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Abstract 

Background: Metabolic pathway prediction is one possible approach to address 
the problem in system biology of reconstructing an organism’s metabolic network 
from its genome sequence. Recently there have been developments in machine 
learning‑based pathway prediction methods that conclude that machine learning‑
based approaches are similar in performance to the most used method, PathoLogic 
which is a rule‑based method. One issue is that previous studies evaluated PathoLogic 
without taxonomic pruning which decreases its performance.

Results: In this study, we update the evaluation results from previous studies to dem‑
onstrate that PathoLogic with taxonomic pruning outperforms previous machine 
learning‑based approaches and that further improvements in performance need to be 
made for them to be competitive. Furthermore, we introduce mlXGPR, a XGBoost‑
based metabolic pathway prediction method based on the multi‑label classification 
pathway prediction framework introduced from mlLGPR. We also improve on this 
multi‑label framework by utilizing correlations between labels using classifier chains. 
We propose a ranking method that determines the order of the chain so that lower 
performing classifiers are placed later in the chain to utilize the correlations 
between labels more. We evaluate mlXGPR with and without classifier chains on single‑
organism and multi‑organism benchmarks. Our results indicate that mlXGPR outper‑
form other previous pathway prediction methods including PathoLogic with taxo‑
nomic pruning in terms of hamming loss, precision and F1 score on single organism 
benchmarks.

Conclusions: The results from our study indicate that the performance of machine 
learning‑based pathway prediction methods can be substantially improved and can 
even outperform PathoLogic with taxonomic pruning.

Keywords: Metabolic pathway prediction, BioCyc, XGBoost

Introduction
A fundamental prerequisite in comprehending an organism’s metabolism is the realiza-
tion of an encompassing model of the metabolic interactions that occur in the organism 
[1]. An example of such a model is a Pathway/Genome Database (PGDB) that describes 
an organism’s genes, proteins and metabolic and regulatory networks [2]. Initially, 
PGDBs were constructed through literature-based manual curation but this approach 
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was not scalable [3]. This led to hybrid approaches where PGDBs are initially generated 
then refined through manual curation afterwards [4].

The PGDB creation workflow used by Pathway Tools [2], a software environment 
that is used to create and manage PGDBs, consists of two main steps with additional 
post-processing steps afterwards which can be seen in Fig. 1. The first step is the PGDB 
generation step where the schema, replicons, genes and proteins of a PGDB are gen-
erated from an organism’s annotated genome. The next step is the pathway prediction 
step which is divided into two sub-steps. The first sub-step performs reactome infer-
ence where the set of enzyme-catalyzed metabolic reactions occurring in an organism 
are predicted. The second sub-step is pathway inference where, based on the predicted 
reactome, the pathways occurring in the organism are predicted. Only metabolic path-
ways are predicted instead of other types of biochemical pathways such as signaling 
pathways. Metabolic pathway prediction in the literature commonly refers to predicting 
either the metabolic pathways that a molecule is associated with [5–7] or the metabolic 
pathways occurring in an organism based on its annotated genome [1, 8, 9]. This work 
will focus on the latter and assumes that the reactome is already inferred and provided. 
Lastly, pathway prediction can also be differentiated into predicting pathways from a ref-
erence database and predicting unobserved novel pathways (pathway discovery) [1] and 
this work focuses on the former.

PathoLogic is a pathway prediction algorithm developed by SRI International that 
is used by Pathway Tools. PathoLogic predicts metabolic pathways in MetaCyc [10], a 
curated reference metabolic pathway database, from an organism’s annotated genome. 
It assigns scores to each metabolic pathway in MetaCyc, where a higher score reflects 
a higher likelihood that the pathway is present in the target organism. Afterwards, the 
decision to include or reject the pathway is completed through a sequence of defined 
rules [8]. While PathoLogic has gone through several iterations and updates to improve 
its accuracy, it has several limitations. One limitation is that since the rules defined are 
hard-coded, it makes the algorithm relatively inflexible to maintain and extend. Another 
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limitation is that the pathway scoring system is ad-hoc and does not reflect actual math-
ematical probabilities.

