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Abstract 

The global spread of the SARS‑CoV‑2 pandemic, originating in Wuhan, China, has had 
profound consequences on both health and the economy. Traditional alignment‑
based phylogenetic tree methods for tracking epidemic dynamics demand substantial 
computational power due to the growing number of sequenced strains. Consequently, 
there is a pressing need for an alignment‑free approach to characterize these strains 
and monitor the dynamics of various variants. In this work, we introduce a swift 
and straightforward tool named GenoSig, implemented in C++. The tool exploits the Di 
and Tri nucleotide frequency signatures to delineate the taxonomic lineages of SARS‑
CoV‑2 by employing diverse machine learning (ML) and deep learning (DL) models. 
Our approach achieved a tenfold cross‑validation accuracy of 87.88% (± 0.013) for DL 
and 86.37% (± 0.0009) for Random Forest (RF) model, surpassing the performance 
of other ML models. Validation using an additional unexposed dataset yielded com‑
parable results. Despite variations in architectures between DL and RF, it was observed 
that later clades, specifically GRA, GRY, and GK, exhibited superior performance 
compared to earlier clades G and GH. As for the continental origin of the virus, both DL 
and RF models exhibited lower performance than in predicting clades. However, 
both models demonstrated relatively higher accuracy for Europe, North America, 
and South America compared to other continents, with DL outperforming RF. Both 
models consistently demonstrated a preference for cytosine and guanine over adenine 
and thymine in both clade and continental analyses, in both Di and Tri nucleotide 
frequencies signatures. Our findings suggest that GenoSig provides a straightforward 
approach to address taxonomic, epidemiological, and biological inquiries, utilizing 
a reductive method applicable not only to SARS‑CoV‑2 but also to similar research 
questions in an alignment‑free context.
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Introduction
Unequivocally, the emergence of the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) pandemic was the focus of the last three years. Over 6 million individu-
als have deceased on account of this pandemic by the time this article was written [1]. 
Briefly, SARS-CoV-2 is a beta coronavirus and the seventh member of the human coro-
naviruses (CoVs) [2, 3]. Four human CoVs (HCoV-229E, HCoV-NL63, HCoVOC43, and 
HCoV-HKU1) are able to cause mild, self-limiting upper respiratory infections, whereas 
SARS-CoV, MERS-CoV, and SARS-CoV-2 caused severe emergent outbreaks in 2002, 
2012, and 2019 respectively [4]. Regarding the geographic distribution, as of the time of 
writing this research paper and based on data from the Coronavirus Observer project 
(https:// covid. obser ver), Europe had the highest incidence of COVID-19 cases relative 
to its population, exceeding 220 million cases (~ 37% of its population). Asia exhibited 
more than 230 million cases (~ 4.9%), whereas North America documented over 120 
million cases (~ 21%). South America’s tally surpassed 67 million cases (~ 16%), Oceania 
recorded over 13 million cases (~ 33%), and Africa noted more than 12 million cases 
(~ 1%). It’s important to highlight that even though North America ranks third in terms 
of overall COVID-19 case count, the United States bore the brunt of the pandemic’s 
impact. The SARS-CoV-2 genome is organized into 16 nonstructural, 4 structural, and 9 
accessory proteins [5]. Owing to its rapid replication, polymerase mistakes, host immune 
factors, and spontaneous damage, RNA viruses show a high rate of mutations, leading to 
high genetic variations and positive/negative selections of certain variants depending on 
the benefit of the variant for the viral evolution [6, 7].

Currently, according to GISAID clade stratification, SARS-CoV-2 genomes are classi-
fied by differing variants into 11 clades namely L, S, V, G, GH, GV, GR, GRY, GK, GRA, 
and genomes without any clear classification named as “O clade” [8]. These clades origi-
nated on different timeframes throughout the various distinct epidemic waves from the 
early split of S and L into V and G, which was followed by the division of G into GH 
(Beta), GR, and GV. More recently, GR has evolved into GRY (Alpha) and GRA (Omi-
cron). Alongside temporal and phylogenetic diversity, clades are distinguished from each 
other by specific mutations, particularly those associated with certain structural vari-
ants, notably in the spike protein, such as D614G. Moreover, these clades display varia-
tions in the severity of infection. For instance, clades GR and GH were found to be more 
prevalent among individuals who experienced clinical deterioration, whereas clade GRA 
was associated with immune and vaccine escape, however, with less virulence [9–12].

