MFGC/
MF/MP readily removed the previously mentioned roadblock associated with bulk 
data of MGs because the numbers of MFGC/MF/MP are in hundreds or tens, which 
puts the computational load on a par with the OTU data analysis. Furthermore, trans-
forming the MG to MFGC/MF/MP (i.e., the data reduction) is justified because (i) the 
function and pathway information is preserved, (ii) many of the millions of MGs are 
functionally redundant, (iii) there is currently little understanding of many individual 
MGs other than a mechanically assigned numeric gene number.

In previous studies [9–11, 14], we have demonstrated the applications of diversity, 
heterogeneity and their scaling analyses for metagenomic datasets. In the present 
study, I further attempt to investigate the critical ecological processes (mechanisms) 
underlying the metagenome patterns. As introduced previously, a primary theoretic 
tool to fulfill our objective is the extension of ecological neutral theory to the new 
domain of MG/MFGC, which has not been approached previously to the best of our 
knowledge. Since the neutral theory approach can only cover three of the four pro-
cesses and in its ideal form, quantifying the effects of selection with neutral theory 
alone is obviously inadequate. That said, I adopt core/periphery network (CPN) 
[15, 16] and high-salience skeleton network (HSN) [16–18] to complement neutral-
theoretic approach in order to assess and interpret the critical ecological processes 
underlying the metagenome patterns. Finally, I applied the stochasticity analysis 
framework to cross-verify the findings from neutral-theoretic and CPN/HSN net-
work analyses [19].

Selection can be defined as deterministic fitness differences between individuals (or 
genes) of different species (or MFGCs) or the deterministic interactions among spe-
cies (or MFGCs) and between species (or MFGCs) and their environments [6, 20]. In 
other words, selection represents asymmetric or unequal MFGC interactions from a 
network link perspective. From a network node perspective, selection represents het-
erogeneity or nestedness. While the CPN can classify all species as core and periph-
ery network nodes (which have distinctively different interaction patterns), the HSN 
can identify high-salience skeletons (links) that form the backbone paths of species 
interactions, similar to distinguishing roads as highways (backbones for transporta-
tion) versus country roads in a transportation network. In other words, the distinc-
tion between core and periphery MFGCs is critical because CPN structures can 
effectively characterize complex sets of cooperative and competitive interactions 
between network nodes (MFGCs/MFs/MPs). Similarly, the HSN highlights the criti-
cality of “highways” or “backbones”—network paths consisting of links with strong 
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interactions. Given that nodes and edges (links) fully describe a network (model of 
metagenome), an integrated approach with CPN and HSN analyses can span the full 
spectrum of species interactions in driving the patterns of metagenome assemblages 
from both node and link perspectives.

Furthermore, if our integrated neutral-theoretic and network approaches to the pat-
terns of metagenome assemblages (i.e., the counterpart of metacommunity in the com-
munity ecology) are successful, we are a step closer to a unifying microbiome ecology of 
metagenomes and taxa. Figure 1 illustrates the study design of this paper, including the 
ecological and network approaches towards a unified microbiome ecology of metagen-
omes and organisms (species, taxa, or OTUs).

Justification for unifying community ecology of organisms and metagenomes, espe-
cially from functional perspective, are also supported by Boon et al. [21] comprehensive 
review. They suggested that the units for delineating biodiversity can be taxonomic, phy-
logenetic, or functional in nature, since microbes could rapidly gain and lose genes, likely 
delinking community roles from taxonomic and phylogenetic clustering [21]. Instead, 
Boon et al. [21] recommended that trait-based (function-based) methods provide a use-
ful substitute because many traits can be defined in terms of gene functions, metabolic 
modules, and genomic properties, similar to MF/MP/MFGC defined in our study. Boon 
et al. [21] further argued that an analysis that considers both taxon assignment and traits 
in concert should be preferred, since they may complement each other. They also sug-
gested that individual genes, similar to metagenomic genes (MGs) used in our study, also 
deserve consideration as units (entities) in ecological analyses, assessing features includ-
ing diversity, turnover, and interactions modeled using genes rather than organisms 

Fig. 1  Diagramming the study design towards unified medical microbiome ecology of metagenomes 
(OMU) and organisms (OTU). The whole diagram consists of top section and bottom section, as well as formal 
set-theoretic (mathematical) definition of OMU, which are interpreted below. (1) The top section displays 
the study design consisting of two parts, i.e., the previous works (for the OTU and three topics of the OMU) 
including diversity, heterogeneity and biogeography) and the contents planned for this study. The new 
contents with the OMU in this study include six approaches: two network-approaches with core/periphery 
network (CPN) and high-salience skeleton network (HSN), Sloan near-neutral model, normalized stochasticity 
ratio (NSR), two statistical test approaches (randomization tests and shared OMU analysis) for detecting the 
disease effects. (2) In the bottom section, the ad-hoc concept OMU (operational metagenomic unit) or its 
shorthand MU is introduced as the counterpart of OTU (see the methods section for their interpretations), and 
MG (metagenomic gene) is considered as the basic (‘atomic’) unit of OMU and is similar to (the counterpart 
of ) the species in the OTU (97% similarity in 16S-rRNA sequences for bacteria) taxonomic hierarchy. Both MGs 
and species exist as basic (undividable) units. In the case of MG, each MG may have one or more functions, 
but the ‘components’ (if forced to divide) of MG is sequencing reads that do not have a corresponding 
function (hence being atomic). Species is the foundation of a taxonomic system in the case of OTU hierarchy. 
The other entities of OMU include MF/MP/MFGC (defined by Ma & Li 2018: Mol. Ecol. Res.) and CAG and MGS 
(by Li et al. 2014; Nielsen et al. 2014, both in Nature Biotechnology). All of them are generated from MGs, just 
like other taxonomic units such as genus and family are combinations of species. (3) Formal mathematical 
definitions for MF/MP/MFGC from the MG are defined as follows. Assuming there are n MGs, i.e., MG1, 
MG2,…, MGn, we can define MF/MP/MFGC with mathematic set notation: MF = {MG1, MG2, MG3, . . .} , 
where MG1, MG2, MG3 are mapped to same metagenomic function. MP can be defined similarly except that 
all of its genes (MGs) are mapped to same metagenomic pathway. Therefore, MF (or MP) can be described as 
a set of the MGs annotated to the same metagenomic function (or pathway). Conceptually, MFGC is a set of 
subsets of MFs (or MPs). That is, the elements of MFGC set consist of the combination of MFs. For example, 
MFGC = {{MF1, MF7}} , this MFGC consists of the MGs that simultaneously annotated to two metagenomic 
functions MF1, and MF7. Assuming there are m possible MFs, the total possible number of MFGC is equal to 
M = C

2
m + C

3
m · · · + C

m−1
m + C

m
m . In practice, only a tiny portion of the possible number exists naturally

(See figure on next page.)
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as entities. In the present study, I translate the ecological and network approaches we 
previously developed for analyzing microbial communities using taxon entities such as 
microbial species or operational taxonomic units (OTUs) for the metagenome analysis.

Unifying the community ecology of organisms and metagenomes is also challenging. 
First, the applicability of ecological theories to assemblages of metagenomes should be 
self-evident as demonstrated by: (i) Interactions of metagenomic units (entities) such 
as MG/MFGC/MF/MP can be modeled with classic ecological theories [9–11, 22]. (ii) 
Classic community ecology is mainly about the studies of the interactions within and/or 
among assemblages of species (community/metacommunity) and their interactions with 
the environment, formally the spatiotemporal dynamics of community (metacommu-
nity) at local, regional and global scales influenced by the environment, as well as their 
impacts to the environment. In the case of human microbiomes and metagenomes, envi-
ronment is the human body or microbiome host. In fact, with the unifying community 
ecology of metagenomes and organisms or OTUs, we are equally, if not more, interested 
in the impacts of metagenomes and their carriers (microbiomes) on their environment 

Fig. 1  (See legend on previous page.)
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(human hosts). The unifying community ecology of metagenome and organisms can be 
considered as part of the emerging medical ecology of microbiome-associated diseases, 
which is an cross-disciplinary field of medical microbiology, computational biology and 
bioinformatics (for supporting metagenomic technologies), and theoretical ecology 
for modeling and simulating of microbiomes [20, 23]. However, the cross-disciplinary 
nature of medical ecology also presents significant challenges such as establishing com-
mon terminologies, identifying appropriate theories, and crossing possible technological 
and conceptual barriers. I hope that the ecological methods demonstrated with metage-
nomes of human microbiomes in this study can be a small step towards a unified ecology 
of metagenomes and organisms, or of the microbiomes and macrobiomes with gene and 
species in general.

