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Abstract 

Background: Genetic variants can contribute differently to trait heritability by their 
functional categories, and recent studies have shown that incorporating functional 
annotation can improve the predictive performance of polygenic risk scores (PRSs). 
In addition, when only a small proportion of variants are causal variants, PRS methods 
that employ a Bayesian framework with shrinkage can account for such sparsity. It 
is possible that the annotation group level effect is also sparse. However, the number 
of PRS methods that incorporate both annotation information and shrinkage on effect 
sizes is limited. We propose a PRS method, PRSbils, which utilizes the functional annota-
tion information with a bilevel continuous shrinkage prior to accommodate the vary-
ing genetic architectures both on the variant-specific level and on the functional 
annotation level.

Results: We conducted simulation studies and investigated the predictive per-
formance in settings with different genetic architectures. Results indicated 
that when there was a relatively large variability of group-wise heritability contribu-
tion, the gain in prediction performance from the proposed method was on average 
8.0% higher AUC compared to the benchmark method PRS-CS. The proposed method 
also yielded higher predictive performance compared to PRS-CS in settings with dif-
ferent overlapping patterns of annotation groups and obtained on average 6.4% 
higher AUC. We applied PRSbils to binary and quantitative traits in three real world 
data sources (the UK Biobank, the Michigan Genomics Initiative (MGI), and the Korean 
Genome and Epidemiology Study (KoGES)), and two sources of annotations: ANNO-
VAR, and pathway information from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and demonstrated that the proposed method holds the potential for improv-
ing predictive performance by incorporating functional annotations.

Conclusions: By utilizing a bilevel shrinkage framework, PRSbils enables the incor-
poration of both overlapping and non-overlapping annotations into PRS construc-
tion to improve the performance of genetic risk prediction. The software is available 
at https:// github. com/ styvon/ PRSbi ls.
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Background
Genetic data are important resources to improve the risk prediction for complex dis-
eases [1]. The genetic effects of variants across the genome can be summarized in the 
form of polygenic risk scores (PRS) that estimate individuals’ genetic liability. The 
wide availability of summary statistics from large-scale genome-wide association stud-
ies (GWAS), which test the associations between the genetic variants and phenotypes 
of interest across the genome, has facilitated the application of PRS [2]. Early PRS 
approaches such as pruning and thresholding (P + T) included only a selection of SNPs 
that reach genome-wide significance [3, 4], while it was suggested by later studies that 
including all SNPs and applying shrinkage on their weights would increase the heritabil-
ity estimates [5]. Although PRS has shown great promise in the early identification and 
prediction of disease risks, its predictive performance for explaining the full genetic con-
tribution to diseases remains limited. Studies have indicated that polygenic risk scores 
explain only a small amount of total phenotypic variability of complex traits [6, 7], and 
improvements in the construction of PRS, especially selecting and shrinking SNP effects 
to better capture genetic heritability, remain an area of rigorous development.

Genetic variants in different functional categories can have different shares of contri-
bution to the heritability of complex traits, and recent studies have shown that the incor-
poration of functional annotation can improve the predictive performance of PRS [8, 9]. 
In addition, for certain phenotypes where only a small proportion of variants are causal, 
PRS methods with Bayesian continuous shrinkage framework have been proposed to 
account for such sparsity while yielding higher performance [10]. It is possible that the 
annotation group level effect is also sparse and accounting for this factor holds poten-
tial for additional performance improvement. Although existing PRS methods improve 
prediction accuracy through utilizing GWAS summary statistics and accounting for the 
potential sparsity of the genetic architectures, the number of PRS methods that incor-
porate annotation information and apply continuous shrinkage on effect sizes is limited. 
For example, the sparsity assumption for the underlying genetic architectures is gener-
ally made either on a global level [10] or by partitioning variants into bins with simi-
lar sum of squared posterior mean effect sizes [11, 12], and there is a lack of study on 
addressing sparsity across the annotation groups.

In this paper, we propose a PRS method with bilevel continuous shrinkage prior to lever-
age the functional annotation information to bridge the above-mentioned gap. This prior 
accommodates the varying genetic architectures both on the variant-specific level and on 
the functional annotation level, and the posterior update is conducted using a Gibbs sam-
pler. PRSbils uses GWAS summary statistics instead of individual-level data and accounts 
for local LD patterns through an external LD reference panel. We conducted simulation 
studies and investigated the predictive performance in settings with different genetic archi-
tectures. Results indicated that PRSbils outperformed the benchmark method in all set-
tings. We applied PRSbils to binary and quantitative traits in three real world data sources, 
and demonstrated that the proposed method generally improved predictive performance. 
In summary, our study showed that PRSbils holds the potential for improving predic-
tive performance by incorporating functional annotations using a novel bilevel shrinkage 
approach.
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Methods
Overview of Bayesian continuous shrinkage regression model