As a response to these limitations, Dale et al. [1] introduced the first study that evalu-
ated multiple machine learning-based metabolic pathway prediction methods. Their 
results demonstrated that machine learning methods were able to perform as well as 
PathoLogic with the best performing ML-based approach achieving a small improve-
ment over PathoLogic. Despite the promising results from the study, PathoLogic is still 
used as the main engine for Pathway Tool’s prediction algorithm. Recently, there has 
been several studies which updated the pioneer study with new datasets, features and 
methodologies [11–13].

One of the studies mlLGPR [11], made a novel contribution of modeling the predic-
tion task as multi-label classification compared to other studies which modeled it as 
binary classification. Multi-label classification is where more than one class label can be 
predicted which differs from traditional classification where only one label is predicted 
[14]. Modeling the prediction task as multi-label classification allowed the training data-
set used in mlLGPR to be more compact allowing for more organisms to be used for 
training. For example, Aljarbou et al. [12] has 4979 instances covering 20 organisms and 
DeepRF [13] had 172,380 instances covering 60 organisms. mlLGPR’s multi-label mod-
eling allows for its dataset to be smaller with 15,000 instances but is able to cover 15,000 
organisms. mlLGPR uses a binary relevance approach [15] where the multi-label learn-
ing process is divided into independent binary classifiers for each pathway label allowing 
for the possibility of parallel training. What also differentiated mlLGPR with other path-
way prediction studies such as [1, 12, 13] is that for their evaluation methodology they 
used a completely separate evaluation dataset which they did not use for training and 
hyperparameter tuning. Another novel contribution from the mlLGPR study was that 
it was the first machine learning-based pathway prediction method to be evaluated also 
on multi-organism genomes such as symbionts and microbiomes. The evaluation results 
from mlLGPR were also similar to other studies on single-organism genomes showing 
similar performance to PathoLogic.

A limitation of previous machine learning-based metabolic pathway prediction 
methods was that the feature engineering task involving designing and testing features 
was a time consuming task. As a response to this limitation, representational learning 
approaches [16] such as pathway2vec [9] and triUMPF [17] were introduced to gener-
ate features to be used for prediction. While the research direction and results from the 
two studies are promising, they shared similar problems with mlLGPR in their evalua-
tion methodology for single organism genomes. The common issue is that PathoLogic 
is evaluated without using taxonomic pruning. MetaCyc pathways can be assigned a 
taxonomic range for which they can occur and PathoLogic utilizes these ranges when 
deciding on whether to include or reject a pathway. Taxonomic pruning was introduced 
to improve the performance of PathoLogic by removing false positives [8]. While the 
mlLGPR study acknowledges that PathoLogic was evaluated without using taxonomic 
pruning for the single-organism benchmark it does not give the reason for not applying 
it when it improves performance. This is an issue because evaluating PathoLogic with-
out using taxonomic pruning for single organism genomes can lead to potentially lower 
results which can be misleading as a benchmark.
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In this study, we provide three contributions to the problem of metabolic pathway 
prediction from annotated genomes. The first contribution is that we evaluate Patho-
Logic with taxonomic pruning on the single organism prediction benchmark to provide 
a more accurate pathway prediction benchmark. Our results show that PathoLogic with 
taxonomic pruning showed a significant increase on the four evaluation metrics for the 
majority of the single organism datasets. In addition, we observed that the evaluation 
datasets introduced in the mlLGPR study shares characteristics of tabular datasets with 
its mixed feature data types. Recent studies have shown that tree ensemble models such 
as XGBoost tend to outperform deep learning prediction models when applied to tabu-
lar datasets [18, 19]. With these observations, for our second contribution we introduce 
a XGBoost-based pathway prediction method termed mlXGPR based on the multi-label 
classification prediction framework introduced by mlLGPR and evaluate it on single 
organism and multi-organism benchmark datasets. For our third contribution, we fur-
ther improve on mlXGPR by using classifier chains [15] which uses predictions from 
previous classifiers as features for future classifiers to take advantage of correlations 
between labels. We introduce a ranking mechanism that allows for higher performing 
classifiers to be earlier in the chain while lower performing classifiers are put later in the 
chain so they can utilize previous predictions. With these improvements, mlXGPR out-
performed the other prediction methods including PathoLogic with taxonomic pruning 
for three of the evaluation metrics hamming loss, precision and F1 score on the single 
organism benchmarks.