Datasets and methods
Seven metagenome datasets of the human gut microbiome

This subsection briefly introduces the datasets I use to demonstrate my efforts for unify-
ing the microbiome ecology analyses of the OMU (operational metagenomic unit) for 
metagenomes and the OTU for microorganisms. All of the seven reanalyzed datasets 
of human gut metagenomes are already available in public domain and were published 
previously by other researchers (Table  1). To keep balanced sample sizes between the 

healthy and diseased treatments, in two datasets, I randomly discarded certain num-
ber of samples, so that the results between the healthy and diseased treatments can be 

Table 1  Summary information on the seven datasets of the human gut metagenome reanalyzed in 
this study as well as the numbers of OMUs (operational metagenomic units)

Study Treatment Number 
of 
samples

Number 
of 
samples 
used 
in this 
study

Number 
of MFGCs 
(eggNOG)

Number 
of MFGCs 
(KEGG)

Number 
of MP/MF 
(eggNOG)

Number 
of MPF 
(KEGG)

Number 
of MGs

Reference 
(data 
source)

Stool 
(HMP)

Stool 
(Healthy)

139 139 361 312 37 24 5838354 Methé et al. 
[24]

Obesity Lean 96 96 361 312 37 24 5407291 Qin et al. 
[25], Chat-
elier et al. 
[26]

Obesity 17 0 0 0 0 0 0

Overweight 168 96 Sam-
pled from 
168

361 312 37 24 5134721

Type-2 
Diabetes

Healthy 74 74 361 312 37 24 4573927 Qin et al. 
[27]

Disease 71 71 361 312 37 24 4432814

IBD 
(Inflam-
matory 
bowel 
disease)

Healthy 24 71 361 312 37 24 2898618 Nielsen 
et al. [13]

Healthy 
Relative

47

CD 21 0 0 0 0 0 0

UC 127 71 Sam-
pled from 
127

361 312 37 24 4462890

Total 784 618
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compared properly. A brief introduction on the metagenome entities including MG 
(metagenomic gene), Type-I and II MFGC (metagenome functional gene cluster), Type-I 
and II MF (metagenomic function, based on eggNOG database), and Type-I and II MP 
(metagenomic pathway, based on KEGG database) is illustrated in Fig. 1. The difference 
between Type-I and Type-II is that the former ignores the abundance of metagenomic 
genes and only counts the presence/absence of MG (see Ma and Li 2018 for detailed def-
initions) [9]. The terminology of Type-I MFGC (MFGC-I) and Type-II (MFGC-II) were 
previously defined by Ma and Li [9]. To make both terms more self-explaining, I suggest 
giving Type-I MFGC an alias of “non-abundance-based (non-abundance) MFGC” and 
Type-II MFGC as alias of “abundance-based MFGC.”

As a side note, the computational load for the metagenomic analysis of the whole-
genome sequencing data is usually far more demanding than that for the marker-gene 
(e.g., 16S-rRNA) based analysis. The computational work of this study was performed 
on a server containing double CPU (Intel Xeon Silver 4114 CPU, each with 12 cores) and 
512 GB-memory space.

A brief review on the metagenomic terminology

This subsection briefly reviews and summarizes existing, relevant concepts/terminolo-
gies for metagenome studies, and further suggests the usage of operational metagenomic 
unit (OMU) for classifying and cataloguing metagenomic genes as a counterpart con-
cept of the familiar operational taxonomic unit (OTU) for the taxonomic classification 
of microbes. It is well known that the classification of microbial OTUs is usually based 
on marker-gene (e.g., 16S-rRNA) sequencing technology, while the OMU is suggested 
as a concept for supporting the whole-genome sequencing technology, which produces 
total genes (collective genomes) contained in a environmental microbiome sample.

Unlike in the fields of amplicon-sequencing (e.g., 16S-rRNA) data processing and/or 
other fields of microbiology such as microbial taxonomy and ecology, there is not yet 
a well accepted terminology system that covers all commonly used terms in studies 
on metagenomes. While some concepts, most notably, metagenome, and to a slightly 
less extent, metagenomic gene (MG), transpire unambiguous meanings to virtually all 
microbiologists and even most biologists and ecologists, some other concepts such as 
IGC (integrated gene catalog), MGS (metagenomic gene species), and CGA (co-abun-
dance gene group) may still be familiar to most microbiologists, and still some concepts 
such as ORF (open reading frames), orthologous groups (KEGG, eggNOG, etc.), MFGC 
(metagenome functional gene cluster), MF (metagenome function), MP (metagenome 
pathway) may only be familiar to specialized fields in microbiology and informatics. Yet, 
researchers still occasionally coin new ad hoc terminologies that may only be known to 
readers of their respective papers.

As illustrated in Fig. 1 and mentioned previously, I suggest using the term “operational 
metagenomic unit” (OMU) to mirror the term OTU (operational taxonomic unit) that 
is obviously on a par with metagenome. However, there are not totally reciprocal. First, 
unlike OTU, the items I wished to cover with OMU (as listed previously) are not neces-
sarily hierarchical, not necessarily homogenous within the same hierarchical level, and 
instead, are mostly “networked” (cross-linked) and heterogeneous. Second, unlike OTU 
that transpires the message of imprecision (or workaround) in classifying microbes to 
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mirror the taxa of macrobes (plants and animals), most entities or items in my provi-
sional OMU are not workaround solutions as rightly advised by an anonymous expert 
reviewer. I also suggest to simply use the term “metagenomic unit (MU)”, as shorthand 
for and interchangeably with, the term OMU. That is, I use the term MU or OMU as a 
collective proxy for multiple metagenomic entities defined and/or used in our previous 
publications and also analyzed in this study, including metagenomic gene (MG), MFGC 
(metagenome functional gene cluster), MF (metagenome function) and MP (metagen-
ome pathway) [9–11].

The metagenome refers to the “collective genome” of an environmental sample. Note 
that the term ‘environmental’ is used broadly to cover virtually any place on the earth 
planet (assuming that life only exists on the earth). While the genome of a species can be 
considered as a catalog of all genes the species carries, metagenome of an environmental 
sample (such as a sample of human gut microbiome) can be considered as a catalog of 
all genome the environmental sample contains. Following this convention, Li et al. [12] 
used the term “integrated gene catalog” (IGC), but they did not define a formal term 
for the content or items of the IGC. Ma and Li [9] introduced the term “metagenomic 
gene” (MG) to refer to the items or content of IGC. Ma and Li [9] noted: “metagenome 
assembly generates millions of contigs, which are fed into gene prediction software, and 
the latter generates a list of nonredundant genes based on the criteria set by ORFs (open 
reading frames). MG embodies single‐gene‐level genetic information.” Therefore, MGs 
of a metagenome can be considered as the counterpart of genes in a genome, which are 
also similar to (or being the counterpart of ) the species-level unit in the OTU (opera-
tional taxonomic unit) for the taxonomy (organismal classifications) of microbes.

In Li et al. (2014), they further annotated and binned the genes (MGs in terms of Ma 
and Li 2018) in IGC based on KEGG and eggNOG databases as so-termed orthologous 
groups [9, 12]. The term orthologous group was not a new term in Li et al. (2014); instead 
it is a term native to functional KEGG and eggNOG databases [12]. So in their paper, 
they used KEGG orthologous group and eggNOG orthologous group, respectively. Both 
KEGG and eggNOG are essentially catalogs (databases) of functional genes because their 
contents are obtained from grouping genes according to their functions or functional 
categories. In consideration of lack of common terminologies, and also KEGG/egg-
NOG contains both genomic and metagenomic genes, Ma and Li (2018) introduced the 
terms of MFGC (metagenome functional gene cluster), MF (metagenome function), MP 
(metagenome pathway) to deal with the lack of a consistent terminology, all of which are 
clusters of MGs (metagenomic genes) based on their metagenomic functions or func-
tion category [9]. MFGC was defined based on metagenome functional gene cluster (cat-
egory), and MF/MG was defined based on kinds of metagenome functions or pathways. 
Their computational steps were introduced in Ma and Li [9]. Figure 1 further illustrated 
the relationships among MG, MF/MP and MFGC, including the set theoretic definitions 
for MF/MP/MFGC. Mathematically, a MF (or MP) is a set with MGs as its elements, and 
a MFGC is a set with subsets of MFs as its elements, as illustrated in Fig. 1.

Beyond Li et al.(2014) ICG [12], there have been multiple algorithms [13, 28–30] to 
produce IGC-like catalogs described by various terms such as “metagenomic gene cata-
logs” or “metagenomic assembled genomes” (MAG), all of which can be considered as 
basic or ‘atomic’ components of metagenome. But the underlying principle and end 
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results (catalog or list of genes) can be adequately captured by the concept of MG of Ma 
and Li [9]. A commonality here is the basic or atomic nature of the metagenomic entities 
(the MG and other similar ones), under which the divisible components such as contigs 
and reads are not mapped to any functions. For this reason, I stick to the term MG in 
this study and suggest following it in future literature.