Denote y as an N-vector of standardized phenotype, G as an N ×M matrix of standardized 
genotypes, ǫ as an N-vector of random noise, and β as an M-vector of genetic effect sizes. 
Then, a regression model of genotypes and phenotypes can be expressed as

where ǫ ∼ MVN (0, σ 2IN ), p(σ
2) ∝ σ−2 , i.e., y|G,β , σ 2 follows a multivariate Normal 

distribution with mean Gβ and covariance matrix σ 2IN .
For high dimensional genetic data, the number of genetic variants M is much larger than 

the number of individuals N  , and it is often assumed that the genetic effect vector β is 
sparse, meaning that only a small amount of the variants are associated with the outcome 
phenotype. Under this sparsity assumption, the prior distribution of β can be chosen to be 
either a discrete or a continuous mixture of Normal distributions. The discrete mixture 
type of prior is also known as the spike-and-slab prior [13], and is a combination of a point 
mass at 0 and a density for the non-zero part.

The continuous mixture type of prior assigns β with a continuous distribution centered 
at 0. One commonly used set of priors is the global–local shrinkage priors [14], which uti-
lizes both a global shrinkage parameter τ 2 and local marker-specific parameters �21, ..., �

2
M to 

model the prior distribution of β . Specifically:

where V� ≡ diag{�21, ..., �
2
M} is an M × M diagonal matrix, and π1 and π2 are absolutely 

continuous functions and have a wide range of choices. For example, the model becomes 
Lasso when �2j  follows the standard exponential distribution; a horseshoe prior is con-
structed when both τ and �j follow a standard half-Cauchy distribution.

The above-mentioned Bayesian model can be generalized to the bilevel global–local 
shrinkage models to account for additional group information [15]. We consider the situ-
ation where each variant belongs to one of K  mutually-exclusive annotation groups, i.e., 
Aj = k if variant j belongs to annotation group k . Then the Bayesian bilevel global–local 
shrinkage regression model can be expressed as:

y = Gβ + ǫ
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where Vδ ≡ diag{δ2A1
, ..., δ2AM

} , with δ2Aj
 being the group-level shrinkage parameter when 

the corresponding group for the j th variant is Aj.

PRSbils

Based on the Bayesian bilevel global–local shrinkage regression model, we incorporate 
functional annotation as the group-level information and assume a standard half-Cauchy 
prior C+(0, 1) for each group-level shrinkage parameter δk and each local shrinkage 
parameter �j . The Bayesian regression model can then be specified as:

The posterior distribution of β and σ 2 can then be derived:

where B = GTG +N(VδV�)
−1.

When the LD matrix D and the summary-level estimation of genetic effect size 
β̂  are available, we can obtain an approximation for the posterior distribution with 
β̂ = GTy/N  and D = GTG/N :

where � = σ 2

N [D + (VδV�)
−1]−1.

To derive the posterior distributions for shrinkage parameters δ and � , we note that 
the standard half-Cauchy distribution can be decomposed into a scale mixture of inverse 
Gamma distributions [16]. Let x, a be random variables satisfying

y|G,β , σ 2 ∼ MVN (Gβ , σ 2IN )

β|σ 2, δ21, ..., δ
2
K , �
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σ 2
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where IG(α,β) is the inverse Gamma distribution with shape parameter α and scale 
parameter β , then x ∼ C+(0, 1).

PRSbils with non‑overlapping annotation assignment

We first consider the situation where each variant has only one annotation. Using the 
scale mixture representation of the standard half-Cauchy distribution, we obtain an 
alternative representation of the priors for δ and �:

The posteriors for δ and hyper-parameter t can be expressed as

where Mk denotes the number of variants within group k , k = 1, ...,K .
We obtain the posteriors for � and c in a similar fashion:

Since all the conditional distributions for the parameters are known, posterior samples 
of β can be obtained by a Gibbs sampler. After the posterior β values (denoted as β̃  ) are 
achieved, we construct the final PRS score by combing the group-wise scores across all 
annotations

where PRSk =
∑

{j:Aj=k}Gjβ̃j is the group-wise score, and αk is the group-specific weight 

for group k . We obtain the estimates for α1, ...,αk through tenfold cross-validation using 
a separate validation data, which includes individual-level genotype and phenotype data. 
We use this group-wise combination approach based on the observation that signal-
enriched annotations are more informative for prediction, and weighting each partition 
differently can further improve PRS performance [11].

We also investigated a hybrid method that is a combination of PRSbils and conven-
tional PRS methods. In this case, we construct the PRS score by
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where β̃j ′ denotes the genetic effect size generated from conventional PRS methods.