Methods
The workflow for mlXGPR is similar to the multi-label classification for metabolic path-
way prediction workflow introduced in the mlLGPR study. The first step is the feature 
engineering step which takes the training and evaluation datasets and transforms them 
into feature vectors. The mlLGPR study introduced five different feature groups which 
are enzymatic reaction abundance (AB), reaction evidence (RE), pathway evidence (PE), 
pathway commons (PC) and possible pathways (PP) where AB is the main feature group 
that can be combined with other feature groups. After the training dataset is trans-
formed into feature vectors, we use k-fold cross validation and grid search to tune the 
hyperparameters of our prediction model. Once the hypermeters are chosen for the final 
prediction model, the whole training dataset is then used for training the model. The 
trained model is then evaluated on the benchmark datasets and then can be deployed 
to predict new datasets. One difference between mlLGPR and mlXGPR is that mlXGPR 
uses XGBoost as the prediction model instead of logistic regression as used in mlLGPR. 
Another difference is that mlLGPR does not use cross-validation for hyperparameter 
tuning but used one split to tune its hyperparameters. The workflow for mlXGPR can be 
seen in Fig. 2.

Definitions and problem formulation

In this study, we will use the conventions introduced in the mlLGPR study [11]. All vec-
tors are column vectors which are denoted by boldface lowercase letters (e.g. x ) while 
matrices are denoted by boldface uppercase letters (e.g. X ). A subscript character to a 
vector, xi , denotes the i-th element of x while a superscript, xi , denotes an index to a 
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sample. In addition, calligraphic letters (e.g. S ) are used to represent sets and |.| will be 
used to denote set cardinality. A multi-label pathway dataset consisting of n samples can 
be defined as S = {(xi, yi) : 1 � i � n} . xi is a vector that corresponds to the abundance 
of each enzymatic reaction e, which is an element of the set E = {e1, e2, ..., er} , having 
r possible reactions. The abundance of an enzymatic reaction eil , for a sample i can be 
defined as ail ∈ R≥0 . The class labels yi = [yi1, ..., y

i
t ] ∈ {−1, 1}t is a vector of size t. Its 

elements correspond to pathway labels derived from a reference pathway database Y . A 
sample for the multi-label pathway dataset used can be seen in Table 1
X = R

r is defined as the r-dimensional input space. Each sample xi ∈ X  is trans-
formed into an m-dimensional vector by a transformation function � : X → R

m . The 
transformation function is obtained from the Feature engineering process (see Sec-
tion Features engineering). In summary, the metabolic pathway prediction task can be 
defined as given a multi-label dataset S , learn a hypothesis function f : �(xi) �→ 2|Y| , 
such that it can classify metabolic pathway labels accurately for an unseen sample x∗.

Feature engineering

Five types of feature vectors were designed and introduced in the mlLGPR study [11]. Each 
feature vector is created through 5 transformation sub-processes (1) enzymatic reactions 
abundance ( φab ), (2)- reactions evidence ( φre ), iii)- pathways evidence ( φpe ), iv)- path-
way common ( φpc ) and v)- possible pathways ( φpp ). The enzymatic reaction abundance 
transformation maps to a r-dimensional vector that denotes the total occurrence of each 

