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Abstract 

Background: DNA methylation is one of the most stable and well-characterized 
epigenetic alterations in humans. Accordingly, it has already found clinical utility 
as a molecular biomarker in a variety of disease contexts. Existing methods for clinical 
diagnosis of methylation-related disorders focus on outlier detection in a small number 
of CpG sites using standardized cutoffs which differentiate healthy from abnormal 
methylation levels. The standardized cutoff values used in these methods do not take 
into account methylation patterns which are known to differ between the sexes 
and with age.

Results: Here we profile genome-wide DNA methylation from blood samples drawn 
from within a cohort composed of healthy controls of different age and sex along-
side patients with Prader–Willi syndrome (PWS), Beckwith–Wiedemann syndrome, 
Fragile-X syndrome, Angelman syndrome, and Silver–Russell syndrome. We pro-
pose a Generalized Additive Model to perform age and sex adjusted outlier analy-
sis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores 
among the cohort for each site, we deployed an ensemble based machine learning 
pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confi-
dence Interval 0.868−0.995).

Conclusion: We demonstrate a method for age and sex adjusted outlier detection 
of differentially methylated loci based on a large cohort of healthy individuals. We 
present a custom machine learning pipeline utilizing this outlier analysis to classify 
samples for potential methylation associated congenital disorders. These methods are 
able to achieve high accuracy when used with machine learning methods to classify 
abnormal methylation patterns.
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Background
DNA methylation is a form of epigenetic modification that occurs in humans primarily 
through the addition of a methyl group to the cytosine of CpG dinucleotide sequences 
[1]. Methylation patterns in mammals are heritable, as they are passed from parent to 
offspring through the process of imprinting [2]. The human genome is depleted for CpG 
dinucleotides with an estimated 28.3 million CpG sites in the human genome [3], most of 
which are thought to be methylated in somatic tissues [4, 5]. Clusters of conserved CpG 
sites, known as CpG islands, are found in most gene promoter regions [6]. These have 
been associated with gene regulation by acting as repressors of gene expression when 
methylated [7]. Methylation patterns are known to differ between the sexes and over the 
lifetime of an individual. Large differences in methylation of the sex chromosomes in 
males and females are observed due to X chromosome inactivation in females during 
early embryonic development [4], while smaller differences in expression between the 
sexes have been observed on the autosomes in certain tissues [8]. Methylation patterns 
in a set of 353 specific CpG sites have been proposed as a predictor of chronological 
age [9], and changes in methylation are intricately involved in tissue differentiation and 
human development [10, 11].

Abnormal methylation can be associated with disorders in humans. Some imprinting 
disorders are relatively well characterized to have local methylation abnormalities at a 
small number of known CpG sites such as Prader–Willi syndrome (PWS), Beckwith–
Wiedemann syndrome (BWS), Fragile-X syndrome (FXS), and Angelman syndrome 
(AS) [12]. Other disorders, such as Silver–Russell syndrome (SRS), are associated with 
broad and non-specific disruptions to methylation patterns at a specific chromosome 
or throughout the genome [13]. These are generally syndromic, associated with devel-
opmental abnormalities, and diagnosed in young children. The clinical gold standard in 
tests for methylation abnormalities is Methylation-Specific Multiplex Ligation-Depend-
ent Probe Amplification (MS-MLPA) [14, 15]. While it has demonstrated clinical util-
ity, the throughput of this approach is limited by the number of probes in the array and 
incomplete knowledge of probe associations with certain disorders. In addition, results 
can be confounded by DNA contamination, benign point mutations, and gene copy 
number variations [15]. Array-based methods offer an alternative approach to meth-
ylation detection, and include the Illumina Infinium HumanMethylation450 BeadChip 
and the EPIC BeadChip (850k) arrays. The EPIC array measures over 850,000 of the 
estimated 28 million CpG sites in the human genome while covering a wide range of 
genomic categories including CpG islands, shores, shelves, genes, regulatory elements, 
and more [16–18]. This allows for profiling both genome-wide methylation patterns as 
well as the methylation level of specific genomic regions known to be associated with 
certain disorders.