Similar to MF/MP and MFGC, there are other similar metagenomic entities (units) 
such as CAG (co-abundance gene group) and MGS (metagenomic species) [12, 13]. 
Nielsen et al.[13] developed a sophisticated algorithm to cluster metagenomic genes into 
CAGs, and the algorithm was primarily based on Pearson’s correlation coefficient (> 0.9) 
between a randomly selected ‘seed’ and the other genes with similar abundance profiles. 
With their algorithms, many MGs can be clustered into different CAGs, but some MGs 
may not be classified into any CAGs. Nielsen et al.[13] further referred to these co-abun-
dance gene groups (CAGs) as metagenomic species (MGS) if they satisfy two conditions: 
(i) with more than 700 metagenomic genes; (ii) if more than 50% of the genes comprising 
the CAG were assigned a given microbial species level taxonomy (including genes with 
no match). Again, only portions of MGs could be mapped to MGS. It was for this incom-
plete nature of mapping from MGs to high-level units including CAGs and MGSs, that 
prompted Ma and Li (2018) to introduce the concept of MF (MP) to represent the MG 
set of functional (pathway) genes, and each MF (MP) contains all the genes (MGs) of the 
same function (or pathway), i.e., a set of genes (MGs) with the same function or path-
way [9]. Similarly, they introduced the concept of MFGC to represent the MG sets of a 
functional gene cluster (category), and each MFGC contains all genes of same function 
(pathway) cluster. Each cluster of functions (pathways) may contain two or more func-
tions or pathways; hence, each MFGC contains all of MGs annotated to the functions 
(pathways) belonging to same cluster. By mapping against major function/pathway data-
bases (such as KEGG and eggNOG), all MGs can be mapped to MF (or MP) and MFGC.

From above introduction, it is clear that we currently still lack a unified or consistent 
terminology system to cover all of the terms mentioned previously. As suggested pre-
viously and interpreted in Fig. 1, I use the term OMU (operational metagenomic unit) 
or MU (metagenomic unit) for short, to cover all of the metagenomic entities (units) 
including MGs, MFGC, MF/MP, CAG, MGS, etc.in this article as a shorthand or work-
around term. Among the items covered by OMU, MG can be considered as the basic 
(atomic) unit in the OMU hierarchy (more accurately “tree” or “network”, i.e., some 
terms are cross-linked to form a tree or network structure among the terms), since MGs 
are obtained from metagenomic contigs and contigs do not have explicit mapping to 
functions (Fig. 1). Furthermore, the other terms such as MFGC, MF/MP, and MGS are 
clusters of MGs based on specific algorithms designed to map MGs to functions/path-
ways or groups of functions/pathways [9].

In summary, the previous conceptual and terminological discussion is aimed to 
facilitate the applications of ecological and network approaches to the analysis of 
metagenomic sequencing data. Previously, these approaches (as introduced below) 
have been successfully introduced to the analysis of amplicon-sequencing data, which 
are first processed by special bioinformatics pipelines to generate the OTU tables. It is 
the OTU tables that are the input data for the ecological and network analyses. Simi-
larly, the whole-genome metagenomic sequencing data are first processed by special 
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bioinformatics pipelines to produce MG tables or other OMU (MFGC, MF/MP, etc.) 
tables [9, 12, 13, 28, 29]. It is the OMU tables that are the input data for the proposed 
ecological and network analyses, similar to the input of OTU tables for the ecology of 
microbiomes (microorganisms) [9–11, 31–41]. In spite of the differences between OMU 
and OTU (genes vs. organisms) explained previously, as demonstrated in the remainder 
of this article and also previously [9–11, 31–41], those ecological/network approaches 
seem to be equally powerful in producing biomedical insights, which encourages us to 
advocate for a unified medical ecology of metagenomes and organisms.

Sloan (2006, 2007) near neutral theory model

The near neutral theory model introduced in this subsection is designed for studying 
the community assembly and diversity maintenance of organisms including microorgan-
isms. The neutral theory for biodiversity is inspired by the neutral theory for molecu-
lar evolution, but the theory has not been applied to metagenomes, to the best of my 
knowledge. Here, we propose to apply the neutral theory of biodiversity, specifically 
Sloan’s near neutral model, for metagenomes at various OMU scales. The differences 
between Sloan et al. [42, 43] near neutral model and Hubbell [3] general unified neutral 
theory of biodiversity (UNTB) lie in: (i) With Sloan model, a species is allowed to pos-
sess competitive advantage (above-neutral) or disadvantage (below-neutral). For this, it 
is a near neutral model. According to Sloan model, all species in metacommunity can 
be classified into three categories: neutral, below-neutral and above-neutral. (ii) Sloan 
model is formulated as a continuous diffusion equation, which allows to model nearly 
arbitrary size of populations (communities) that are usually significantly larger than 
the sizes of macrobial populations (communities) of plants and animals. This is actu-
ally the primary reason why Sloan model is selected for this study because of the huge 
sizes of metagenomic genes (MGs), which are in millions and could not be fitted with 
standard UNTB models because of the limitation of standard software algorithm for the 
UNTB. (iii) Sloan model has a built-in mechanism to adapt to (calibrate and validate) 
a frequently occurring scale disparity in metagenomic sampling between the number 
of genetic sequences that are analyzed and the number of individuals (or metagenomic 
genes in the case of this application) in communities (or metagenomes in this applica-
tion). Sloan et al. [43] presented an example of the scale disparity: a 10-g sample of soil 
may contain 1010 individuals of microbes (the approximate world human population), 
but the individuals (genetic sequences) identified by 16s-rRNA sequencing are much 
fewer (hundreds to thousands). For the detailed model derivation and computation pro-
cedure of Sloan model, readers are referred to Sloan et al. [42, 43]. A brief introduction 
on Sloan model is provided below.

Examples of applying Sloan models to 16s-rRNA sequencing reads from amplicon 
sequencing (i.e., for studying neutrality of microbial communities) include Venkatara-
man et al.[44], Burns et al. [45], Li et al.[46], Sieber et al. [47]. To the best of our knowl-
edge, this study should be the first application of Sloan model to metagenomic genes 
(metagenomes) obtained via whole-genome (shotgun) sequencing technology. In this 
study, in places of microbial taxa, Sloan model is applied to the MGs (metagenomic 
genes) and Type-II or abundance-based MFGC (metagenome functional gene cluster, in 
which both the kinds of MGs and their abundances are taken into considerations for the 
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Type-II). As a side note, Sloan model cannot be applied to Type-I MFGC nor to MF/MP 
(metagenomic functions)/(metagenomic pathway) due to their data structures (i.e., gene 
abundance is ignored and only the presence/absence of the MG is counted).

Sloan et  al. [42, 43] model represented the metacommunity as consisting of source 
and local communities. In Sloan model, the local community is saturated with IT OTUs 
(MUs in this article), suggesting that any death (disappearance) of OTUs (MUs) will be 
replaced by either local reproduction (mutation) or remote immigrations (carried by 
remote individuals). It assumes that the probability of from remote immigration is m, 
and from offspring of local reproduction is (1-m).

Sloan et  al. [42, 43] derived the probability that the abundance of the i-th OMU is 
increased by one, decreased by one, or is unchanged, is as follows, respectively:

where pi represent the occurrence frequency of the i-th OMU in the source community 
and Ii represent the abundance of i-th OMU in the local community. Let xi = Ii/IT be 
the occurrence frequency of the i-th OMU in the local community. The predicted abun-
dance (φi) of the i-th OMU follows the beta distribution:

where c is a complex gamma function of (IT, m and pi), see Sloan et al. [42, 43] for its 
form.

Burns et al. [45] summarized the process for testing Sloan’s neutral model as follows:
[Step #1] Calculate pi and xi, fit beta distribution and obtain the estimate of m.
[Step #2] Calculate the theoretical occurrence frequency of i-th OMU across all local 

communities (samples) with m and the beta distribution.
[Step #3] Determine whether or not the observed xi of OMU i falls within its 95% con-

fidence interval predicted from Sloan model, and further classify each OMU as neutral, 
above-neutral, or below-neutral.

The core/periphery network (CPN)

Ecological communities/systems are typical complex systems, which can be modeled 
with complex networks including the so-termed core/periphery network (CPN). Pre-
viously, the CPN was applied to analyze species or OTU correlation (co-occurrence) 
networks based on amplicon sequencing reads. In this sub-section, I suggest to apply 
the CPN for building and analyzing OMU correlation (co-occurrence) networks. The 
concept of core/periphery in ecological communities (systems) can be traced back to 
1960s. For example, Margalef [48] identified the role of asymmetry and heterogeneity 
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in ecological communities. Robert May’s [49] classic work first proposed that network 
stability can be explained either by a nested-like core/periphery structure, or by network 
modules. Theoretical and simulation studies have revealed that network cores enhance 
system robustness and evolvability, which render system to adapt to large environmental 
perturbations, as well as to noise from intrinsic processes [15, 16, 50].

One way to define core/periphery network is to answer the question: what is a perfect 
or ideal core/periphery network? A perfect or ideal core/periphery network is composed 
of a fully linked core and a periphery that is fully connected to the core; however, none 
of the periphery nodes are connected with each other (Csermely et al. 2013). Such a per-
fect or ideal CPN rarely exists in practice. For example, in a real world CPN, there are 
sparse links between periphery nodes, and a core is not necessarily a clique (i.e., fully 
connected).

Specifically, assume G = (N, E) be an undirected, unweighted graph with n nodes and 
m edges, and let A = (aij) be the adjacency matrix of graph G, where aij = 1 if there is 
an edge between node i and node j and aij = 0 if not. Let Δ be a vector of length n with 
elements of 1 or 0, assuming that the corresponding node belongs to the core or the 
periphery. Furthermore, let P = (pij) be the adjacency matrix of the ideal or perfect core/
periphery network with n nodes and m edges. The determination of core-periphery 
structure is an optimization process to discover the vector Δ so that the objective func-
tion (ρ) attains its maximum. With the vector Δ, it is then simple to classify nodes into 
either core or periphery.