Fig. 2 mlXGPR workflow

Table 1 Sample of multi‑label pathway dataset

The number of pathways is independent from the number of enzymatic reactions

Input enzymatic reaction abundances

EC‑1 EC‑1.1 ... EC‑6.6.1.1 EC‑6.6.1.2

2 9 ... 1 0

Output presence of pathways

VALSYN ARG‑PRO ... PWY‑7081 PW‑721

1 0 ... 1 0
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enzymatic reaction in an organism. Each enzymatic reaction is identified by its Enzyme 
Commission (EC) number [20]. The reaction evidence transformation maps to a vector 
that represents the properties of the enzymatic reactions for each sample. The pathway evi-
dence transformation maps to a vector whose features expands on core PathoLogic rules 
to also include enzyme presence, pathway gaps, network connectivity and etc. The possible 
pathway transformation maps to a vector which holds for each pathway two representa-
tions. The first is a boolean representation, whether each pathway is present or not, from 
enzymatic reaction information, and is decided by a user-defined threshold. The second is 
a numeric representation which represents the probabilities for each pathway whether they 
are present or not based off enzymatic reaction information. Each transformation maps a 
sample to a different vector which are concatenated into a m-dimensional feature vector 
�(x(i)) = [φab(x(i)),φre(x(i)),φpe(x(i)),φpc(x(i)),φpp(x(i))] . The number of features for 
each feature group can be seen in Table 2.

Prediction model and multi‑label learning process

XGBoost is a machine learning algorithm that utilizes gradient boosted decision trees [21] 
where each tree is trained to predict the pseudo-residuals of the previous tree based on a 
pre-defined objective function [22]. One of the key factors in XGBoost’s success and popu-
larity is innovations in scalability such as optimizations in handling sparse data, weighted 
quantile sketch calculations and parallel/distributed computing [23]. Recently, XGBoost 
version 1.6 started to provide native support for multi-label classification which allows for 
the efficient training of classifiers on many class labels. Before this addition, studies used 
outside libraries such as scikit-multilearn [24–26] or sklearn.MultiOutputClassifier for 
multi-label classification [27].

To define the binary relevance approach we will introduce conventions used here [15]. 
Y = {�1, �2, ..., �t} is the label space which consist of t class labels. The set of relevant labels 
Y i ⊆ Y for a given xi can be defined as Y i = {�j|y

i
j = +1, 1 � j � t} . Binary relevance 

breaks down the multi-label learning problem into t independent binary classification 
problems where each problem corresponds to a class label �j . First, a binary training set Sj is 
derived from the multi-label pathway dataset S according to Eq. (1):

Afterwards, a binary classifier gj : X �→ R is induced from Sj through the application of 
a binary learning algorithm B . When an unseen instance x∗ is given as input, the binary 

(1)Sj = {(xi, yij) : 1 � i � n}

Table 2 Number of features for each feature group

Feature group Number 
of 
features

Enzymatic Reaction Abundance 3650

Reaction Evidence 68

Pathway Evidence 32

Pathway Commons 3650

Possible Pathways 5052
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relevance procedure outputs its relevant label set Y ∗ which is determined by the output 
of each binary classifier as in Eq. (2):

Algorithm 1 summarizes the process for binary relevance.
To define a classifier chain we will use the same conventions introduced earlier 

defining binary relevance, in addition to conventions in [15]. π is the permutation that 
specifies a chaining order over the class labels. The binary training set Sπ(j) for the jth 
class label �π(j) is derived according to Eq. (3):

Afterwards, a binary classifier gπ(j) : X × {−1,+1}j−1 �→ R can be induced by applying 
a binary algorithm B to the binary training set Sπ(j) . For a given unseen instance x∗ , the 
predicted binary assignment ηx∗π(j) ∈ {−1,+1} for label �π(j) is determined as in Eq. 4:

where sign[·] represents the sign function. The relevant label set Y ∗ is derived according 
to Eq. (5):

Algorithm 2 summarizes the process for a classifier chain.
One strategy to combat the randomness by the permutation ordering π is to use an 

ensemble of classifier chains with random permutations [15]. The outputs from all 
classifier chains in the ensemble can then be aggregated to determine the final predic-
tion. We decided against an ensemble approach because of the large amount of labels 
and the slower training speed of classifier chains. Instead, we determined the chain 
order by ranking in descending order the performance of each classifier in a multi-
label classifier that uses binary relevance. The reason we determined the order based 
on a multi-label classifier using binary relevance is because each classifier is inde-
pendent of the other classifiers. The multi-label training S is split into a training set 
S

′
⊂ S and valid set V ⊂ S . A multi-label classifier G using binary relevance is trained 

on S ′ . YV is the relevant labels obtained from V while Ŷ V is the predicted labels from 
G for V . Let scores be denoted as an empty list. The performance for each classifier in 
the multi-label classier G is obtained through a metric from the j-index of the trans-
pose of YV and Ŷ V . The metric that was used in the study is the F1-score. The metric 
score is then appended to scores and this process is iterated until the metric score for 
each label is obtained. Finally, scores is sorted in descending order to determine the 
permutation order π . Lower performing labels are put later in the chain so they can 
utilize potential correlations between earlier labels to provide higher quality predic-
tions. Algorithm 1 summarizes the ranking process to determine the chain order.