Methylation levels at certain genomic loci in the human genome are highly dynamic 
depending on age, sex, and tissue type [9, 10]. This can interfere with outlier detection 
for probes that vary between the sexes or with age if those factors are not adjusted for. A 
conventional approach to outlier detection for a given probe would involve a group vs. 
group comparison between a control group and a cohort of samples with a confirmed 
disorder. In a clinical setting, this approach often leads to developing reference methyla-
tion ranges for a small set of probes which are then used to detect abnormal methylation 
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levels either above or below the reference. A common limitation of this approach is the 
reliance on a single reference range based on the entire cohort without incorporating 
potential probe level effects of biological age or sex. Here we performed a genome-wide 
methylation study using the Illumina EPIC BeadChip (850K) within a cohort includ-
ing 149 healthy controls with a wide age range and an even male-to-female ratio. We 
describe a Generalized Additive Model (GAM) which uses the control cohort to build 
probe level age and sex stratified methylation models which can robustly reduce false 
negatives for outlier identification in 134 patients clinically diagnosed for imprinting dis-
orders. Lastly, using z-scores from a combination of probes with known association with 
epigenetic disorders and extracted global features, we trained an ensemble based classi-
fier that achieved a prediction accuracy of 0.96.

Results
Patient cohort and sample processing

A patient cohort of 283 research consented patients were selected for this study from 
existing patients at Mayo Clinic. There were two subgroups in this cohort. The first sub-
group included 134 abnormal samples with clinically diagnosed (via MS-MLPA) epi-
genetic disorders including Beckwith–Wiedemann syndrome, Angelman syndrome, 

Fig. 1 Experimental design and analysis workflow. Cohort includes 149 controls and 134 abnormal samples 
with a variety of epigenetic disorders. These samples were analyzed using the Illumina MethylationEPIC 
(850k) system on an iScan machine. After preprocessing using the Champ pipeline (image reproduced in 
part from [20]), an age and sex adjusted reference model was created from the normal samples to compute 
z-scores of probes in all samples. Z-scores of disease associated probes and UMAP coefficients computed 
from the z-score matrix of the remaining probes were used as global features in the machine learning 
algorithm AutoGluon to classify epigenetic disorders
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Silver–Russell syndrome, Prader–Willi syndrome, and Fragile X syndrome (Fig. 1). The 
BWS group was further divided into BWS1 (exhibiting H19 Hypermethylation and LIT1 
Hypomethylation) and BWS2 (exhibiting H19 Normal methylation and LIT1 Hypo-
methylation) (See Table 1). The second subgroup consisted of 149 controls that had no 
diagnosed or suspected epigenetic disorders based on results in their medical records. 
All control samples were screened by MS-MLPA assay to confirm a negative result for 
any of the abnormal methylation conditions in this study. Control samples included both 
males and females with age ranges from 1 day old to 81 years old (Fig. 2). Samples were 
derived from whole blood and were processed using on the Illumina Infinium Methyla-
tionEPIC BeadChip 850K Array [18] across six plates. The package ChAMP (v2.20.1) 
[19, 20] was used in R (v4.0.3) to perform quality control, BMIQ normalization, and 
whole blood admixture adjustment using default parameters. This resulted in beta val-
ues representing qualitative methylation levels for about 746,834 CpG sites. CpG site 
annotations were retrieved using the R package IlluminaHumanMethylationEPICanno.
ilm10b4.hg19 (v0.6.0).

Fig. 2 Heterogeneity of the cohort based on age and sex. (a) Number of samples for normal and congenital 
disease categories in male samples. (b) Number of samples for normal and congenital disease categories in 
female samples

Table 1 Number of samples included in each of the categories for the train and test cohorts