However, it is infeasible to build a CPN with MGs (which are in millions) on a typical 
computational platform); I instead build CPN for the upper level OMUs, i.e., the MFGC 
and MF/MP units. When building the CPN with MFGC (MF/MP) as nodes and their 
interactions as links, the CPN structures reflect the heterogeneity or asymmetry (non-
equivalence) of functional gene clusters, protein functions or metabolomic paths from 
node perspective. In terms of the four-process synthesis for community ecology and bio-
geography [6–8], heterogeneity or asymmetry of OMU nodes can represent the effects 
of selection, and the CPN offers a tool to assess and interpret the selection effects from 
the node perspective, which can be cross-verified by the HSN (high-salience network) 
analysis from the link (edge) perspective explained below, and also be cross-verified by 
the previous neutral theory modeling as well as the stochasticity analysis framework by 
Ning et al. [19].

When building and analyzing the CPNs, all the network nodes with MUs are automat-
ically categorized into either the core or periphery, which have contrastingly different 
interaction patterns as explained previously and can be of critically different ecological 
roles or biomedical implications in the case of microbiome associated diseases (obesity, 
type-2 diabetes, and IBD). I consider this distinction between core and periphery nodes 
as originated from possible selection effects, which may be evolved on evolutionary 
time scale and may be shaped by environmental disturbances such as disease effects on 
ecological time scale. I perform two kinds of randomization tests to determine the dis-
ease effects: (i) Test whether or not the shared core/periphery nodes (OMUs) between 

(5)ρ =
∑

i,j

AijPij
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the healthy and diseased metagenome treatments rise or decline (more or less than by 
chance) due to the disease effects. (ii) Test the differences between the healthy and dis-
eased treatments in their CPN properties such as strengthen of core, nestedness, and 
ratio of core to periphery nodes.

The high‑salience skeleton network (HSN)

While the previously described CPN distinguishes the different structural and functional 
roles between core and periphery nodes (OTU or OMU), the high-salience skeleton 
networks (HSN) makes distinctions among the links (edges) among OTUs or OMUs. 
That is, similar to the previous suggestion to use CPN for building OMU correlation net-
works, and here I suggest applying the HSN for building and analyzing OMU correlation 
networks.

The capacity in reducing the complexity of complex systems (networks) but preserving 
their certain key features is considered as a primary reason (also an advantage) why net-
work analysis has been experiencing explosive applications since the start of the twenty-
first century. Network analysis can shed critical insights on complex systems such as 
ecological communities by reducing complexity and leveraging the insights from the key 
features. The HSN allows one to focus on critical paths (interactions), known as back-
bones, in complex networks, while the previous CPN allows for focusing on the differen-
tiations of nodes (core vs. periphery) [16–18].

High salience skeletons or backbones effectively reduce the number of links in the 
network while preserving the nodes [17, 18]. However, reducing link complexity can be 
particularly challenging due to the inter-dependence of link and node heterogeneity. To 
address the challenge, Grady et al. [17] introduced the concept of link salience, which 
measures the importance of a link by considering the “votes” of an ensemble of nodes 
on the link’s importance to the network. The link salience then quantifies the level of 
‘consensus’ that exists among nodes regarding the link’s importance. Using an analogy in 
a transportation network, the importance of a highway is ‘voted’ by the residents of the 
cities (nodes) in the transportation network, based on their experiences. The so-termed 
high-salience skeletons then constitute the backbones (similar to inter-state “high-
ways”) of the network, which are much more important than state highways or rural 
roads. Grady et al. [18] argued that the emergence of backbones should be attributed to 
the interplay of broadly distributed node degrees and link weights. Therefore, the HSN 
eliminates large number of less important interactions (links) without sacrificing the 
heterogeneity information carried by nodes; using an analogy, voters from different cit-
ies (network nodes) with different backgrounds (such as road usages) collectively decide 
which highways are critical for the whole transportation network, and which roads are 
not essential.

According to Grady et al. [17], link salience (s) is defined according to the notion of 
shortest paths in weighted networks. For the species correlation network, the inverse of 
correlation coefficients can be used as weights [16]. With this scheme, the links with 
closer correlation relationships are counted more in voting for high salience links. With 
a weighted network defined by weight matrix wij and a shortest path between node x and 
y, the indicator function is defined as:σij(y, x) = 1 if edge (i, j) is on the shortest path 
from x to y, σij(y, x) = 0 , otherwise. A shortest path tree T(x) rooted at node x is defined 
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by a matrix with elements: Tij(x) = 1 , if 
∑

y
σij(y, x) > 0 , Tij(x) = 0 otherwise. Link sali-

ence sij of edge (i, j) is defined with the following equation:

where �·�V  is the average across the set of root nodes x.
In the case of human metagenomes, the high salience skeletons or backbones reflect 

the heterogeneity or asymmetry of OMU (MFGC/MF/MP) interactions from the link 
perspective. According to the four-process synthesis [6–8], heterogeneity (or asymme-
try) of OMU interactions or the OMU’s interactions with their environments can reflect 
the effects of selection, which is evaluated with the HSN, cross-verified with the previ-
ously introduced CPN, Sloan near neutral model, as well as the stochasticity analysis 
framework [19]. Similar to previous CPN analysis, I also test the disease effects on the 
HSN properties such as the proportions of high-salience links, and network assortativity.

Special trio motifs and P/N ratios in metagenome networks

As mentioned previously, May’s [49] seminal work had already suggested that network 
stability can be achieved either by the development of a nested-like core/periphery 
structure, or by network modules. Though there are numerous methods for determining 
and characterizing network modules, it appears that there is not yet a widely recognized 
guideline on which method may be the most appropriate for identifying modules. In 
the present study, I adopt the principle of parsimony, using arguably the simplest mod-
ule—special trio motifs detection method by Ma and Ye [51]. A justification for focusing 
on trio motifs is that the trios are fundamental building blocks for arguably all network 
modules. Ma and Ye [51] defined 15 special trio motifs and they are special because one 
of their nodes must be MAO (most abundant OTU) or MDO (most dominant OTU). 
In this study, the MAO is replaced with the most abundant OMU (MFGC or MF/MP). 
Another feature of the 15 trio motifs is the consideration of the interaction type (coop-
erative vs. competitive interactions, or positive vs. negative). I will test whether or not 
diseases have significant influences on the occurrences of the special trio motifs in 
human gut metagenome networks. Besides special trio motifs, I also use the P/N ratio—
the ratio of positive to negative links—for assessing the balance between the coopera-
tive (positive) interactions and competitive (negative) interactions in complex networks, 
including CPNs and HSNs [52]. Both trio-motifs and PN ratio may act as in silico bio-
markers for measuring the effects of diseases on the interactions between OMUs, just as 
their previous applications to the complex networks of OTUs.

Integration of neutral‑theoretic modeling and core/periphery networks for OMU analysis

As mentioned previously, Sloan [42, 43] near neutral model, like Hubbell [3] clas-
sic neutral model, covers three (drift, dispersal, and speciation) of the four processes 
(mechanisms), excluding selection, which shape the community assembly and diversity 
maintenance. In contrast, the core/periphery network can capture the asymmetrical 
(non-equivalent) aspects of the metacommunity (each metacommunity forms a complex 
network in the form of CPN or HSN) from both nodes (OMUs) and edges (interactions 
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between OMUs) perspectives. Given that the non-equivalence (asymmetry) is the oppo-
site of equivalence among OMUs, the hallmark of neutral theory, I conceive that CPN/
HSN can be complementary to neutral-theoretic analysis. Nevertheless, I caution that 
this complementary hypothesis between neutral theory and CPN/HSN approaches to 
the four-processes synthesis is largely conceptual, rather than quantitative [6–8]. There-
fore, I can neither claim that the metrics of neutral theory and CPN/HSN may fully 
interpret the community dynamics, nor partition the dimensions of the four processes.

While the above-described complementary approach does not need direct integration 
of both the approaches and is largely conceptual and qualitative, still the neutral-theo-
retic and network approaches can be integrated directly. A simple integration scheme 
can be to apply Sloan model to the core and periphery nodes, respectively, and then 
check if the core and periphery structures have different neutrality/selection (the com-
plementary force of neutrality) levels. The following simple two-step processes imple-
ment this integration:

[Step #1] Apply the previously outlined procedures (e.g., Eq. 5) for building the CPN 
to the human metagenome datasets, and obtain lists of core and periphery OMUs, 
respectively. Essentially, we get two OMU tables, one for the core and another for the 
periphery.

[Step #2] Apply Sloan model to the OMU tables for the core and periphery respec-
tively, and obtain two new lists, one for the core and the other for periphery. In each list, 
three kinds of OMUs, neutral, above-neutral, and below-neutral, are distinguished, just 
like in the case of standard Sloan model application, but, in which the whole metacom-
munity without distinguishing between core and periphery nodes (OMUs).