PRSbils with overlapping annotation assignment

Under the situation where a variant belongs to multiple annotation groups, for exam-
ple, one variant can be involved in multiple pathways, we account for such a variant 
separately in each of the annotation groups it belongs to. The assumption underly-
ing this is that variants with more annotations have potentially larger contribution to 
the heritability and therefore will be shrunk less and have larger posterior effect sizes 
in general [17]. The total number of variants in the overlapping setting will become 
M′ =

∑K
k=1

∑M
j=1 I

(
k ∈ Aj

)
 (Additional file  1: Figure S10), and the local shrinkage 

parameters will be assigned to each of the M′ variants:

The group-wise score can be calculated by PRSk =
∑

{j:Aj=k}Gjβ̃j,Aj.

PRS‑CS

PRS-CS is a PRS method which infers the posterior genetic effect size β using sum-
mary-level β̂  from existing GWAS studies as well as LD information from a reference 
panel. It is based on the Bayesian continuous shrinkage regression model without 
group information and obtains posterior samples using a Gibbs sampler. A general 
gamma-gamma distribution is assigned to the local shrinkage parameters �2j :

with G(·, ·) representing a Gamma distribution with shape and scale parameters, and a0 
and b0 being pre-specified constants. When a0 = 0.5 and b0 = 1 , it is equivalent to the 
scale mixture representation of the standard half-Cauchy distribution.

When a prior guess of the global shrinkage parameter τ is not available, PRS-CS either 
uses a grid search for the best performing value in an additional validation set (PRS-CS), 
or assigns a standard half-Cauchy prior on τ in the fully Bayesian model (PRS-CS-auto).

For the posterior sampling part, PRSbils is an extension of the PRS-CS-auto 
approach to differentiate the shrinkage across different groups. When the number 
of groups K = 1 , our approach is equivalent to PRS-CS-auto with hyper-parameters 
a0 = 0.5 and b0 = 1.

PRS =

K∑

k=1

αkPRSk + γ

M∑

j=1

Gjβ̃j
′

�
2
j,Aj

|βj,Aj , σ
2, δ2Aj

, cj,Aj ∼ IG(1,
Nβ2

j,Aj

2σ 2
+ cj,Aj )

cj,Aj |�
2
j,Aj

, δ2Aj
∼ IG(1, �−2

j,Aj
+ 1)

�j|cj ∼ G(a0, cj), cj ∼ G(b0, 1)
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LDpred‑funct

LDpred-funct incorporates functional annotation as priors for the genetic effects using 
the baseline-LD model which includes non-overlapping annotations [12]. It assumes a 
prior distribution βj ∼ N

(
0, cσ 2

j

)
 for the normalized genetic effects, where σ 2

j  repre-

sents per-SNP heritability obtained from stratified LD score regression [18] and c is a 
normalizing constant. The posterior mean of β is

where W−1 =

[
ND + 1

c diag
(

1
σ 2
1

, ..., 1
σ 2
M

)]−1
 . The SNPs are then ranked by the absolute 

posterior mean effect sizes and partitioned into L bins with approximately the same sum 
of squared posterior mean effect sizes. The PRS is generated by

where the weights are determined via tenfold cross-validation.
To make LDpred-funct applicable to our study which uses different annotations from 

the baseline LD model, we used stratified LD score regression to obtain the per-SNP 
heritability under the functional annotations being used, obtained the posterior mean of 
β , and get the PRS with the number of bins L fixed at 40.

Biobank data overview

UK Biobank is a large-scale database with biomedical information from UK participants 
recruited from 2006 to 2010 [18]. The genetic data from UK Biobank consists of over 
90 million genetic variants imputed from the Haplotype Reference Consortium (HRC) 
[19] among 488,377 individuals. Data from the Michigan Genomics Initiative (MGI) 
[20] and the Korean Genome and Epidemiology Study (KoGES) data [21] were also 
analyzed in our study. We used Data Freeze 3 of the MGI data, which includes 56,984 
genotyped participants at the University of Michigan with over 32 million genome-wide 
variants imputed from the HRC [22]. The KoGES data includes a total of 72,298 Korean 
individuals, with over 8 million genetic variants imputed from 1000 Genome project 
phase 3 + Korean reference genome (397 samples) and with minor allele frequency 
(MAF) > 0.01, HWE p-value > 1× 10−6 , variant call rate > 95% [23].

For all genetic data in the UK Biobank, MGI and KoGES, NCBI Build 37/UCSC hg19 
was used for genomic coordinates. We further restricted our analysis to HapMap3 SNPs 
with minimum MAF > 0.01, HWE p-value > 1× 10−6 , variant call rate > 95%, individual 
missing rate < 1%, and LD-pruning R2 < 0.99. LD information from 503 European sam-
ples in the 1000 Genomes Project (1 KG) [24] was used as an external reference panel 
for the UK Biobank and MGI data, and 1 KG East Asian reference panel was used for the 
KoGES data.