Several efforts were made to investigate SARS-CoV-2 genomic data, including the 
utilization of machine learning (ML) for taxonomic classification and continental ori-
gins prediction [13, 14]. Regarding the taxonomic classification, Desai et al. introduced 
the Infectious Pathogen Detector (IPD), a web tool to perform genomic analysis and 
predict the phylogenetic tree clade from whole  genome sequences raw data [15, 16]. 
Another tool introduced by Kaden et  al. implements an alignment-free approach for 
RNA genomic analysis and combines it with a support vector classifier for virus evolu-
tion discriminated by amino acid changes [17]. Sawmya et al. also developed a model to 
predict the virulence of SARS-CoV-2 infection by classifying the genome sequences as 
either severe or mild [18]. Lastly, Lopez-Rincon et al. designed an automated pipeline to 
detect the SARS-CoV-2 deleterious variants in genome sequences [19]. Regarding the 
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continental origin, two studies developed an ML framework for classifying SARS-CoV-2 
sequences into their continental origins. Dlamini et  al. managed to train classification 
models to distinguish between sequences of eight pathogenic species, including SARS-
CoV-2, and distinguish between SARS-CoV-2 sequences originating from six continen-
tal regions by analyzing dinucleotide genomic signatures for whole  genome sequence 
data [20]. Ekpenyong et al.—on the other hand proposed a computational approach for 
the identification of the continental origin of SARS-CoV-2 sub-strains and gender-spe-
cific isolates [21].

In this context, one important aspect of clade evolution is that it is a consequence of 
the synonymous and non-synonymous variants of the virus. While non-synonymous 
variants are more biologically crucial for protein evolution, synonymous variants can 
play a vital role in adaptation to the host [22]. In a phenomenon referred to as codon 
usage bias, viruses often display a preference for one of the synonymous codons, which 
leads to better adaptation to the host transcription system [23, 24]. Both synonymous 
and non-synonymous mutations significantly affect the genomic composition and sub-
sequently what is known as the genomic signature. The latter notion was introduced ini-
tially by Karlin et al., in which prokaryotic species were characterized via the frequency 
of short oligonucleotides in their genomes, giving phylogenetic meaning patterns 
[25–27]. Recently, employing the notion of Karlin signatures, a tool named PaSiT was 
introduced as a fast straightforward method for measuring distances between related 
bacterial strains [28], providing large-scale comparison in a computationally friendly 
manner. Distinctions in Di nucleotide (Di) and Tri nucleotide (Tri) genomic profiles can 
be regarded as a unique genomic signature for particular taxonomic groups, offering val-
uable insights into the mechanisms of molecular evolution [29, 30].

Our objective was to extend the scope of the previous work on genomic signatures, 
such as that conducted by Dlamini et al. which had limitations in terms of dataset size 
(32,899 sequences) and the absence of an accessible standardized open-source tool for 
similar research inquiries. While their study focused solely on Di nucleotide frequency, 
our study aimed to establish a comprehensive framework for classifying distinct SARS-
CoV-2 clades and inferring their geographic origins using Di nucleotide frequency com-
bined with Tri nucleotide frequency. To achieve this, we re-implemented the PaSiT tool 
in a dedicated tool called GenoSig, which is more suitable for computing genomic sig-
natures for genomes. We believe that this tool has the potential to become a standard 
method for generating Di and Tri nucleotide frequencies to train and test different ML 
and DL models.

Material and methods
Data collection

SARS-CoV-2 whole genome sequences (WGS) were downloaded (n = 13,722,784) in 
FASTA format from the GISAID repository (https:// www. gisaid. org/) [8, 29, 30]. The 
dataset has been limited to sequences uploaded prior to the 3rd of November 2022 and 
included clades S, G, GH, GR, GRY, GV, GK, and GRA. Clades L and V were not present 
in the GISAID dataset, despite being documented in the literature. The spurious clade S 
with the count of 15,696 was considered an outlier to prevent significant data loss during 
subsequent rarefaction, given that clade S was not considered part of the evolutionary 

https://www.gisaid.org/
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path of SARS-CoV-2 [31]. This decision aimed to prevent significant data loss during 
subsequent rarefaction and given that Clade S was not considered part of the evolution-
ary path of SARS-CoV-2. Additionally, clade O was omitted as it comprises the majority 
of unclassified sequences, introducing potential noise to the prediction model without 
providing any value to the evolutionary path.

To decrease the bias among bigger and smaller clades, resulting from the different 
number of sequences available in each clad, all clades were randomly stratified and sub-
sampled equally according to the smallest clade GV using seqtk tool (https:// github. 
com/ lh3/ seqtk). The 7 files (each representing one clade) were subsampled to 185,207 
sequences per clade. Using a customized Python script, the continental origin was 
inferred from each strain FASTA header and incorporated in the metadata file using 
customized Python script. Genomes without a clear continental origin were labeled as 
unknown for subsequent analysis. For each genome, Di and Tri frequencies were cal-
culated. For this purpose, we developed a C++ tool (GenoSig) capable of handling 
large collections of genomes in a computationally efficient manner, implementing the 
approach developed for the PaSiT tool in a manner that would parse our data without 
the need for additional steps. The produced frequencies incorporate all 16 Di and 64 Tri 
possible frequencies, leading to 80 frequencies signal which were named in our work 
as (Di and Tri). Of note, due to partial sequence or noise, any sequence file that did not 
produce a Di and Tri was further excluded from our analysis, leading to the final dataset 
(n = 1,131,185; Table 1a).