Ning et al.(2019) stochasticity framework for estimating the relative strength of stochastic 

neutral drifts versus deterministic niche selections

Similar to the previously introduced ecological/network approaches that can be har-
nessed for both OTU/OMU analyses, the stochasticity framework of Ning et al. (2019) 
also provides a tool for analyzing the interactions among OMUs in driving the structures 
and dynamics of metagenomes. It has been suggested that the neutral theory may over-
estimate the strength of neutral processes, and various remedy approaches have been 
proposed to address the potential issues [53, 54]. To cross-verify the findings from Sloan 
near neutral model, and also to gauge the relative strength of stochastic versus determin-
istic forces in shaping the community assembly, I adopted Ning et al. [19] normalized 
stochasticity ratio (NSR) as an alternative approach to gauging the “low bounds” of the 
stochasticity level.

Ning et  al. [19] maintained that deterministic processes should drive ecological 
communities more similar or dissimilar than null expectation, and they established a 
sophisticated framework to implement a null model for quantifying stochasticity. One 
important metric they used to develop their framework was the utilization of Ružička 
similarity metrics, which is defined based on species abundance [55]. Assume Cij be the 
observed similarity between the i-th and j-th community,
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where S is the number of species, pik and pjk are the relative abundance of k-th species in 
the i-th and j-th community.

Suppose there exist m local communities in a metacommunity, Cij is the observed 
similarity between the i-th local community and the j-th local community in the 
metacommunity. Eij is the null expected similarity between the i-th community and 
the j-th community in one simulated metacommunity. Eij  is for the average of the null 
expected similarity between the i-th and the j-th communities from 1000 simulated 
metacommunities. There are two possible ways to evaluate the community stochastic-
ity: One is the deterministic processes that drive communities more similar, in which 
Cij > Eij  , and the stochasticity ratio (SR) from the first way (i.e., type A SR) is

Another way is that deterministic processes drive communities more dissimilar, in 
which Cij < Eij  , and the stochasticity ratio (i.e., type B SR) is

The actual stochasticity ratio in the whole metacommunity should be the weighted 
average of type A and type B SR, that is,

in which nA is the number of the pair-wise similarities that exceed null expectation, and 
nB is the number of the pair-wise similarities that do not exceed null expectation. There-
fore, SR reflects the strength of stochasticity in the community assembly, and should 
range from 0 to 100%. When the community assembly is totally deterministic without 
any stochasticity, then SR would be 0%; otherwise SR would be 100%. Ning et  al. [19] 
further argued that if expected stochasticity is very low, SR could overestimate stochas-
ticity. To remedy this potential issue, they developed a procedure to normalize SR to the 
range between 0 and 1. The normalized stochasticity ratio (NSR) was found to possess 
higher precision than the SR, and its adjustment from SR is referred to Ning et al.[19] to 
avoid complex formulae here. Nevertheless, in the present article, I do use the NSR to 
cross-verify the results from Sloan model. Similar to Sloan [42, 43] near-neutral model 
that designates source and destination communities, Ning et al.[19] normalized stochas-
ticity ratio (NSR) measures the stochasticity (stochastic drifts) between (pair-wise) two 
communities by measuring their similarity. However, in the former, two groups of com-
munities are designated, and in the latter, only two communities are compared. For this 
reason, directly comparing the results from Sloan model and NSR is not feasible, and 
still we can make comparisons between the percentages of neutral species (or OMUs) 

(7)Cij =

∑

S min(pik , p
j
k)

∑

S max(pik , p
j
k)

(8)SRA
ij =

Eij

Cij

(9)SRB
ij =

1− Eij

1− Cij

(10)SR =

∑nA

ij SRA
ij +

∑nB

ij SRB
ij

nA + nB



Page 18 of 36Ma ﻿BMC Bioinformatics          (2024) 25:137 

and NSR. Both the metrics should have the same trend of change patterns, although 
their absolute values may not be comparable.

Computational and statistical procedures for CPN/HSN/Trios/PN‑ratio analyses

Spearman’s correlation coefficients with FDR (false discovery rate) adjustment 
(p-value = 0.05) are first used to construct standard species correlation networks (SCN) 
[51, 56]. In the present study, it is used to construct OMU co-occurrence (correlation) 
networks. I realize there are critics on the usage of Spearman’s coefficients, which are 
particularly appropriate when the sparsity of data is high (lots of low abundance species) 
[57]. Indeed, to build CPN/HSN, Spearman’s coefficient, actually, even the species cor-
relation network, are not required, and alternative methods for building the networks 
may be used. The reason I still use Spearman’s correlation coefficients is that the func-
tional gene clusters (MFGC, MF, MP) do not suffer from the limitations of the species 
abundance data used for building species correlation or OTU correlation networks. In 
fact, in type-I MFGC, the gene abundance is not used at all, and therefore, it is not com-
positional data. Furthermore, sparsity with the MFGC/MF/MP datasets is very low, and 
the numbers of MFGC/MF/MP are rather close among samples. To keep the consistent 
treatments for both type-I MFGC and type-II MFGC data, I decided to use Spearman’s 
coefficients in this study.

The computational code for calculating Spearman’s correlation coefficients and build-
ing standard correlation networks are available in multiple public domains (e.g., https://​
igraph.​org/) [51]. From the SCNs, the previously, briefly described algorithms for build-
ing core/periphery and skeleton networks are applied to reconstruct the corresponding 
CPN and HSN networks [16, 20], and computational procedures and codes can be found 
in Ma and Ellison [16]. The computational codes for detecting special trio motifs and PN 
ratios were provided in Ma and Ye [51]. The program I used to fit Sloan model was pub-
lished in Burns et al.[45]. Finally, the source code for performing stochasticity analysis 
with the NSR was from Ning et al. [19].

Randomization tests with 1000 times of re-sampling are performed to determine the 
change of shared core/periphery nodes between the healthy and diseased treatments, 
two algorithms (A1 = remix of MFGCs; A2 = remix of samples) developed by Ma et al. 
[58] are used to implement the randomization tests. A significant reduction of shared 
core or periphery between the healthy and diseased samples indicates statistically signif-
icant effects of diseases (obesity, type-2 diabetes, and IBD) on the core/periphery struc-
tures of MFGC/MF/MP and may have significant biomedical implications. Furthermore, 
I adapted standard randomization tests for testing the difference of CPN/HSN proper-
ties between the healthy and diseased treatments. 1000 times of re-sampling were used 
to reconstruct 1000 CPN/HSN, and their properties were computed and compared (see 
Ma 2020b for detailed computational procedures). Throughout the study, most signifi-
cance tests for the differences between treatments were performed with the randomi-
zation (permutation) tests [20, 58, 59], which possess two advantages: One is that the 
method can accommodate the possible differences in the sample sizes between treat-
ments. Another is that statistically significant difference is reported when the inter-treat-
ment difference exceeds the intra-treatment variation as exhibited by pseudo P-value. 
Therefore, in the case of this study, the pair-wise comparisons between the healthy and 

https://igraph.org/
https://igraph.org/
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diseased treatments in terms of various network properties should reflect the disease 
effects, or more accurately effects associated with diseases. Nevertheless, since currently, 
the causal relationships in most microbiome-associated diseases such as IBD and diabe-
tes are unclear, the differences revealed by the randomization tests only signal the dif-
ferences associated with diseases (even though the term of disease effects may be used).

Results
The neutral‑theoretic analysis of human gut metagenomes

Classifications of neutral, below‑neutral and above‑neutral OMUs (MGs/MFGCs)

We investigated the neutrality of human gut metagenomes with Sloan [42, 43] near neu-
tral model at two levels, the MG (metagenomic gene) and Type-II or abundance-based 
MFGC (metagenome functional gene cluster). As explained previously, Type-I or non-
abundance MFGC and MF/MP cannot be approached with Sloan neutral model because 
Type-I or non-abundance MFGC/MF/MP ignored the gene abundances.

At MG level (Additional file 1: Table S1), the average percentages of neutral, under-
neutral (negatively selected) and above-neutral MGs across 7 metagenome datasets is 
less than 0.1% (5024 out of 5,864,966), 16.3% and 83.6% respectively. This result suggests 
that majority of MGs are above-neutral. Figure 2 illustrated the Sloan model graph fitted 

Fig. 2  Sloan near-neutral model fitted to the MGs (metagenomic genes) in human stool metagenomes (the 
1st dataset in Table 1) showing the neutral MG (few and negligible red dots), above-neutral (blue dots at the 
left side) and below-neutral (green dots at the right side)
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to the MGs of the independent stool treatment, which was based on the metagenomes 
of 139 healthy individuals (see Table 1). Figure 3 illustrated percentages of the three cat-
egories of MGs for each of the seven metagenome treatments (datasets).