Simulation studies

We conducted simulation studies to compare the performance of PRSbils to PRS-CS. 
We also evaluated a hybrid method of PRSbils with PRS-CS, in which the scores from 
PRS-CS was combined with the one from the proposed method. We also compared 

E[β|·] = W−1N β̂

PRS =

L∑

l=1

αlPRS(l)
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the predictive performance with LDpred-funct for non-overlapping annotation 
groups. A total of M = 125, 000 SNPs were sampled from the UK Biobank data with 
above-mentioned quality control filters, with 1 KG as LD reference panel. The sam-
pled variants were then assigned to K  different annotation groups, which explain 
q1, ..., qK  % of the total heritability h2 respectively. For each annotation group k , the 
proportion of causal variants is denoted as pk . Genetic effect sizes were generated 
from a mixture of point-Normal models specified as:

We investigated five simulation settings with different K  , pk and qk with non-
overlapping annotation groups, i.e., each variant is mapped to one and only one 
annotation (Table  1). For settings 1–4, we fixed the number of annotation groups 
to 4 ( K = 4 ), the proportion of causal variants in each group to 0.5%, 1%, 1.5%, 2% 
respectively, and vary the proportion of the total heritability explained by each group 
from a relatively sparse scenario ( q = (0, 0, 10%, 90%) ) to a more balanced scenario 
( q = (25%, 25%, 25%, 25%) ). For setting 5, we changed the number of annotation 
groups to K = 10 , and considered a situation with more group-wise sparsity where 
only two of the groups contribute to the total heritability.

In addition, we simulated two settings (settings 6 and 7 in Table 1) with different 
overlapping patterns (Additional file  1: Figure S1). For both settings, we used four 
annotation groups contributing 0, 0, 10%, 90% to the total heritability. Overlapping 
pattern I was used in setting 6, where the intersection over union metric (IOU) was 
higher among the annotation groups with low heritability contribution. For setting 7, 
overlapping pattern II was used, where IOU was higher among the annotation groups 
with high heritability contribution.

We then simulated the phenotypes using the sum of all SNPs weighted by their cor-
responding genetic effect sizes, together with a Normal random error term to fix the 
heritability at h2 = 0.7.

βj ∼





N

�
0,

qAj h
2

pAjM

�
, with probability pAj

0, with probability 1− pAj

Table 1 Summary of parameter settings in the simulation study

A total of M = 125, 000 SNPs were sampled from the UK Biobank data with quality control filters, with 1 KG as LD reference 
panel. The sampled variants were then assigned to K  different annotation groups, which explain q1, ..., qK  % of the total 
heritability h2 respectively. For each annotation group k , the proportion of causal variants is denoted as pk . Overlapping 
pattern I was used in setting 6, where the intersection over union metric (IOU) was higher among the annotation groups 
with low heritability contribution. For setting 7, overlapping pattern II was used, where IOU was higher among the 
annotation groups with high heritability contribution

Setting K Mk pk(%) qk(%) Overlap pattern

1 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 0, 0, 10, 90 Non-overlap

2 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 0, 0, 50, 50 Non-overlap

3 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 10, 20, 30, 40 Non-overlap

4 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 25,25,25,25 Non-overlap

5 10 12,375 × 6, 12,625, 12,625, 12,750, 12,750 0 × 6, 2, 2, 3, 3 0 × 8,10, 90 Non-overlap

6 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 0, 0, 10, 90 Overlap I

7 4 49,750, 37,500, 25,125, 12,625 0.5, 1, 1.5, 2 0, 0, 10, 90 Overlap II
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To obtain the summary statistics, we performed GWAS to calculate the marginal 
genetic effect size estimates β̂  using  SAIGE20 version 0.44.3, which is a computation-
ally efficient method that controls for case–control imbalance as well as potential sam-
ple relatedness, among Nsumstat = 50, 000 simulated individuals. The summary statistics 
were used as input for PRSbils and PRS-CS.

The prediction performance was evaluated for both methods on a separate test set 
consisting of Ntest = 24, 000 simulated individuals. AUC and R2 were used to measure 
the prediction accuracy. To obtain AUC, we binarize the phenotypes assuming those 
with top 10% highest phenotype values as the true at-risk population.

Biobank data analysis

We analyzed both binary and quantitative traits for three data sources, i.e., the UK 
Biobank data, the MGI data, and the KoGES data. For the UK Biobank and the MGI 
data, we studied type II diabetes as a binary trait, and BMI and LDL as quantitative 
traits. For the KoGES data, we assessed the results for type II diabetes. The binary type II 
diabetes trait for genotyped individuals were defined by the PheWAS codes [25] aggre-
gated from ICD codes in the electronic health records for the UK Biobank data and the 
MGI data, while for the KoGES data it is identified from questionnaire-based interviews. 
The quantitative traits were obtained as a physical measure in the target data at the ini-
tial assessment visit of the participants. For each trait in the analysis, we used a common 
set of SNPs from the summary statistics, the 1000G reference panel, and the test set. 
The total number of SNPs used was 1,093,109 for type II diabetes, 986,885 for BMI, and 
926,775 for LDL.