To evaluate the robustness of our approach for clades and continental origins, we 
introduced an unexposed supplementary validation dataset, subsequently later than the 
main dataset, covering the submission period from the  4th of November 2022 to  the 
20th of November 2023. WGS were extracted in FASTA format from the GISAID repos-
itory using the "Search" module, selecting only the complete and high-coverage records. 

Table 1 Number of collected SARS‑CoV‑2 genomes in a) the main dataset (n = 1,131,185) b) 
the validation dataset (n = 67,399)

Clades SARS-CoV-2 genomes Continents SARS-CoV-2 genomes

(a) The main dataset (n = 1,131,185)

Clade_G 163,511 (14.45%) Africa 17,986 (1.59%)

Clade_GH 162,666 (14.38%) Asia 87,711 (7.75%)

Clade_GK 154,275 (13.6%) Europe 576,936 (51.00%)

Clade_GR 162,619 (14.37%) North America 389,136 (34.4%)

Clade_GRA 159,190 (14.07%) Oceania 10,761 (0.951%)

Clade_GRY 170,070 (15%) South America 43,548 (3.84%)

Clade_GV 158,854 (14%) Unknown 5107 (0.45%)

(b) The validation dataset (n = 67,399)

Clade_G 3161 (4.68%) Africa 2225 (3.3%)

Clade_GH 6169 (9.15%) Asia 12,145 (18%)

Clade_GK 22,436 (33.28%) Europe 28,940 (42.93%)

Clade_GR 10,536 (15.63%) North America 13,784 (20.35%)

Clade_GRA 17,844 (26.47%) Oceania 1781 (2.64%)

Clade_GRY 6591 (9.77%) South America 6761 (10.03%)

Clade_GV 662 (0.98%) Unknown 1763 (2.61%)

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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Metadata were extracted in the same fashion as the main dataset, leading to the valida-
tion dataset (n = 67,399; Table 1b). This dataset was then subjected to GenoSig to pro-
duce Di and Tri nucleotide frequencies in the same fashion as the main dataset.

Machine learning, deep learning, and statistical analysis methods

Six supervised ML classifiers were used in this study, including Linear Support Vector 
Machine (SVM), Radial Kernel Support Vector Machine (RBF), Logistic Regression (LR), 
Naïve Bayes (NB), Decision Tree (DT), and Random Forest (RF). Additionally, a neural 
network architecture was used as a DL classifier model [31]. For the ML models, default 
parameters provided by scikit-learn were used across the board. For the  RF model, 
parameters including 100 estimators, a random state of 42, and the "entropy" criterion 
[32]. For the DL model, it was implemented using the Keras library v(2.3.1) with a Ten-
sorFlow v(2.15.0) backend. The neural network included layers with 1024, 512, 256, 128, 
and 64 neurons, respectively. The final layer had a number of neurons equal to 7 which 
is the number of unique classes in the target variable, activated by the sigmoid function. 
The model was compiled using the Adam optimizer and employed the sparse categorical 
cross-entropy loss function.

It is crucial to highlight that the main dataset (n = 1,131,185) was split into an 80% 
training dataset and a 20% testing dataset for the ML and for the DL models (Additional 
file 1: Fig. S1). This partitioning strategy ensured that the models were trained on a sub-
stantial portion of the data, facilitating a more robust evaluation of their performance on 
the testing set. The training dataset underwent a tenfold cross-validation process. This 
approach involved dividing the training dataset into 10 subsets and iteratively training 
the model on 9 folds while validating with the remaining fold allowing shuffling in each 
iteration. This process was repeated 10 times, each time with a different validation fold.

In the main dataset, the performance report, including precision, recall, and F1-score, 
was generated using the scikit-learn library. For the validation dataset, a custom R 
v(4.3.2) script was employed. This script compared the ground truth value against the 
predicted values for each classifier. The evaluation metrics computed included over-
all accuracy, sensitivity, specificity, per-class balanced accuracy, and misclassifications 
between classes. The caret package v(6.0.94) was utilized for these calculations, and the 
results were utilized to generate a chord diagram through the circlize package v(0.4.15) 
and ggplot package v(3.4.4) [33–35]. PCA and Correlation coefficients were calculated 
using PCA() and corr() functions in pandas package.