Normal BWS1 BWS2 SRS1 AS2 PWS1 PWS2 FXS

Train set 120 15 16 28 15 14 15 8

Test set 29 3 3 6 3 3 3 2

Total 149 18 19 34 18 17 18 10
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Whole genome methylation profiling confirms expected hyper‑ and hypomethylation 

in disease associated loci

Variation in methylation patterns for several genomic regions has been associated with 
specific imprinting disorders. In order to confirm expected patterns of hypo- and hyper-
methylation exist in our data in clinically relevant genomic regions, we first extracted 
the list of probes overlapped by the regions associated with BWS, PWS, AS, and FXS 
(Additional file  1: Table  S1). We then examined the unadjusted methylation beta val-
ues by performing unsupervised clustering using the k-nearest neighbors method. We 
confirmed several expected patterns (Fig. 3), including a cluster of several probes in the 
SNRPN/SNURF locus which show hypermethylation in PWS samples and hypomethyla-
tion in the AS samples relative to the normal samples [21, 22], a cluster including sev-
eral probes related to the FMR1 promoter locus which are hypermethylated in FXS male 
samples relative to the normal samples [23], and a cluster of several probes from the 
KCNQ10T1 locus which showed hypomethylation in the BWS samples relative to the 
normal samples [15, 24, 25].

Observing these patterns in our data confirms the utility of these loci for detecting the 
presence of at least some of the imprinting disorders of interest in this study. However, 
there is no confirmed effective probes to detect SRS and it has been reported that the 
heterogeneity is high among SRS patients [26]. To investigate whether SRS patients show 
unified variation of methylation at the global level, we extracted 30 UMAP dimensions 

Fig. 3 Clustering based on unadjusted z-scores. Probes known to be involved in the abnormalities included 
in this study are shown. The z-scores were calculated using the normalized probe beta values of the samples 
and were plotted and clustered using k-means method
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from the highly variable probes of which the methylation level showing standard devia-
tion higher than 1.5 and plotted the UMAP dimensions that separate SRS patients from 
other samples (Mann–Whitney U test p ≤ 0.00001), however, no obvious separation was 
observed (Additional file  1: Fig. S1). K-means clustering performed directly with the 
highly variable probes did not cluster SRS patients into one either, further proving the 
high heterogeneity of SRS patients (Additional file 1: Fig. S2).

In order to assess the benefit of incorporating information from the whole-genome 
methylation levels for detecting imprinting disorders, we performed a principal com-
ponent analysis of the methylation data. The first 10 principal components extracted 
from 109,131 probes exhibiting substantial deviations from the normal range together 
explained 56 percent of the total variance in the dataset (Additional file 1: Table S2). A 
scatter plot of principal components 1 and 2 (PC1 and PC2) explained 27.5 and 12.7 
percent respectively of the total variance, however these principal components alone did 
not show obvious separation of age or sex. Including PC8, PC9 and PC10 clearly cap-
tured global variation due to sex (Additional file 1: Fig. S3), while PC7 seemed to capture 
global methylation variation due to age range (Additional file 1: Fig. S4). These results 
suggested that sex and age both contributed to global variations of methylation level in 
the cohorts used in this study. Age and sex effects may or may not be statistically signifi-
cant depending on the specific probe. Several examples showing beta values by sex over 
age are provided in (Additional file 1: Fig. S5).

Age and sex adjustment increase reliability of clinically relevant probes

Methylation disorders associated with genomic loci are influenced by the combined 
effect of the methylation levels of all the CpG sites in the region. If enough of the CpG 
sites are hyper- or hypomethylated in unison, dysregulation of the genes may occur, and 
the patient may present with symptoms of the disorder. This implies that the individual 
methylation level of a single CpG site may or may not agree with the other CpG sites in 

Fig. 4 Adjusting normal ranges for age and sex increases reliability of outlier identification. (a) The counts 
of BWS1 associated probes being identified as outliers in the samples labeled as BWS1 before and after age 
and sex adjustment of normal methylation range.  (b) The counts of BWS2 associated probes being identified 
as outliers in the samples labeled as BWS2 before and after age and sex adjustment of normal methylation 
range
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the locus. We assessed the sensitivity of the probes in the BWS locus by comparing out-
lier status of individual probes before and after adjustment. Here we define probe sensi-
tivity as the number of confirmed BWS samples in which the z-score of a relevant probe 
is detected as an outlier (z-score ≥ 3 or ≤ −3).