(2)Y ∗ = {�j|gj(x
∗) > 0, 1 � j � t}

(3)Sπ(j) = {([x∗, yiπ(1), ..., y
i
π(j−1)], y

i
π(j)|1 � i � n)}

(4)
ηx

∗

π(1) = sign[gπ(1)(x
∗)],

ηx
∗

π(j) = sign[gπ(j)([x
∗, ηx

∗

π(1), ..., η
x∗

π(j−1)])]

(5)Y ∗ = {�π(j)|η
x∗

π(j) = +1, 1 � j � t}
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Algorithm 1 Binary relevance [15]

Algorithm 2 Classifier chain [15]

Algorithm 3 Determine chain order by ranking

Experimental setup

In this section, we describe the experimental setup to evaluate mlXGPR’s pathway pre-
diction performance across multiple datasets including single and multi-organisms. 
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For training, we used the corrupted synthetic dataset Synset-2 that was constructed 
and used for training in the mlLGPR study. Synset-2 was constructed from Meta-
Cyc version 21 and contains 2526 metabolic pathways and 3650 enzymatic reactions 
including incomplete ones such as EC 1.2.3-. The dataset was generated by randomly 
selecting pathways for each synthetic sample based on the Poisson distribution with 
mean value equal to 500. The corruption process is done by randomly retaining/
inserting/removing enzymatic reactions from each selected pathway based on earlier 
defined constraints. The dataset was corrupted to reflect errors that could occur from 
upstream data analysis on experimental data. Synset-2 consists of 15,000 synthetic 
samples as can be seen in Table 3.

The single organism golden dataset consists of six Tier 1 PGDBs from BioCyc which 
are EcoCyc(v21) [28], HumanCyc(v19.5) [4], AraCyc(v18.5) [29], YeastCyc(v19.5), 
LeishCyc(v19.5) [30] and TrypanoCyc(v18.5) [31] which were used in previous bench-
marks [9, 11, 17]. BioCyc is a PGDB Web portal that contains thousands of PGDBs 
and divides PGDBs into tiers based on the manual curation involved [32]. Tier 1 is 
the highest quality PGDB in BioCyc and the requirement is at least one person year 
worth of literture-based curation. LeishCyc and TrypanoCyc are currently Tier 2 but 
the versions used during the mlLGPR study were Tier 1 at the time when the bench-
mark dataset was created. Basic statistical information for each PGDB can be seen in 
Table 3. For the multi-organism benchmark dataset we used the Critical Assessment 
of Metagenome Interpretation (CAMI) initiative low complexity dataset [33] used in 
the triUMPF study [17].

mlXGPR’s performance was compared to three representative pathway prediction 
methods. We evaluated PathoLogic version 22 with and without taxonomic prun-
ing, with the default pathway prediction score cutoff value to showcase the improve-
ments in performance with taxonomic pruning. The default value was used because 
the User’s Guide for Pathway Tools version 22 mentions that the default value was 
selected to provide the best trade-off between sensitivity and specificity based on 
extensive experimentation. While the mlLGPR study used PathoLogic v21 without 
taxonomic pruning, since version 21 is not available to be downloaded anymore, ver-
sion 22 was used instead. One difference between the two versions is that PathoLogic 
v22 predicts pathways from MetaCyc v22 which removed 7 pathways from MetaCyc 

Table 3 Dataset Statistics

Dataset Instances Enzymatic reactions Pathways

Synset‑2 15000 3650 2526

EcoCyc 1 719 307

HumanCyc 1 693 279

AraCyc 1 1034 510

YeastCyc 1 544 229

LeishCyc 1 292 87

TrypanoCyc 1 512 175

CAMI 40 1083 674
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v21 but we were able to get similar results from version 22 without taxonomic prun-
ing with the results from version 21.