As for the statistical analysis, a custom R script was utilized to conduct a normality 
test using the Shapiro–Wilk test. Subsequently, the p-values were adjusted with Bonfer-
roni correction. To compare the mean averages of tenfold cross-validation of each group 
with the best model as a reference, a non-parametric comparison was performed using 
a pairwise Wilcoxon signed-rank test. Finally, the P-value was considered significant if 
(< 0.05). Regarding the used programming languages, apart from GenoSig, the rest of the 
work was written in Python (3.8) with dependencies from Pandas v(2.14) [36], Numpy 
v(1.26.0) [37], Scikit-Learn v(1.3.0) [32], and Matplotlib v(3.8.2) [38]. Finally, calculat-
ing the computational efficiency of the GenoSig tool and its comparison to other tools 
was done using a bash script on a PC with 24 GB RAM and Intel core i5-8265U CPU @ 
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1.60 GHz. A high-cluster computer was used for metadata generation and models’ train-
ing and prediction.

Results
The combined use of Di and Trinucleotide frequencies were able to train a robust model 

using random forest and deep learning approaches

In our work, we wanted to utilize Di and Tri nucleotide frequencies to train our clas-
sifiers to be capable of identifying the clade origin. For this purpose, we first applied 
GenoSig to extract the Di and Tri nucleotide frequencies  from the main dataset. 
Upon performing a principal component analysis (PCA) to evaluate the clustering 
potential of the dataset, it became apparent that our dataset displayed a non-linear 
nature. This observation is supported by the fact that 70% of the variance in the two 
principal components did not reveal clear clustering patterns with respect to clade 
or continent labels (Fig. 1). Then, we proceeded to compare the models in a system-
atic fashion, including Deep Learning (DL), Random Forest (RF), Decision Tree (DT), 
Logistic Regression (LR), Naïve Bayes (NB), Support vector with Radial Basis Func-
tion (RBF,) and Linear Support vector machine (SVM). The classifiers were trained 
and tested using a  tenfold cross-validation fashion. From this analysis, DL achieved 
significantly the best performance with an accuracy of 87.88 (± 0.013), while the 
other ML models had a lower performance, with accuracy of 68.92% (± 0.001) for DT, 
61.39% (± 0.01) for LR, 33.1% (± 0.0008) for NB, 16.4% (± 0.0003) for RBF and 15.7% 
(± 0.03) for SVM. Only RF had a performance close to DL with 86.37% (± 0.0009) 
(Table 2; Fig. 2a). For the remainder of the results in this section, we focused on the 
top-performing models, namely DL and RF, as they exhibit comparable performance 
yet possess distinct architectures.  

For RF, it was shown that the best F1-score was for clade GRA 0.95, GK 0.92, GRY 
0.91, GV 0.88, GH 0.81, GR 0.78,   and G 0.77. For precision, the same order as  the 
F1-score, except that GRY 0.88 was lower than GV 0.9 and GR 0.81 was higher than 
GH 0.8. For recall, GRA 0.96 had the highest value and GR 0.74 had the lowest value. 

Fig. 1 PCA exploratory analysis using GenoSig’s Di and Tri nucleotide frequencies matrix from the main data 
set for prediction of a clades and b continents
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For DL, with the same order of best-performing clades like RF, we observed that the 
best F1-scores were for clade GRA 0.97, GK 0.95, GRY 0.93, GV 0.89, GH 0.84, GR 
0.79 and G 0.79 respectively (Additional file  1: Table  S1a). The precision mirrored 
the F1-score order with the exception that GH 0.89 surpassed GV 0.86, and GR 0.82 
exceeded G 0.78. In terms of recall, GRA 0.97 achieved the highest value, while GR 
registered the lowest value at 0.77.

To assess the robustness of our trained models using the validation dataset, we evalu-
ated overall accuracy, sensitivity, specificity, per-class balanced accuracy, and ROC-AUC 
curves. The results indicated that DL achieved an overall accuracy of 90.4%, outperform-
ing RF, which attained an overall accuracy of 87.76%. For both DL and RF, the clades GK, 
GRA, and GRY had the best-balanced accuracies, while clades G and GH had the worst-
balanced accuracies. The detailed performance measures of both models and ROC-AUC 
from the validation dataset were reported and visualized (Table 3a; Fig. 3a, c). The mis-
classification biases were assessed in the confusion matrix for both RF and DL models 

Table 2 Comparing the tenfold cross‑validation accuracy of the ML/DL models in the main dataset 
for clades and continents classification

Clades classification tenfold cross-validation 
accuracy (± SD)

Continent classification tenfold cross-
validation accuracy 
(± SD)

SVM 15.7% (± 0.03) SVM 11.1% (± 0.160)

RBF 16.4% (± 0.0003) RBF 0.4% (± 0.0001)