The summary statistics used in the analysis were from existing study results. For type II 
diabetes, we used the result from a GWAS analysis of 407,701 white British UK Biobank 
participants using SAIGE [26] when analyzing UK Biobank and MGI data, while sum-
mary statistics from Biobank Japan [27] was used for the KoGES data. For BMI, we used 
the GWAS results from GIANT Consortium with 332,153 participants with European 
ancestry [28]. For LDL, GWAS results from the GLGC Consortium with 188,578 partici-
pants with European ancestry [29] were used. A summary of the data souce used in the 
biobank data analysis is presented in Additional file 1: Table S1.

To avoid the overlapping of samples between the test samples and the samples in 
the UK Biobank summary statistics for type II diabetes, we applied the PRS methods 
to a sample of 7,528 white individuals with non-British origin in the UK Biobank. For 
quantitative traits, since the summary statistics does not overlap with the UK Biobank 
population, we applied the methods to a test set consisting of around 80,000 white 
British individuals in the UK Biobank. Two types of group information were used for 
PRSbils. The first was 186 pathway annotations from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG), which includes the networks for metabolism, genetic informa-
tion processing, environmental information processing, cellular processes, organismal 
systems, human diseases and drug development [30]. Variants were first mapped to 
Ensembl genes by position, and then from genes to KEGG pathways. The mapping of 
genetic variants to KEGG annotations is not unique, which means each variant can have 
multiple KEGG annotations. The second one was six non-overlapping Refseq gene-based 
functional annotations (i.e. exonic/splicing; ncRNA; UTR5/UTR3; intronic; upstream/
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downstream; intergenic) obtained using ANNOVAR [31]. For variants without any avail-
able annotations, PRSbils assigned them to a separate group for no annotations.

For each trait, we adopted a tenfold cross-validation approach where the α parameters 
were estimated using a random sample of 9/10 of the test set, and the performance was 
validated on the rest 1/10 of the samples in terms of AUC and R2 . For the binary trait, 
we used Efron’s pseudo R2 [32] instead of the ordinary least square R2 . For the continu-
ous traits BMI and LDL, we calculated the AUC by binarizing them with thresholds of 
25 (threshold for overweight) and 4.1 mmol/L (or 160 mg/dL, threshold for high LDL) 
respectively.

Results
Simulation study results

We evaluated prediction performance of PRSbils, PRS-CS and the hybrid method in 
seven simulation settings (Table  1). For the settings with non-overlapping annotation 
groups (Settings 1–5), we also evaluated the performance of LDpred-funct. Since the 
estimated per-SNP heritability might not be stable due to the relatively small sample 
size, we used the true stratified heritability values for LDpred-funct.

Simulation Settings 1–4 consider a fixed number of total annotation groups K = 4 . 
Figure 1 shows that when there is a relatively large variability of group-wise heritability 
contribution, the gain in prediction performance from PRSbils is the largest compared 
to PRS-CS. For example, in setting 1, where each annotation group contribute 0%, 0%, 
10% and 90% of the total heritability, PRSbils yielded an average AUC of 0.559 (95% CI 
[0.546, 0.572]), the hybrid PRSbils + PRS-CS method yielded an average AUC of 0.561 
(95% CI [0.548, 0.575]), compared to an average AUC of 0.527 (95% CI [0.500, 0.555]) 
from PRS-CS and 0.540 (95% CI [0.523, 0.558]) from LDpred-funct. Similar patterns of 
AUC were shown in other settings. The improved average performance over the bench-
mark methods can be explained by the group-wise shrinkage parameter allowing for 
shrinking the group with high heritability contribution differently than other annotation 

Fig. 1 Comparison of prediction performance in simulation studies with non-overlapping annotation 
groups (Settings 1–5), measured by AUC (a) and R2 (b). A total of M = 125, 000 SNPs were sampled from 
the UK Biobank data with 1 KG as LD reference panel. Genetic effects were generated using a mixture of 
point-Normal models with total heritability fixed at 0.7. GWAS results from Nsumstat = 50, 000 simulated 
individuals were used as summary statistics. Prediction accuracy was evaluated in a test sample of 
Ntest = 24, 000 simulated individuals with tenfold cross-validation
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groups, instead of making a uniform shrinkage at the global level. When the difference 
in group-wise heritability contribution was small, such as in Setting 4 where all groups 
contribute equally to the total heritability, the prediction performance of PRSbils was 
similar to PRS-CS. This is expected as the group-wise shrinkage parameters from PRS-
bils would behave similarly as the global shrinkage parameter in PRS-CS.