MinPath is another well known pathway prediction method that uses integer pro-
gramming to predict the minimum set of pathways [34]. We did not include MinPath in 
our evaluation because it had too many false positives leading to low precision as can be 
seen in the mlLGPR study. For the representative machine learning-based pathway pre-
diction methods we included both results from the mlLGPR and triUMPF [17] studies. 
The models from Aljarbou et al. [12] and DeepRF [13] were not used in the evaluation 
because both models are binary classifiers instead of multi-label and are trained using 
different datasets making it difficult to accurately compare. In addition, from the best 
of our knowledge the datasets and source code used in both studies are not open source 
which make comparing their performances even more difficult.

An ablation test on the five feature groups (AB, RE, PE, PP and PC) was done in the 
mlLGPR study and a combination of +AB+RE+PE feature groups yielded the highest 
prediction performance with +AB+RE performing the second highest. mlXGPR does 
not use the Pathway Evidence (PE) feature group because different PE features are used 
for each pathway label and XGBoost does not natively support this type of multi-label 
classification. XGBoost only supports multi-label classification where the features are 
the same throughout each label. mlXGPR also does not use the Pathway Commons and 
Possible Pathways feature group because the ablation study in the mlLGPR study sug-
gests that these feature groups seem to decrease performance.

For the performance metrics, we used the Hamming loss [35], precision, recall and F1 
score to match the metrics used in the previous studies. mlXGPR uses 6-fold cross vali-
dation grid search on the training dataset Synset-2 to determine the optimal hyperpa-
rameters for the max depth and number of estimators. We used the Scikit-Learn API for 
XGBoost and the options for the max depth was {2,4,6,8} and {22,23,24} for the number 
of estimators. The options for the number of estimators was chosen by pre-testing with 
early stopping. The final model was trained using all of Synset-2 with max depth set to 4 
and the number of estimators set to 22 based on the highest average F1 score from grid 
search. In addition we also used ’hist’ for the tree method because it was fastest among 
the other options and all the options had similar results. The ’hist’ option is an approxi-
mate tree method similar to the method used in LightGBM [36] which is another well 
known gradient boosting decision tree method. In addition, classifier chains were imple-
mented using scikit-learn. All tests were conducted on an Ubuntu 20.04 server with dual 
Intel Xeon CPU E5-2640 v4. Python 3.9, XGBoost 1.7 and scikit-learn 1.2 were used to 
obtain the experimental results.

Results
Table  4 shows the pathway prediction performance results for mlXGPR and the four 
other methods. In terms of the Hamming loss, precision and F1 score, mlXGPR using 
only abundance features (+AB) and mlXGPR with a ranked classifier chain (+Rank-
Chain) outperformed the other methods on all the datasets. mlXGPR+AB outranked 
mlXGPR+AB+RE on most of the metrics on all the datasets except on Trypano-
Cyc for recall. Both mlXGPR+Chain and mlXGPR+RankChain uses only abundance 
features (+AB) since the feature group seems to outperform using both abundance 
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and reaction evidence features (+AB+RE). The difference between the two is the 
mlXGPR+Chain uses a random order while mlXGPR+RankChain uses a chain whose 
order was determined by ranking each pathway label by their valid set prediction per-
formance. mlXGPR+RankChain outperformed mlXGPR+Chain on most of the met-
rics and datasets which suggests that the proposed ranking method helped improve 
performance. PathoLogic without taxonomic pruning had the highest recall on most of 
the datasets except on EcoCyc where PathoLogic+Pruning had the highest recall and 
mlXGPR+RankChain had the highest recall on TrypanoCyc. This difference makes 

Table 4 Performance of each prediction algorithm on six single organism T1 PGDBs. ↓ indicates that 
a lower score is better while for ↑ a higher score is better. The best performing method is bold for 
each metric. PGDB names have been shortened for readability

Metrics and methods Eco Human Ara Yeast Leish Trypano

Hamming loss ( ↓)