NB 33.1% (± 0.0008) NB 3.11% (± 0.0005)

LR 61.39% (± 0.01) LR 52.6% (± 0.0006)

DT 68.92% (± 0.001) DT 62.4% (± 0.002)

RF 86.37% (± 0.0009) RF 79.92% (± 0.001)

DL 87.88 (± 0.013) DL 78.34% (± 0.018)

Fig. 2 Comparing the ‑tenfold cross‑validation accuracy of the ML/DL models on the main dataset for 
prediction of a clades and b continents
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based on the validation dataset. Regarding RF model misclassifications, 10.47% of clade 
G was misclassified as GH, and 8.11% of clade GH was misclassified as clade G. On the 
other side, 7.31% of clade G was the highest misclassified as clade GR, and 5.79% of clade 

Table 3 Performance report of RF and DL models among validation dataset for prediction of a) 
clades b) continents

RF DL

Sensitivity Specificity Balanced 
Accuracy

Sensitivity Specificity Balanced 
Accuracy

(a) Model/clades

Clade_G 0.614 0.98 0.797 0.713 0.979 0.846

Clade_GH 0.802 0.965 0.884 0.809 0.986 0.897

Clade_GK 0.966 0.971 0.968 0.991 0.989 0.99

Clade_GR 0.716 0.983 0.849 0.727 0.979 0.853

Clade_GRA 0.901 0.984 0.943 0.936 0.992 0.964

Clade_GRY 0.973 0.979 0.976 0.979 0.977 0.978

Clade_GV 0.803 0.99 0.897 0.909 0.985 0.947

(b) Model/continents

Africa 0.006 0.999 0.503 0.025 0.996 0.51

Asia 0.052 0.994 0.523 0.12 0.952 0.536

Europe 0.774 0.581 0.678 0.771 0.605 0.688

North America 0.672 0.698 0.685 0.655 0.771 0.713

Oceania 0.042 0.998 0.52 0.058 0.998 0.528

South America 0.316 0.997 0.656 0.424 0.981 0.703

Fig. 3 ROC‑AUC curve based on the validation dataset using RF model on a clades and b continents also 
using DL model on c clades and d continents
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GR was misclassified as clade G. Also, 11.33% of clade GV had the highest misclassifica-
tion as clade GH, and 11.23% of clade GR was misclassified as clade GRY. The detailed 
misclassifications are reported and visualized in (Table 4a; Fig. 4a). Regarding DL model 
misclassification, 7.28% of clade GH was misclassified as G, and 3.42% of clade G was 
misclassified as clade GH. On the other side, 6.67% of clade GR was misclassified as clade 
G and 5.82% of clade G was misclassified as clade GR. Also, 12.97% of clade GR was the 
highest misclassification as clade GRY. The detailed misclassifications are reported and 
visualized in (Table 5a; Fig. 4c).    

Analyzing the feature importance of our trained classifiers revealed distinct 
approaches to feature selection by RF and DL. Both models incorporated all 80 Di and 
Tri nucleotide features but assigned varying degrees of importance to each. Notably, 
the RF model identified (CGG, CCG, GGG, CCC, CTG) as the top five crucial features, 
(Additional file 1: Fig. S2a). Conversely, the DL model prioritized (CG, CC, GG, GGA, 
TCG) as the top three significant features (Additional file 1: Fig. S2c). To confirm these 
findings, we retrained the two models on the validation dataset using Di only, Tri only, 
or both Di and Tri as inputs for training. In this analysis, the RF classifier significantly 
favored the combined signal over Tri only and over Di alone. However, for DL, although 
it preferred the combined signal like RF, it demonstrated a significant preference for the 
Di signal over the Tri signal (Additional file 1: Fig. S3a, c).

Table 4 Confusion matrix of RF model on validation dataset for prediction of a) clades and b) 
continents

Prediction/
Ref

Clade_G 
(%)

Clade_GH 
(%)

Clade_GK 
(%)

Clade_GR 
(%)

Clade_GRA 
(%)

Clade_GRY 
(%)

Clade_GV 
(%)

(a)

Clade_G 61.47 8.11 0.29 5.79 0.21 0.46 4.53

Clade_GH 10.47 80.27 1.40 7.91 3.00 0.14 11.33

Clade_GK 2.97 2.33 96.60 0.85 5.42 0.03 0.91

Clade_GR 7.31 3.39 0.79 71.63 1.15 1.67 2.42

Clade_GRA 10.72 1.82 0.76 1.03 90.13 0.36 0.00

Clade_GRY 1.04 0.44 0.02 11.23 0.06 97.34 0.45

Clade_GV 6.01 3.65 0.15 1.56 0.02 0.00 80.36

Prediction/
Ref

Africa (%) Asia (%) Europe (%) North_
America 
(%)