In Setting 1 and Setting 5, two groups contribute 10% and 90% to the total heritability, 
but the total number of annotation groups differ ( K = 4 in Setting 1 and K = 10 in Set-
ting 5). PRSbils yields similar performance in these two settings, but has a slightly larger 
variability in Setting 5, which yielded an average AUC of 0.574 (95% CI [0.552, 0.595]) 
(Fig. 1). This is likely because the proposed method only shrinks groups with no herit-
ability contribution to a small value but not exactly to zero, and therefore the large pro-
portion of no heritability annotation groups, the noisier the PRS value will be, making 
the performance to fluctuate more. In comparison, the PRS-CS method does not incor-
porate the annotation group information and yielded stable AUCs in Setting 1 and Set-
ting 5 that are consistently lower than PRSbils. LDpred-funct also yielded similar AUCs 
in Setting 1 and Setting 5, with the performance improvement of PRSbils over LDpred-
funct larger in Setting 5, confirming that when the group-wise heritability distribution is 
sparser, the continuous shrinkage approach adopted by PRSbils performs better in cap-
turing the sparsity pattern.

In Settings 6 and 7, we investigated the influence of using different overlapping pat-
terns of annotation groups on the performance (Fig. 2). PRSbils yielded higher predictive 
performance compared to the benchmark method in both settings, with an average 8.4% 
gain in AUC for Setting 6 and 0.8% for Setting 7. An explanation for the difference in 
the performance gain is that the high IOU between annotation group 3 and group 4 in 
Setting 7 resulted in a higher correlation in the group-wise shrinkage parameters, which 
reduced PRSbils’s ability to differentiate between these groups with different heritabil-
ity contribution. These results suggest that under the overlapping annotation scenario, 
choosing an annotation mapping which better separates the potential heritability-con-
tributing sets may improve the prediction accuracy.

Biobank data analysis

We used the summary statistics as the training data to obtain the posterior genetic effect 
estimates, and evaluated the performance of both the proposed and existing PRS meth-
ods using the UK Biobank data (Fig. 3, Additional file 1: Figure S2), the MGI data (Fig. 4, 
Additional file 1: Figure S3) and the KoGES data (Additional file 1: Figure S4) as the test 
data. Each box plot contains the 10 results from the tenfold cross validation using the 
test data.

For the UK Biobank data, PRSbils with KEGG annotation outperformed PRS-CS 
for both type II diabetes and BMI. PRSbils yielded a 9.9% improvement in AUC over 
PRS-CS for type II diabetes on average, and a 1.5% average improvement for BMI. 
When gene-based annotations derived from ANNOVAR were used, AUC from PRS-
bils was on average 3.8% higher than PRS-CS for BMI, yet the predictive performance 
for type II diabetes was similar among the methods. For only one scenario with LDL 
trait using gene-based annotation, PRSbils yielded lower prediction performance 
than PRS-CS. We also note that the prediction performance varies across different 
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populations for different annotation information. For the MGI and KoGES data, PRS-
bils did not yield better prediction performance than the benchmark method for the 
traits analyzed. One potential factor that can lead to this difference in performance is 
the cohort difference: The UKB is population-based and consists of UK participants 
mainly of European ancestry, while the MGI is patient-based, and the KoGES is an 
East Asian cohort. Different individual characteristics in these cohorts can have vary-
ing influence on the predictive performance. In contrast, the hybrid approach of PRS-
CS and PRSbils performed robustly, showed high performance in most of the analysis.

It is likely that different annotation types vary in their contribution to the total her-
itability for diseases of interest, and as indicated by the simulation studies, such a 
difference affects the performance of the group-wise shrinkage parameter from the 
proposed method compared to the global shrinkage parameter in PRS-CS. We inves-
tigated the overall shrinkage of the two methods across the three biobank dataset 
for type II diabetes and presented the results in Additional file  1: Figure S5, which 
showed an overall consistency in the shrinkage between PRSbils and PRS-CS espe-
cially when the shrinkage value is relatively large, and PRSbils has a more variable 
pattern than PRS-CS when the shrinkage value is relatively small, indicating the dif-
ferentiating effect of the group-wise shrinkage parameter.