At MFGC level (Additional file  1: Tables S2), the average percentages of neutral, 
below-neutral and above-neutral MFGC across seven metagenome datasets in terms of 
the metagenomic functions (eggNOG database) were 62.4% (212 out of 341), 12.2% and 
25.4% respectively. In terms of the metabolic pathways (KEGG database), the average 
percentages of neutral, under-neutral and above-neutral MFGC were 49.4% (135 out of 
274), 20.6% and 30.1% respectively. This indicates that neutrality at the functional gene 
cluster level (i.e., MFGC) is significantly raised, compared with that at the metagenomic 
gene (MG) level, and the level of increase for metagenomic function (eggNOG) is about 
10% more than for the increase for metabolic pathways (KEGG), exceeding approxi-
mately 50% in both the cases. Figure  4 illustrated the Sloan model graph fitted to the 
MFGCs of the independent stool treatment, in which the neutral MFGCs reached 57% 
or 192 MFGCs (Additional file 1: Table S2).

One interpretation for the above observations is that, as the clusters of same or simi-
lar functional genes (pathways), there are enormous redundancies within MFGC. The 
redundancy can be considered as some kind of equivalency among metagenomic genes. 
It is the huge redundancy or equivalency that leads to the significant rising of neutrality 
from less than 0.1% at the MG level to near (KEGG) or more than (eggNOG) 50% at the 
MFGC level. One may argue that the high neutrality at MFGC is an artifact due to data 
aggregation effects since MGFC were clustered according to similarity in functions of 
MGs. Still, the analysis suggests that there are huge redundancies both within MFGC 
and also among MFGCs.

Fig. 3  Percentages of the three categories of MGs (metagenomic genes) classified by Sloan near neutral 
models: below-neutral (cyan blue bar), neutral (green bar showing neutral MGs), and above-neutral (magenta 
bar) (drawn based on Additional file 1: Table S1). Note that the green bars for the neutral percentages were 
too low to be visible here
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I further built Sloan neutral model for each pair of the healthy versus diseased 
treatments (obesity, type-2 diabetes, and IBD), with the healthy as source com-
munity and diseased metagenome as destination community (Additional file  1: 
Table S3). The results are very similar to the previously interpreted results separately 
built for each of the 7 treatments (metagenome datasets). The differences in per-
centages of neutral, below neutral and above neutral were rather small (within 3%). 
Figure 5 illustrated percentages of the three categories of MFGCs for the three dis-
eases (obesity, type-2 diabetes, and IBD), in terms of metagenomic function (egg-
NOG database) or metabolic pathway (KEGG).

Additional file 1: Table S4, a batch of Excel sheets in the OSI (online supplemen-
tary information), listed the neutrality status (neutral, below, and above) of each 
MFGC in each treatment, in terms of either metagenomic function or pathway. The 
terms of above-neutral and below-neutral are borrowed from the terminology for 
characterizing selection versus neutral drift in population genetics [5].

In summary, I demonstrated the applicability of Sloan’s near-neutral model to 
seven OMU treatments just as its applicability to the OTUs. Sloan models classi-
fied all MGs/MFGCs as neutral, below-neutral and above-neutral: the neutral MGs 
are negligible but neutral MFGCs are near 50% or more, suggesting enormous func-
tional gene redundancy.

Fig. 4  Sloan near-neutral model fitted to the MFGCs (metagenome functional gene clusters) of the human 
stool metagenome samples (the first dataset in Table 1) (based on KEGG database) showing the neutral 
MFGC (red dots), above-neutral (left side blue dots) and below-neutral (right side green dots)
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Randomization tests of Sloan (2007) near‑neutral model parameters

I performed standard randomization tests (with 1000 times of re-sampling) for the 
effects of diseases (obesity, type-2 diabetes, and IBD) on the neutrality, specifically 
Sloan neutral model parameters. Additional file 1: Table S5 listed the test results for 
the differences between the healthy control and diseased treatment within each of the 
three sets of datasets, and only one parameter (below-neutral MFGC number) exhib-
ited significant difference in the case if IBD. Since I only have three datasets, I do not 
draw any conclusion on the generality of disease effects on neutrality. Instead, the 
objective of this study is focused on demonstrating useful methods.

Critical network structures (Trios/PN‑Ratio/CPN/HSN) in MFGC co‑occurrence networks

Special trio motifs and PN ratio

As mentioned in previous introduction, the huge number of MGs makes it hardly 
possible to build complex networks on common computational platforms. For exam-
ple, in the case of this study, the disk space needed to store Spearman’s correlation 
coefficients I computed for one MG dataset exceeded 4 Terabytes, which made it 
impossible to complete consequent network analysis. To deal with the computational 
difficulties, I build networks with MFGC and MF/MP in this study. As argued previ-
ously, the loss of insights from using MFGCs rather than MGs is minimum.

Additional file  1: Table  S8A (“trios without MAO handle”—the most abun-
dant MFGC is a node of trio) and S8C (with MAO handle—the most abundant 
MFGC is linked to trio via a separate handle or link) displayed the numbers of 15 
kinds of special trio motifs. Additional file 1: Table S8B (without MAO handle) and 
Additional file  1: Table  S8D (with MAO handle) displayed the randomization tests 
results for those trios, testing whether there were significant differences in the trio 
numbers between the healthy and diseased treatments. These special trio motifs, as 

Fig. 5  Percentages of three categories of MFGCs (metagenome functional gene clusters, based on KEGG and 
EggNOG database) classified by Sloan near neutral models: below-neutral (cyan blue bar), neutral (green bar 
showing neutral MGFCs), and above-neutral (magenta bar)
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fundamental building blocks for all other network modules, may act as in silico bio-
marker for signaling disease effects. Although there was not a consistent trio motif 
that is significantly different between the healthy and diseased treatments across all 
datasets, on average, there was at least one kind of trio motif that made the differ-
ence for each disease case, suggesting the potential of finding an effective in silico 
biomarker with the trio-motif detection technique.

Additional file 1: Table S9A showed the PN (positive to negative) ratio for each of the 
seven treatments and Additional file 1: Table S9B showed the results of randomization 
tests for the differences between the healthy and diseased treatments in each of the three 
diseases. While obesity case did not exhibit significantly different PN ratio between the 
lean and overweight treatments, the PN ratios were significantly different between the 
healthy control and diseased treatments in the cases of type-2 diabetes and IBD.

Core/periphery network (CPN) properties and shared core/periphery nodes

Additional file  2: Table  S10 (Excel file) listed the categorization of all network nodes 
(MFGCs) as either core or periphery nodes for each of the seven treatments. The infor-
mation can be useful for understanding the biomedical insights of MFGCs. Additional 
file  1: Table  S11A exhibited the core/periphery network (CPN) properties for each of 
the seven treatments, including core strength (ρ), ratio of C/P [core/(core + periphery)], 
density matrix (internal strength), PN ratio for the core/periphery structures, nested-
ness, etc. Additional file 1: Table S11B exhibited the p-values from testing the differences 
in the CPN properties between the healthy and diseased treatments. In most cases, it 
appears that the CPN properties did not exhibit significant differences between the 
healthy and diseased treatments.

Besides testing the differences in the CPN properties between the healthy and dis-
eased treatments as interpreted above, I also performed shared core/periphery nodes 
analyses between the healthy and diseased treatments based on an approached devel-
oped in Ma et al. [20] and further tested in Ma [58]. The shared core/periphery analysis 
answers the question: whether or not the similarity between the healthy and diseased 
treatment decreased or increased more than the change by pure chance, in terms of 
either core, periphery, or their total (core + periphery). As demonstrated in Additional 
file 1: Table S12, the most significant declines of shared core/periphery nodes between 
the healthy and diseased treatments occurred in Type-II or abundance-based MFGC, 
especially in eggNOG-indexed metagenomic functions. The differences were less signifi-
cant in Type-I or non-abundance MFGC, which should be expected due to its ignorance 
of the gene abundances of MGs within each MFGC (only the number of MG kinds were 
considered in non-abundance MFGC). These results indicated the potential of using the 
shared core/periphery analysis as a tool for predicting disease risks.

High‑salience skeleton networks

Additional file 1: Table S13A exhibited the high-salience network (HSN) properties for 
each of the seven treatments, including percentages of high-salience links (out of total 
links), statistics of salience value (such as mean, maximum, skewness, kurtosis), and 
network assortativity (measure of network resilience). The randomization tests for the 
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differences in these network properties showed similar patterns as in previous CPN 
properties (Additional file 1: Table S13B).

Figure  6 shows the Type-II or abundance-based MFGC network graphs (Fig.  6A, B 
based on eggNOG functional database; Fig. 6C, D based on KEGG pathway database) 
for the obesity dataset (lean vs. overweight), displaying various components such as 
core/periphery nodes, backbones, and hub.

In summary, the CPN and HSN offer tools to assess the selection effects [“anti-equiv-
alence” including node heterogeneity and link (interaction) asymmetry] in MFGC net-
works from node and link perspective, respectively. Integrated with neutral modeling, 
the CPN and HSN cover the full spectrum of the four processes underlying the patterns 
of metagenome assemblages. The NSR approach, to explain below, further cross-verifies 
the results from neutral-theoretic and network analyses by presenting an independent 
cross-verification of the relative strength between stochasticity and deterministic selec-
tion. Moreover, the trio-motif and PN ratio, explained previously offer potential in silico 
biomarkers for disease-diagnosis and risk prediction.