Oceania 
(%)

South_
America 
(%)

Unknown 
(%)

(b)

Africa 0.67 0.01 0.01 0.00 0.00 0.00 0.00

Asia 0.45 5.29 0.52 0.46 1.52 0.25 1.19

Europe 61.80 51.12 77.48 31.33 65.24 33.90 41.52

North 
America

36.94 43.42 21.65 67.25 28.69 34.00 56.55

Oceania 0.00 0.01 0.00 0.56 4.21 0.21 0.00

South 
America

0.13 0.16 0.34 0.39 0.00 31.64 0.34

Unknown 0.00 0.00 0.00 0.00 0.34 0.00 0.40
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Reduced efficacy of random forest and deep learning models in tracing continental origin 

through Di and Tri nucleotide frequency analysis in our dataset

In the second part of our work, RF demonstrated a significant performance advantage 
over other classifiers for the prediction of continental origin, including DL, in the ten-
fold cross-validation accuracy. In detail, RF achieved an accuracy of 79.92% (± 0.001), 
while DL achieved a slightly lower accuracy of 78.34% (± 0.018). As anticipated, the 
performance of the other ML models was notably lower, with DT with 62.4% (± 0.002), 
LR with 52.6% (± 0.0006), SVM with 11.1% (± 0.160), NB with 3.11% (± 0.0005), and 
RBF with 0.4% (± 0.0001) (Table 2; Fig. 2b). As with the clades analysis, we investigated 
underlying performance of both comparable models. For the RF classifier, F1-score for 
the prediction of continental origin was the highest in Europe with 0.85. While with 
North America it was 0.77 and 0.64 for South America, 0.63 for Asia, 0.61 for Oceania, 
and 0.28 for Africa. For precision, surprisingly, Oceania comes first with 0.96, Asia 0.89, 
Africa 0.89, South America 0.81, Europe 0.80 and finally North America 0.76. For recall, 
a similar order to F1-score as Europe comes first with 0.90, and the lowest value was 
Africa with 0.17. The results of the DL classifier were similar but not identical to that 
of the RF classifier. The F1-score for predicting continental origin was the highest in 
Europe, registering at 0.82. North America followed with a score of 0.78, South America 

Fig. 4 Chord diagram based on the confusion matrix of validation dataset and RF model a clades b 
continents and DL c clade d continents
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at 0.66, Oceania at 0.66, Asia at 0.59, and Africa at 0.18. As for the precision, Oceania 
came first with 0.92, followed by Europe (0.82), North America (0.76), Asia (0.74), South 
America (0.70), and finally Africa with a precision of 0.14. For recall, a similar order 
to the F1-score with Europe having the highest performance (0.83) and Africa having the 
least performance (0.27; Additional file 1: Table S1b).

As with the clade analysis, we evaluated the robustness using the validation data-
set. Both models experienced an overall drop in accuracy, with RF achieving an overall 
51.29%, while DL exhibited a slightly higher overall accuracy of 53.23%. Inside each con-
tinent, like the main dataset, and for both models, Europe, North America, and South 
America had the best-balanced accuracies over other continents. The detailed perfor-
mance measures of both models and ROC-AUC in the validation dataset for the predic-
tion of continental origin are reported and visualized in (Table 3b; Fig. 3b, d).

With respect to misclassification in the validation dataset, it was clear that all conti-
nents were most commonly misclassified as Europe by the RF model, with the exception 
of South America where 34% was highly misclassified as North America. The high-
est misclassified continent was Africa as 61.80% of Africa’s records were misclassified 
as Europe, while 36.94% were misclassified as North America. The detailed misclassi-
fications are reported and visualized in (Table  4b; Fig.  4b). For DL model misclassifi-
cation, the same pattern as RF was observed. All continents were highly misclassified 
as Europe with same exception of South America where 29% of its signals were mis-
classified as North America. Similarly, the highest misclassified continent was Africa as 
56.54% of Africa was misclassified as Europe, while 36.49% of Africa was misclassified as 

Table 5 Confusion matrix of DL model on the validation dataset for prediction of a clades and b 
continents

Prediction/
Ref

Clade_G 
(%)

Clade_GH 
(%)

Clade_GK 
(%)

Clade_GR 
(%)

Clade_GRA 
(%)

Clade_GRY 
(%)

Clade_GV 
(%)

(a)

Clade_G 71.34 7.28 0.12 6.67 0.45 0.36 3.78

Clade_GH 3.42 80.92 0.22 3.82 1.40 0.03 2.72

Clade_GK 0.44 1.70 99.18 0.63 1.54 0.00 0.76

Clade_GR 5.82 4.49 0.25 72.70 2.82 1.65 1.81

Clade_GRA 9.74 0.02 0.04 0.34 93.66 0.00 0.00

Clade_GRY 0.35 0.13 0.00 12.97 0.00 97.92 0.00

Clade_GV 8.89 5.46 0.17 2.88 0.13 0.03 90.94

Prediction/
Ref

Africa (%) Asia (%) Europe (%) North_
America 
(%)