Fig. 2 Comparison of prediction performance in simulation studies with overlapping annotation groups 
(Settings 6–7), measured by AUC (a) and R2 (b). Left: Setting 6 with overlapping pattern I, in which IOU is 
higher among the annotation groups with low heritability contribution. Right: Setting 7 with overlapping 
pattern II where IOU is higher among the annotation groups with high heritability contribution
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We also performed an additional analysis to compare the performance with LDpred-
funct [12]. Due to the lack of availability of the functional enrichment files for annota-
tions other than those in the baselineLD model as required by LDpred-funct, we were 
only able to evaluate LDpred-funct’s performance using the baselineLD model anno-
tations, with type II diabetes as the phenotype. The predictive performance measured 
in AUC were similar across all the methods compared (Additional file 1: Figure S6) 

Fig. 3 Evaluation of AUC for UK Biobank analysis results. Left panel: KEGG functional annotations were used 
for the analysis of the proposed; Right panel: Refseq gene-based functional annotations from ANNOVAR were 
used for the analysis of PRSbils. From top to bottom: type II diabetes, BMI, LDL. For type II diabetes, summary 
statistics were obtained result from a GWAS analysis of 407,701 white British UK Biobank participants. For BMI, 
we used the GWAS results from GIANT Consortium with 332,153 participants with European ancestry. For 
LDL, GWAS results from the GLGC Consortium with 188,578 participants with European ancestry were used
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for the annotations in the baselineLD model, with LDpred-funct yielding a slightly 
higher performance. However, when compared to the performance using the KEGG 
annotation which PRSbils is able to incorporate, the performance of LDpred-funct 
using baselineLD model annotations had a lower performance than PRSbils and the 
hybrid method PRSbils + PRS-CS.

Fig. 4 Evaluation of AUC for the MGI data. Left panel: KEGG functional annotations were used for the analysis 
of the proposed; Right panel: Refseq gene-based functional annotations from ANNOVAR were used for the 
analysis of PRSbils. a type II diabetes; b BMI; c LDL. For type II diabetes, summary statistics were obtained 
result from a GWAS analysis of 407,701 white British UK Biobank participants. For BMI, we used the GWAS 
results from GIANT Consortium with 332,153 participants with European ancestry. For LDL, GWAS results from 
the GLGC Consortium with 188,578 participants with European ancestry were used
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Computation time

Computation time was evaluated for the UK Biobank data analysis for Type II diabetes 
with KEGG annotation. PRSbils yielded a computation time of 14.0 CPU hours, com-
pared to 12.9 CPU hours for PRS-CS. The slight increment of computation time for 
PRSbils is largely due to the additional computation on variants with overlapping anno-
tation groups. All evaluations were computed on an Intel(R) Xeon(R) Gold 6242R CPU 
(Additional file 1: Supplementary Note 1).

Discussion
PRSbils can be applied to both non-overlapping and overlapping annotations. When 
the annotation categories overlap with each other (i.e., one SNP can belong to multiple 
annotation categories), the posterior effect size is calculated and incorporated into the 
PRS separately for each category a variant belongs to. The underlying assumption for 
this framework is that SNPs belonging to more annotation categories are prioritized for 
genetic risk calculation as they are more likely to be causal. It is similar to the idea of 
penalizing the SNPs with multiple annotations less than those with only one annotation 
category in a penalized regression framework [17]. As has been illustrated in the simu-
lation studies, sparsity of the underlying heritability enrichment from each annotation 
group is a key factor for the predictive performance of PRSbils. When multiple groups 
are included in an annotation categorization, PRSbils is expected to yield a larger per-
formance improvement than the methods not utilizing annotation group information 
if only a few groups contribute a relatively large proportion of the heritability. This is 
because the group shrinkage parameter from PRSbils is able to differentiate the degree 
of shrinkage across the annotation groups, instead of putting a uniform global shrinkage 
for all variants. Recent studies have shown that such group sparsity patterns are pre-
sent in human traits. For example, pathway analysis of GWAS suggested that genetically 
associated variants are enriched in specific genes or pathways for traits such as diabetes, 
schizophrenia, and Alzheimer’s disease [33–35]. We expect that identifying and applying 
these group-sparse annotations on a disease by disease basis would help further improve 
predictive performance.

In addition, the application of the proposed method using the KEGG annotations 
explores the pathway-level knowledge of polygenic risk for complex diseases, and pro-
vides an alternative way to stratify genetic liability in addition to the commonly used 
functional annotation, which adds to existing literature’s ongoing investigation into the 
use of pathway PRS as a more informative way for patient stratification and treatment 
response prediction [36]. The average shrinkage for each KEGG annotation group can 
provide biological or clinical interpretations such as how different pathways weigh in 
terms of their relative importance for disease risk prediction. We illustrate this with the 
group-wise average shrinkage results from the UKB analysis (Additional file  1: Figure 
S7).

PRSbils uses a summary-statistics-based approach to obtain the posterior parameters 
via bilevel continuous shrinkage, and can be applied to both quantitative and binary 
traits. To construct the final PRS score, a separate validation dataset including individ-
ual-level genotypes and phenotypes is needed to regularize the group-wise weights. We 
currently adopt this validation data approach since it is challenging to model how each 
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annotation group contributes to the overall phenotype-specific risk. If the group-wise 
contribution can be captured accurately with prior knowledge, it is possible to apply 
PRSbils without a validation dataset, which remains a future step of the study.