PathoLogic 0.0685 0.0744 0.1124 0.0507 0.0416 0.0669

PathoLogic+Pruning 0.0372 0.0424 0.0649 0.0257 0.0234 0.0530

mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590

triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776

mlXGPR+AB 0.0146 0.0190 0.0412 0.0146 0.0063 0.0119

mlXGPR+AB+RE 0.0162 0.0226 0.0447 0.0178 0.0075 0.0131

mlXGPR+Chain 0.0190 0.0190 0.0483 0.0174 0.0075 0.0127

mlXGPR+RankChain 0.0158 0.0170 0.0360 0.0154 0.0079 0.0099
Precision ( ↑)

PathoLogic 0.6626 0.6091 0.6799 0.6517 0.4511 0.5099

PathoLogic+Pruning 0.8105 0.7688 0.8502 0.8106 0.6667 0.6589

mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455

triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

mlXGPR+AB 0.9963 0.9873 0.9833 1.0000 0.9863 0.9739
mlXGPR+AB+RE 0.9890 0.9744 0.9649 0.9742 0.9474 0.9437

mlXGPR+Chain 0.9675 0.9793 0.9641 0.9793 0.9359 0.9441

mlXGPR+RankChain 0.9819 0.9797 0.9861 0.9847 0.9241 0.9573

Recall ( ↑)

PathoLogic 0.8893 0.9104 0.8373 0.9476 0.9540 0.8857

PathoLogic+Pruning 0.9055 0.8817 0.8235 0.9345 0.6437 0.4857

mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914

triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229

mlXGPR+AB 0.8827 0.8387 0.8098 0.8384 0.8276 0.8514

mlXGPR+AB+RE 0.8762 0.8172 0.8078 0.8253 0.8276 0.8629

mlXGPR+Chain 0.8730 0.8459 0.7902 0.8253 0.8391 0.8686

mlXGPR+RankChain 0.8860 0.8638 0.8333 0.8428 0.8391 0.8971
F1 Score ( ↑)

PathoLogic 0.7594 0.7299 0.7504 0.7722 0.6125 0.6472

PathoLogic+Pruning 0.8554 0.8214 0.8367 0.8682 0.6550 0.5592

mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768

triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266

mlXGPR+AB 0.9361 0.9070 0.8882 0.9121 0.9000 0.9085

mlXGPR+AB+RE 0.9292 0.8889 0.8794 0.8936 0.8834 0.9015

mlXGPR+Chain 0.9178 0.9077 0.8685 0.8957 0.8848 0.9048

mlXGPR+RankChain 0.9315 0.9181 0.9033 0.9082 0.8795 0.9263
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sense because taxonomic pruning is designed to prune pathways whose taxonomic range 
does not match the target organism’s taxonomic group which improves precision at the 
cost of recall [8]. PathoLogic without pruning and mlLGPR have similar performance in 
terms of F1 score but earlier benchmarks from the mlLGPR and triUMPF study failed to 
include PathoLogic with pruning which can be misleading since pruning improves per-
formance. This can be seen from the results that PathoLogic with pruning outperforms 
both PathoLogic without pruning and mlLGPR on the majority of metrics and data-
sets. In summary, all future pathway prediction benchmarks on BioCyc PGDBs should 
include PathoLogic with taxonomic pruning to provide a more accurate evaluation.

We also evaluated mlXGPR’s performance on complex multi-organism genomes such 
as the CAMI low complexity dataset. MetaPathways v2.5 [37] was used to create the 
benchmark CAMI environment PGDB (ePGDB) which are PGDBs for microbial com-
munities [38]. MetaPathways utilizes a modified version of PathoLogic for pathway 
prediction. mlXGPR+Chain was compared with two other pathway prediction meth-
ods mlLGPR and triUMPF and the results can be seen in Table 5. PathoLogic was not 
included in the comparison since MetaPathways uses it to create the ePGDB. The results 
for mlLGPR and triUMPF were taken from the triUMPF study. triUMPF achieved the 
lowest Hamming loss 0.0436 and the highest sample average F1 score 0.5864. mlLGPR 
had the highest sample average recall 0.7827 but lowest sample average precision 0.357 
in comparison. mlXGPR+Chain was the opposite with the highest sample average pre-
cision 0.8366 but the lowest sample average recall 0.2657 which also contributed to it 
having the lowest sample average F1 score 0.4019 among the three methods. It is difficult 
to explain the reason for the opposite behavior between mlXGPR and mlLGPR which 
is consistent in both single-organism and multi-organism benchmark. One observation 
we make is that all the datasets including both the training and evaluation datasets are 
imbalanced where the present pathways labels are only about 1/5 of the total pathway 
labels as can be seen in Table 3. While this imbalance can’t explain why mlXGPR/mlL-
GPR is biased towards precision/recall it something that needs to be analyzed further.