Oceania 
(%)

South_
America 
(%)

Unknown 
(%)

(b)

Africa 2.52 0.63 0.49 0.13 0.22 0.07 0.40

Asia 3.06 12.07 4.07 4.13 5.33 0.99 37.10

Europe 56.54 56.24 77.19 27.54 45.03 27.05 38.06

North 
America

36.49 28.70 16.58 65.59 43.51 29.18 21.89

Oceania 0.04 0.07 0.03 0.54 5.90 0.24 0.06

South 
America

1.35 2.29 1.63 2.07 0.00 42.43 2.50

Unknown 0.00 0.00 0.00 0.00 0.00 0.03 0.00
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North America. The detailed misclassifications are reported and visualized in (Table 5b; 
Fig. 4d).

With respect to the feature selection per continent, distinctions in the feature impor-
tance of RF and DL models were also observed. Again, both models encompassed all 80 
Di and Tri nucleotide features. Notably, the RF model identified (CG, TCC, GC, CCT, 
GGA) in the top five features (Additional file 1: Fig. S2b), whereas the DL model prior-
itized (CG, GG, CC, GA, TC) (Additional file 1: Fig. S2d). Re-training the model with 
the validation dataset, using each signal (Di or Tri) separately or combined, revealed 
a consistent pattern for both RF and DL. In both models, there was a significant pref-
erence for the combined signal over the separate signals of Di or Tri. Additionally, the 
observed pattern indicated that RF tends to significantly favor the Tri signal over Di, 
while DL exhibits the opposite preference, favoring the Di signal over Tri (Additional 
file 1: Fig. S3b, d).

Software implementation

Various tools are available for extracting k-mer nucleotide frequencies from FASTA or 
FASTQ files (Additional file 1: Table S2) [39–41]. To our knowledge, only SeekR library 
can generate a frequency signal per header/contig, aligning with our feature extrac-
tion needs for classification tasks. However, SeekR was written in an interpreted lan-
guage (Python 3.8). Therefore, PasiT was modified to incorporate this functionality 
with reduced additional time and fewer options, resulting in the release of GenoSig as 
a tool to produce huge files or datasets. Highlighting the superior performance of C++ 
over Python, GenoSig demonstrated improved RAM and CPU efficiency compared to 

Fig. 5 The schematic workflow of our approach employing GenoSig alongside the ML or DL models
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SeekR when handling three distinct FASTA files (5.4 GB, 1.1 GB, and 245.4 MB). For the 
5.4 GB FASTA file, GenoSig required 4.1 min, utilized 9.3 GB of RAM, and used 40% 
of the CPU. In contrast, SeekR took 47.8 min, utilized 16.1 GB of RAM, and consumed 
88% of the CPU across all 8 available processors (Additional file 1: Fig. S4). For the main 
dataset ~ 37.8 GB, GenoSig took 7 min and 33.364 s when measured as wall-clock time, 
5 min and 59.671 s in terms of user time, and 1 min and 18.425 s as system time. In our 
study, the usage of GenoSig involves employing a small Perl script executed in a BASH 
terminal that requires no installation. This script calculates 80 Di and Tri nucleotide fre-
quencies per genome. The resulting frequency matrix can be passed to the  RF or DL 
pipeline, as shown in our workflow where GenoSig was used to generate signals for 
training a classifier in the training mode. Alternatively, it can produce a signal from a 
query sequence, which can be supplemented to a pre-trained classifier for predicting its 
class (e.g. origin) (Fig. 5).

Discussion

Amid the dramatic spread of SARS-CoV-2, many projects started tracking the evolu-
tion of this pandemic, a process known for being computationally expensive, time-con-
suming,   and requiring dedicated algorithms for clustering or phylogenetics. The main 
bottleneck in this process is the sequence alignment followed by standard phylogenetic 
analysis [42]. This challenge was not exclusive to SARS-CoV-2 alone; it also encom-
passed other kinds of outbreaks. Hence, Several studies hypothesized that an alignment-
free approach might be more effective to investigate the variations within large-scale 
genomic data, providing insights into the dynamics of evolution [43, 44]. Dlamini et al. 
showed that Dinucleotide frequencies can be used for classifying 7 viral species includ-
ing SARS-CoV-2 and exploited the potential of this approach to classify SARS-CoV-2 
according to their continental origin [20]. However, their work was done on a small scale 
of data (n = 32,899 sequences), and they did not provide a standard open-source tool to 
handle similar research questions. In our research, we extended their findings by scru-
tinizing the phylogenetic utility of 80 nucleotide frequencies, including 16 Di nucleo-
tide frequencies (e.g., AA, AT, AC, etc.) and 64 Tri nucleotide frequencies (e.g., AAA, 
AAT, ATA, etc.). These were considered as signatures for an alignment-free approach to 
sequence comparison, and we assessed their classification potential using various ML or 
DL models. This was implemented in our newly introduced tool named GenoSig, which 
was assessed using a large collection of SARS-CoV-2 sequences (n = 1,131,185) in order 
to identify the clade and continental origin.