Critical network structures (Trios/PN‑ratio/CPN/HSN) of MF/MP co‑occurrence networks

The MFs (metagenome functions) and MPs (metagenome pathways) are building blocks 
(set elements) of MFGCs, which are sets (clusters) of MFs or MPs (see Fig.  1). Addi-
tional file 1: Table S14 displayed the descriptions of 24 MFs (e.g., nucleotide transport 
and metabolism) and 37 MPs (e.g., genetic information processing). Additional file  1: 
Table S15A & Table S15C exhibited the numbers of 15 special trios, respectively. Addi-
tional file 1: Table S15B and Table S15D exhibited the results (p-values) of randomiza-
tion tests for the differences in the numbers of various trios between the healthy and 
diseased treatments. Additional file 1: Table S16A and Table S16B listed the PN ratios 
in the MF/MP networks as well as the p-values of the randomization tests for the dif-
ferences in the PN ratios between the healthy and diseased treatments. Compared with 
the corresponding results of MFGCs in the previous section, the differences in special 
trios and PN ratio in the MF/MP networks are less significant, which should be expected 
because MFs/MPs are at the foundational level (set elements of MFGCs) and should be 
more robust (stable or less variable) than MFGCs.

Additional file 2: Table S17 (Excel file) classified the MF/MP as core or periphery 
nodes respectively. The core status of MFs/MPs suggests the densely connected (inter-
dependent) functions/pathways, while periphery status suggests loosely connected or 

(See figure on next page.)
Fig. 6  The MFGC-II (Type-II MFGC or abundance-based MFGC) networks for the lean and overweight 
treatments of the obesity dataset (A-D); Legends: core nodes in magenta (located mostly in center), periphery 
nodes in cyan, green links for positive correlations and red links for negative correlations, thicken links are 
high-salience skeletons (backbones), hexagon-shaped node for network hub, diamond-shaped node for the 
most abundant MFGC in the network, cycle for regular nodes (either core in magenta or periphery in cyan). 
(A) MFGC-II (abundance-based MFGC) network based on functional eggNOG database—Lean treatment of 
Obesity dataset (B) MFGC-II (abundance based MFGC) network based on eggNOG database—Overweight 
treatment of Obesity dataset; (C) MFGC-II (abundance-based MFGC) network based on KEGG database—
Lean treatment of Obesity dataset; (D) MFGC-II (abundance based MFGC) network based on KEGG 
database—Overweight treatment of Obesity dataset
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Fig. 6  (See legend on previous page.)
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even independent MFs/MPs functions/pathways. Therefore, the core/periphery sta-
tuses of MFs/MPs should be of potentially important biomedical significances.

Additional file 1: Table S18A and Table S18B exhibited the results of CPN proper-
ties of MF/MP networks. Additional file 1: Table S19 listed the shared core/periph-
ery analysis between the healthy and diseased treatments, using the same algorithms 
for the previous shared core/periphery analyses for the MFGC networks. It turned 
out that in the MF/MP networks, shared core/periphery nodes declined less than by 
chance. In other words, the shared MF/MPs between the healthy and diseased treat-
ments are near constant, which could be interpreted by the foundational nature of 
MFs/MPs as explained previously—the foundation should be more robust against 
perturbations such as diseases.

Fig. 6  continued
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Additional file 1: Table S20A and Table S20B exhibited the results of HSN properties 
of MF/MP networks. In general, the proportions of the CPN/HSN properties of MF/MP 
networks with significant differences between the healthy and diseased treatments are 
similar with those of the MFGC networks.

In summary, for MF/MP networks, the CPN and HSN properties exhibited similar 
patterns with MFGC networks in terms of the level of differences between the healthy 
and diseased treatments. However, in the case of special trio motifs, PN ratio and 
shared core/periphery nodes the MF/MP networks exhibited more robust patterns than 
the MFGC networks due to their foundational nature (also see Fig. 1). Figure 7 shows 
the MF (Fig. 7A, B, based on eggNOG) and MP (Fig. 7C, D, based on KEGG) network 
graphs for the obesity dataset (lean vs. overweight), displaying various features such as 
core/periphery nodes, backbones, and hub.

Integration of neutral‑theoretic modeling and core/periphery networks

In previous sections, although the Sloan neutral model and CPN/HSN were applied 
independently, the results from both approaches complement each other indirectly, with 
neutral modeling covering the three of four processes (drift, mutation and dispersal) and 
CPN/HSN covering the remaining selection process. I further performed direct integra-
tion of both the approaches by applying Sloan model to the core and periphery of MFGC 
networks respectively (Additional file 1: Table S6). Randomization tests were conducted 
to test the difference between the healthy and diseased treatments in the distribution 
of neutral versus non-neutral core/periphery MFGCs (Additional file 1: Table S7). For 
example, in the case of type-2 diabetes, in both core and periphery, there were more 
positivity selected MFGCs in the healthy treatment.

Stochasticity analysis of the human metagenomes with the NSR

While the previously interpreted results from Sloan neutral model and CPN/HSN have 
painted a general picture on the relative balance between stochastic neutrality versus 
deterministic selection, the final sub-section of the results section is aimed to cross-
verify the results from the previous sub-sections. I apply Ning et al. [19] framework for 
stochasticity analysis to gauge the relative strength of stochasticity (stochastic neutral-
ity), known as normalize stochasticity ratio (NSR), which ranges between [0, 1] with zero 
representing for the complete deterministic selection (lack of stochasticity) and one for 
complete stochasticity.

(See figure on next page.)
Fig. 7  The MF-I (Type-I metagenomic function or non-abundance based, aligned with eggNOG database) 
and MP-I (type-I metagenomic path, based on KEGG databases) networks for the lean and overweight 
treatments of the obesity dataset (A-D); Legends: core nodes in magenta (located mostly in center), periphery 
nodes in cyan, green links for positive correlations and red links for negative correlations, thicken links are 
high-salience skeletons (backbones), hexagon-shaped node for network hub, diamond-shaped node for 
the most abundant MF/MP in the network, cycle for regular nodes (either core in magenta or periphery in 
cyan). (A) MF-I (non-abundance based MF) network based on eggNOG database—Lean treatment of Obesity 
dataset; (B) MF-I (non-abundance based MF) network based on eggNOG database)—Overweight treatment 
of Obesity dataset; (C). MP-I (non-abundance based MF) network based on KEGG database—Lean treatment 
of Obesity dataset; (D) MP-I (non-abundance based MF) network based on KEGG database—Overweight 
treatment of Obesity dataset
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Fig. 7  (See legend on previous page.)
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Fig. 7  continued
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As shown in Additional file 1: Table S21, the values of NSR for most treatments were 
rather high for the MFGC, exceeding 0.5 in all treatments and ranged from 0.701 to 0.947 
suggesting that stochastic neutrality surpasses the deterministic selection. The pattern is 
consistent across all three schemes with intra-healthy treatment, intra-diseased treat-
ment and inter-healthy and diseased treatments, and the differences among the three 
schemes are minor. Compared with the percentages (49.4–62.4%) of neutral MFGCs 
from previous Sloan models, the stochasticity level revealed by NSR (70.1–94.7%) is 
slightly high, but the trends of patterns revealed by both approaches are consistent.

For the MG, the overall values of NSR ranged from 0.169 to 0.213, which is signifi-
cantly smaller than 0.5 (the level of equality between neutrality and selection). Accord-
ing to previous results from Sloan model, the sum of the percentages of neutral MGs 
and below-neutral MGs was 16.4% and the percentage of above-neutral MGs was 83.6%. 
Both the results are again consistent, supporting the exceptionally high deterministic 
selection and low stochastic neutrality at MG level. In fact, at the MG level, the stochas-
ticity levels from Sloan model and NSR are indeed rather close, i.e., 16.4% (0.164) versus 
[0.169, 0.213].

Additional file 1: Table S22 listed the p-values from comparing the differences in NSR 
between the healthy and diseased treatments, and the percentages with significant dif-
ferences ranged from 60 to 100%, suggesting significant differences in disease effects in 
general, although the percentages varied from disease to disease.

In summary, the stochasticity analysis with NSR here is aimed to cross-verify the 
results from previous sections based on Sloan neutral modeling and CPN/HSN network-
ing analysis. The cross-verification is important because, although both Sloan model 
and CPN/HSN separately offered solid and quantitative characterizations in their own 
domains, their integrated applications for assessing the full spectrum of the four-pro-
cess synthesis, i.e., the balance between stochastic drifts versus deterministic selection is 
imperfect. Strictly speaking, there may be overlap between the measurements (percent-
ages of neutral, below-neutral and above-neutral MUs) form Sloan near neutral model 
and the metrics (e.g., high-salience backbones, core/periphery structures) from CPN/
HSN. In the case of Sloan model, it is possible to distinguish the neutral versus selection 
(above-neutral MUs). Similar distinction is not possible with CPN/HSN approaches to 
deterministic selection. The NSR approach demonstrated here offer an alternative tool 
to evaluate the relative strength between stochasticity and selection.