One limitation of the CAMI ePGDB as a benchmark is that it is automatically gener-
ated using MetaPathways but the predictions have not been curated so it can be said 
that the results demonstrate more how similar the other prediction methods are with 
MetaPathways and PathoLogic than their actual prediction performance. One explana-
tion for triUMPF’s higher performance is that it was trained on mostly Tier 3 BioCyc 
PGDBs instead of Synset-2 like mlLGPR and mlXGPR. Tier 3 PGDBs are generated from 

Table 5 Performance of mlLGPR, triUMPF and mlXGPR on the multi‑organism community dataset 
CAMI

↓ indicates that a lower score is better while for ↑ a higher score is better. The best performing method is bold for each 
metric. The sample average is calculated for the average precision, recall and F1 score

Metrics and methods mlLGPR triUMPF mlXGPR + 
RankChain

mlXGPR + 
RankChain 
(BioCyc)

Hamming loss ( ↓) 0.0975 0.0436 0.0482 0.0415
Average Precision ( ↑) 0.3570 0.7027 0.8366 0.9145
Average Recall ( ↑) 0.7827 0.5101 0.2657 0.3629

Average F1 score ( ↑) 0.4866 0.5864 0.4019 0.5185
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PathoLogic without any curation [32], so training a model on Tier 3 PGDBs can be seen 
as training a model on PathoLogic outputs leading to more similar results with Patho-
Logic. We tested this by training mlXGPR+Chain on the Tier 3 PGDB training data that 
triUMPF uses and found a 10% increase in F1 score which can be seen in Table 5. In 
summary, there is still a lack of highly curated ePGDBs that can be used for multi-organ-
ism pathway prediction benchmarks.

Conclusions
In this study, we introduce a XGBoost-based metabolic pathway prediction method 
called mlXGPR based on mlLGPR, which introduced an approach that modeled the 
metabolic pathway inference problem as a multi-label classification problem. mlXGPR 
was motivated by previous pathway prediction studies in that they were not compared 
properly with PathoLogic using taxonomic pruning and needed further improvement in 
performance. In response to this, we attempted to apply XGBoost, a SOTA supervised 
learning method for tabular data to the problem of multi-label pathway prediction. One 
potential limitation that mlXGPR has is that it is unable to capture correlations between 
labels so we also applied classifier chains to mlXGPR so that predictions from earlier 
classifiers can be used as features by later classifers. We proposed a ranking method to 
decide the order of the chain by putting lower performing classifiers based on a valid 
set later in the chain to better utilize previous predictions. We trained mlXGPR and its 
chained counterpart with tuned hyper-parameters, and compared its performance with 
three representative metabolic pathway prediction methods on single organism and 
multi-organism genome benchmark datasets. The results was that mlXGPR with clas-
sifier chains outperformed the other methods on three of the four evaluation metrics 
which are Hamming loss, precision and F1 score for single-organism datasets.

While we were able to improve the performance of machine learning-based path-
way prediction methods to outperform PathoLogic using taxonomic pruning, mlXGPR 
still shares the common issue with mlLGPR in that its performance is reliant on fea-
ture information that is manually curated. This is why representational learning-based 
pathway prediction approaches are promising but currently their performance still need 
improvement. Another potential direction for future studies in machine learning-based 
pathway prediction is if the datasets and source code from other studies such as [12] 
and DeepRF [13] become open, their methodologies can be evaluated on the mlLGPR 
benchmark datasets. The reverse can also be done with evaluating the methodologies 
used in mlLGPR, triUMPF and mlXGPR on the different datasets used in these studies. 
This would allow for a more comprehensive evaluation of the performance of machine 
learning-based pathway prediction models.
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