In our study, we acquired genome sequences submitted before November 3, 2022, 
employing rarefaction subsampling to balance the main  dataset based on clades. We 
highlighted the superior performance of our DL and random RF implementations using 
Di and Tri nucleotide frequencies incorporated through GenoSig, compared to other 
classifiers. Particularly in clade classification, DL significantly outperformed RF. The per-
formance analysis of clades involving DL and RF showcased the capability of the two 
classifiers to distinguish later clades, such as GRA, GK, and GRY, over earlier ones like 
GH, GR, and G. To validate the robustness of our clade prediction approach, we chal-
lenged our RF and DL models with the data submitted subsequent to our main dataset. 
From the validation dataset, our models showed a comparable performance to the main 
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dataset in RF and DL models, in the validation dataset, G and GH showed predomi-
nant confusion. Furthermore, the highest misclassification was for clade GR to GRY in 
both models. Importantly, this misclassification aligns with the phylogeny of the two 
clades [45, 46]. The superior performance observed in later clades may be attributed to 
the cumulative accumulation of mutations over time, including both synonymous and 
non-synonymous mutations. This accumulation could be influenced by factors like host 
adaptation or, evasion strategies, such as those reported in the case of the GRA clade 
related to vaccination [11].

In the continental analysis, RF outperformed DL in the tenfold-cross-validation accu-
racy, yet both models demonstrated higher accuracy for Europe, North America, and 
South America compared to other continents. In the validation dataset, despite lower 
overall accuracy, DL had an edge over RF. In the confusion matrix, both models exhib-
ited a similar bias towards Europe, North America, and South America, struggling to 
detect the less represented continents, particularly Africa. Interestingly, in the validation 
dataset misclassifications, both models tended to misclassify most continents as Europe, 
except for South America, which was misclassified as North America. This pattern may 
align with the geographic distance and travel dynamics between these two continents or 
could reflect an inherent bias in the validation dataset.

These findings suggest that the classifiers trained on the Di and Tri nucleotide frequencies 
for continent prediction did not achieve the same level of performance as the clade classi-
fiers. This could be attributed to the fact that clades are already phylogenetically predefined 
and balanced. On the other hand, the continent data suffered from technical imbalances 
within datasets as well as the influence of epidemiological factors such as increased travel 
rates within and outside Europe and North America, especially with the border reopen-
ing. As a result, optimizing continental analysis is complex due to high sequencing capacity 
and high incidents in Europe and North America, resulting in higher numbers of available 
sequences [47]. Furthermore, it requires a careful method considering, the evolving time 
dynamics of SARS-CoV-2 clades to eliminate time as a confounder. In our analysis of fea-
ture importance for clade and continent classification, both DL and RF utilized all 80 Di and 
Tri nucleotide features with diverse weights, though the pattern of correlation in nucleotide 
frequencies (Additional file 1: Fig. S5). The top features were prominently associated with 
cytosine and guanine, confirming the significance of cytosine in the evolution of SARS-
CoV-2 [48]. Additionally, there are reports indicating that mutational asymmetries affect 
the hydrophobicity of the virus proteins for clades over time [49]. This alignment under-
scores the relevance of Di and Tri nucleotide frequencies in the classification process, link-
ing genetic variations with evolutionary dynamics or maybe functional characteristics of 
the virus.

Conclusion
Our work introduced a reductive yet fast and robust approach for predicting SARS-
CoV-2 clades, utilizing Di and Tri nucleotide frequencies and employing either DL or RF 
as the model of choice. Both DL and RF achieved quite comparable results, albeit relying 
on very distinct architectures. Additionally, we emphasize the significance of consider-
ing misclassifications as an indicator of model logic and for epidemiological interpreta-
tion. This approach was implemented using our tool entitled GenoSig. Given the recent 
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expansion of genomic datasets, such an approach can be extended to address various 
epidemiological questions related to viral or bacterial genomes, as well as meta-genome 
analysis. GenoSig’s smooth performance enables adaptability to various hardware capa-
bilities. As a future direction, it would be interesting to expand the approach to investi-
gate more species employing Di and Tri nucleotide signals.
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