Discussion
The present study is aimed to develop and demonstrate a set of ecological and net-
work approaches to identifying critical ecological processes (mechanisms) and network 
structures underlying the patterns of metagenomes represented with various levels of 
OMUs (specifically, MG/MFGC/MF/MP). These approaches have proven to be effec-
tive for analyzing the 16s-rRNA sequencing reads from amplicon sequencing technol-
ogy, particularly for testing the effects of microbiome associated diseases [16, 20, 31–40, 
50, 58, 60, 61]. Therefore, if these approaches are found applicable for the metagenomes 
from whole-genome (shotgun sequencing) technology, we are one step closer to develop 
a unified microbiome ecology of microbial OMUs (units of metagenomic genes) and 
OTUs (units or taxa of microorganisms). I demonstrated the feasibility of the unified 
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approaches with seven datasets of the human gut metagenomes including three dis-
eases (obesity, type-2 diabetes, and IBD) and an independent stool metagenome dataset. 
Although I could not draw precise conclusions on their effectiveness in detecting disease 
effects as previously demonstrated with 16s-rRNA datasets due to the limited number of 
datasets analyzed in this study [20], the general applicability of the approaches in analyz-
ing the critical ecological mechanisms and network structures for both microbial gene 
and taxa data has been established firmly through this study.

Specifically, Sloan [42, 43] near neutral model can be utilized to classify all MGs/
MFGCs as neutral, under neutral or above neutral. This information, in our opinion, is of 
important ecological or biomedical significance since the neutral or non-neutral status 
indicates the relative ‘position’ of each MG (MFGC) in the balance between stochastic 
neutral drifts versus deterministic selection forces. Moreover, it was discovered that at 
the MG level, positive selections were dominant and neutral drifts were negligible; how-
ever, at the MFGC level, the neutral drifts reaches approximately a half or more in terms 
of the proportions of neutral MFGCs. I postulated it is the enormous metagenomic gene 
redundancies within MFGC and possibly among MFGCs that lead to the rising of neu-
trality. As a side note, due to enormous number of MGs, Sloan neutral model was the 
only computationally feasible neutral model for the metagenome at the MG level, which 
was also the primary reason for our choice of Sloan model.

While Sloan model was intended to assess stochastic drifts directly and selection effects 
indirectly (assuming that both drifts and selections are additive exclusively, which may 
not be totally correct), the trio motif detection, CPN, and HSN were designed to detect 
node heterogeneities and asymmetric interactions (i.e., selection effects). For example, 
the distinctions of core/periphery nodes revealed the nestedness and heterogeneities in 
the CPN networks of MFGC (MF/MP) from node perspective, which are closely related 
to network stability (or stability of metagenomes) and may have important health impli-
cations. The high-salience skeletons identified from the HSN analysis indicate the criti-
cal interactions (connections) in the MFGC (MF or MP) networks from link perspective, 
similar to the critical role of backbones in transportation networks. Integrated together, 
the heterogeneity and/or asymmetry in both nodes and links can be considered as the 
signatures of the selection in metagenomes. The trio motifs (as the fundamental building 
blocks for more sophisticated network modules) may act as potential in silico biomarker 
for detecting disease effects, and the PN ratio may signal the balance of cooperative ver-
sus competitive interactions in MFGC/MF/MP networks.

I subscribe to Vellend [6, 7] and Hanson et  al. [8] synthesis for community ecology 
and microbial biogeography, actually, I translate it into the synthesis for “assemblage of 
metagenomes” that can be considered as the counterpart of metacommunity in com-
munity ecology. I postulate that the similar four processes (including drifts, selection, 
dispersal and mutation) in the assemblage of metagenomes that shape the spatial distri-
bution patterns (inter-subject distribution) of human metagenomes and possibly their 
dynamics. The previously described and demonstrated approaches offer a set of tools to 
assess and interpret the relative importance of the four processes and consequently shed 
lights on the mechanisms underlying the patterns of metagenomes. Nevertheless, I cau-
tion that the four-process synthesis is largely qualitative and quantitative characterizing 
of the processes is rather challenging.
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A primary objective of this study is to enrich the repertoire for performing post-bio-
informatics metagenome analyses, especially the ecological and network analyses. In 
existing literatures of microbiome research, the ecological and network analyses for the 
OMUs, compared with those for the OTUs from amplicon sequencing technologies, 
have been relatively fewer. In my opinion, at least, there are two possible reasons for 
this lag in the field of metagenome research. One may be the concern that metagen-
omic genes are not organisms, and therefore, the applicability of ecological approaches 
could be in question. This study demonstrates the feasibility for developing a unifying 
microbiome ecology covering both microbes and the metagenomes they carry. Another 
challenge is the huge numbers of MGs, which are in tens of millions and make it hardly 
possible to apply network analysis techniques directly. The definitions of MFGC/MF/
MP circumvented the obstacle as demonstrated in this study. As argued previously, the 
reality that for most metagenomic genes, the only information known is a label (gene 
number) and the MFGCs they belong to, plus the enormous functional redundancy, the 
loss of insights from using MFGCs (or MFs/MPs) as proxy of MGs should be tolerable.

A limitation of this study is the limited number of the metagenome datasets (only 3 
sets of 7 treatments), even though their qualities are among the best in existing litera-
ture. The limited datasets makes it hardly possible to draw general conclusions on the 
effects of microbiome-associated diseased on the human gut metagenomes. For this lim-
itation, the objective of this study was set to demonstrate the feasibility of the proposed 
approaches. Nevertheless, the general applicability of the proposed approaches should 
have been firmly verified in previous sections.

Another limitation of this study is the lack of explicit modeling of evolution, although 
our article does deal with the assessment of selection. Our assessment of selection based 
on the metagenome abundance data is therefore indirect since both Sloan [42, 43] near-
neutral model and Ning et al. [19] NSR framework measure the relative balance between 
deterministic selection and stochastic drifts, which are the consequences or effects of 
selection/drifts, rather than selection/drifts per se. This lack of direct modeling of evolu-
tion also made our work somewhat “detached” from some prevalent theories, most nota-
bly, the holobiont/hologenome (host and their symbionts/the total genomes), ITSNTS 
(it’s the song not the singer)—it’s the function of microbiota versus not the taxa com-
position that is highly redundant, community genetics/evolution [62–66]. I hope that 
future studies will fill the gap between our approaches and those important theories. In 
our opinion, animal microbiomes, especially the microbiome of wildlife, should be bet-
ter systems than the human microbiomes for exploring the evolution of microbiomes 
[65]. Indeed, the widely used intervention measures such as surgery, antibiotics, and 
now fecal transplantation introduce engineering style renovation, which can be rather 
different from naturally occurring evolution, not to mention the potential influences of 
emerging new technologies such as gene editing and even AI (artificial intelligence) in 
future.

Still another limitation of this article is the terminology I suggested lack rigorous defi-
nition, not to mention precise quantification, especially the concept of OMU. As men-
tioned previously, the OMU and OTU are not perfectly reciprocal. For example, the 
calculation of OTUs usually has unified or consistent algorithms (procedures) to deline-
ate various levels of OTUs, but the OMUs we defined in this article do not have a unified 
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algorithm to identify and catalogue. Since the objective of this article is to demonstrate 
the applicability of complex networks analysis and neutral-theoretical analyses, the 
introduction of the new terminology is aimed to facilitate the analyses, especially the 
presentation of the models and results, which are traditionally described with OTUs in 
the existing literature. Without using the concept of OMU, one may need to repeatedly 
explain same computational procedure for each of the metagenomic unit, starting from 
MG, through MFGC, to MF/MP.

Conclusions
The repertoire for post-bioinformatics analyses of metagenome datasets from whole-
genome sequencing technology is much smaller than those for amplicon sequencing 
(e.g., 16s-rRNA) for two main reasons. The first is the uncertainty around the applicabil-
ity of ecological theories given that metagenomes are assemblages of genes, rather than 
of organisms. Second, orders of magnitude more MGs (metagenomic genes) than the 
numbers of microbial species make the analyses, especially ecological network analy-
sis, extremely challenging computationally. I demonstrated the applicability of a set of 
ecological/network approaches (including Sloan near-neutral model, core/periphery 
network (CPN), high-salience skeleton network (HSN), trio-motif and PN ratio) for 
assessing and interpreting the relative importance of the four processes (drift, selection, 
mutation, and dispersal) in shaping the patterns of “assemblage of metagenomes” (i.e., 
the counterpart of ecological metacommunity). Technically, the introduction of metage-
nome functional gene clusters (MFGC) as proxy of MGs readily circumvents the compu-
tational challenge.

In conclusions, the ecological concepts, models and theories including diversity, het-
erogeneity, stochasticity (Sloan near-neutral model, Ning et al. stochasticity framework), 
complex networks (core/periphery network, high-salience skeleton network, special trio-
motif, PN ratio, etc.) are demonstrated to be applicable to whole-genome metagenomic 
sequencing data or the OMU datasets, just as they are proved to be suitable for analyzing 
OTU datasets. The introduction of OMU or MU (as its shorthand) concept does facilitate 
the applications. Therefore, the goal as stated in the title of this article, unifying the medi-
cal ecology of metagenome (OMUs) and microorganisms (OTUs), and of microbiome 
(microbes) and macrobiomes (macrobes) seems to be both feasible and meaningful.
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