The shrinkage parameters δk in PRSbils control the degree of shrinkage across anno-
tation categories, and are automatically learned from the summary statistics in this 
study. An alternative way to specify the values for δk is to fix them using prior knowledge 
about the annotation-level sparseness of the genetic architecture. If the sample size of 
the training set to train α is small, we expect the latter approach to yield higher predic-
tive performance, because the current fully Bayesian approach would generate less sta-
ble estimates for the shrinkage parameters under this situation. Indeed, with additional 
simulations we confirmed that the performance of the current PRSbils approach would 
have a higher variance when the sample size for the training set was small (Additional 
file 1: Figure S8).

We also explored the influence of annotation misclassification on prediction perfor-
mance through additional simulation studies. Genotype and phenotype data were gen-
erated using the same settings as in Settings 1–5 (Table  1) with “true” corresponding 
annotation group assignment. Then, the variants were assigned a random "observed" 
annotation group with equal probability to train and test for prediction performance. 
The results showed that misclassification of annotation groups have negative impact on 
the predictive performance of PRSbils, especially when there is larger group sparsity in 
each annotation group’s contribution to heritability (Additional file 1: Figure S9). Thus, 
to achieve good performance, it is important to ensure that the group annotations well 
depicts the underlying heritability structure.

We note several points that can be further improved in future studies for PRSbils. 
Firstly, from the predictive performance of PRSbils evaluated in UK Biobank, MGI, and 
KoGES data, we noted that the results were not consistent across different data sources, 
which indicates the influence of cohort difference over predictive performance when 
annotation information is incorporated. It is thus critical to investigate the difference 
in the underlying architecture of the annotation groups across populations and make 
the method more robust for transethnic risk prediction. Secondly, although the poste-
rior genetic effect estimates are shrunk towards zero by PRSbils, they are not exactly 
zero, which can have negative effects on the predictive accuracy. It remains for future 
work to make the posterior effect estimates sparser by selecting the groups of annota-
tions to be in the final model. Thirdly, when the goal is to estimate the effect of poly-
genic risk score on quantitative phenotypes, additional information such as treatment 
effects can be included in the model to make the estimate more accurate. Fourthly, our 
simulation study assessed the method’s performance using a relatively high heritability 
value in order to differentiate between different group-wise heritability settings, and fur-
ther exploration is needed to evaluate the method’s robustness under different overall 
heritability.

Despite the limitations, our study has the following strength: Firstly, the proposed 
PRSbils method utilized a novel bilevel continuous shrinkage framework to inte-
grate functional annotation into the construction of the PRS score, and has shown 
an overall improvement in performance in simulation studies and biobank data 
analysis such as the UK Biobank. Secondly, we have showed that the hybrid method 
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PRSbils + PRS-CS consistently outperformed PRS-CS alone while extending it to 
incorporate functional annotations. Thirdly, compared to LDpred-funct, the existing 
method commonly used for integration of functional annotations in the BaselineLD 
model, PRSbils provides more flexibility in the choice of functional annotations such 
as KEGG and Refseq gene based annotations to support different research needs, and 
our study has shown that PRSbils yielded competitive performance to Ldpred-funct 
when using the annotations in the BaselineLD model while yielding higher perfor-
mance when using other annotations such as the KEGG annotation. Fourthly, our 
simulation study shed more light on the less studied area of how the different distribu-
tion of group-wise heritability might affect the predictive performance of PRS scores 
that incorporate functional annotation groups. Finally, our study is one of the first to 
analyze PRS in a population-based cohort with European ancestry (UK biobank), a 
population-based cohort with Asian ancestry (KoGES), and a patient-based cohort 
(MGI) respectively, and sheds light on the potential performance difference due to 
different cohort characteristics.

Conclusion
We propose PRSbils, a PRS method which incorporates the functional annotation infor-
mation and accounts for the annotation group-wise sparsity by applying a bilevel con-
tinuous shrinkage prior on the genetic effects. PRSbils uses summary statistics to get 
the posterior genetic effect estimates for each functional annotation group, estimates 
the combination weights of group-level PRS using a separate set of individual-level data, 
and generates the final score. We have shown in this study that leveraging the group-
wise sparsity architecture of the genetic effects can help improve the performance 
of polygenic risk prediction. PRSbils is capable of utilizing a wide range of functional 
annotations, both overlapping and nonoverlapping, into the analysis and remains com-
putationally efficient compared to the benchmark method. In summary, PRSbils enables 
the efficient and flexible use of different types of annotation information to improve PRS 
prediction.
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