There are 31 probes overlapping the KCNQ10T1 region. For both BWS1 (Fig. 4a) and 
BWS2 (Fig. 4b) samples, we identified samples in which fewer than 5 out of 31 probes 
shown as outliers, which could lead to false negative diagnosis. With the adjusted 
z-scores, the number of outlier probes in these samples were increased, which reduced 
the chance for false negative diagnosis. When we cluster the disease-associated probes 
based on the adjusted z-scores using nearest neighbor method, the expected hyper- or 
hypo -methylation pattern were retained as shown with the normalized, un-adjusted 
z-scores (Fig. 3) in the associated patient groups while the clusters at gender levels were 
more scattered in normal groups compared to that from the un-adjusted z-scores (Addi-
tional file 1: Fig. S6 and S7). This result suggested that the effects that gender on popula-
tion level clustering were effectively reduced.

Statistical power evaluation with simulated data

In order to determine how the statistical power of our method might vary with the size 
of the control cohort used in our modeling, we developed a simulated dataset with a 
known ground truth hypermethylation effect representing a single probe. We imple-
mented a statistical power analysis in order to show how our method using adjusted 
age and sex models for outlier detection improves performance over the base case of 
a model using unadjusted methylation values. We then demonstrate how the adjusted 
model used in conjunction with machine learning methods performs on real samples in 
our cohort.

We generate our synthetic methylation data by first fitting a Generalized Additive 
Model (GAM) to the control data (see Methods), then sampling from the distribution 
defined by the GAM fit for a single probe. This allows us to generate any number of syn-
thetic data points while maintaining a reasonable approximation of the methylation pat-
terns in the real data as captured by the chosen probe. For this analysis, we use our GAM 
for the probe cg08434396. To generate a single synthetic data point, we first randomly 
select a sex using equal probability male or female and an age using a uniform distribu-
tion from 0 to 85 years old (Fig. 5a). We then sample a “synthetic beta” value from the 
binomial distribution represented by the mu and sigma of the GAM for the age and sex 
combination that most closely matches that of this synthetic data point. After generating 
a synthetic cohort of size n, we fit a new GAM to this synthetic cohort to use as the basis 
of comparison for outlier detection in the power analysis. Finally, we generate a single 
additional synthetic data point to serve as a control and a second additional data point to 
serve as the synthetic hypermethylated abnormal by adding a constant to the simulated 
beta value. A constant of 0.3 was chosen for the effect size after initial exploration of 
possible effect sizes and probe models (Additional file 1: Fig. S8).

Three versions of the outlier detection are compared. First, an “unadjusted” model 
generates a z-score of the control and abnormal samples against the global mean and 
standard deviation of the entire synthetic control cohort. An “adjusted” model generates 
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a z-score against the GAM for the synthetic control cohort. Finally, as a compromise 
between the first two approaches which is meant to reduce the impact of methylation 
outliers, a “regularized” model generates the z-score against the GAM for the syn-
thetic control cohort after a regularization towards the global mean has been applied. 
A p-value for each version is also computed. We repeat the process of generating a 
synthetic cohort and the synthetic control and abnormal samples for 10,000 iterations 
at each cohort size from size 5 to 500 in steps of 5. The type 1 error rate and statisti-
cal power for these three models are shown in Figs. 5b, c. While the unadjusted model 
showed a well-controlled type 1 error of 0.05 at low cohort size, it suffered from a very 
low statistical power. The adjusted model achieved the highest statistical power but did 
not reach a well-controlled type 1 error rate in the range of cohort size simulated here. 
The regularized method achieved a well-controlled type 1 error at a cohort size of 100 
coinciding with a statistical power of 0.775. This suggest that the cohort used in this 
study is exceeding the minimal cohort size for detecting outliers while controlling for 
type 1 error.

Fig. 5 PowerAnalysis. (a) A diagram showing the workflow of power analysis based on simulation. (b) Type 
1 error over cohort size for the 3 models, global, GAMLSS adjusted, and regularized. The red line indicates a 
type 1 error rate of 5 percent, which is considered a well-controlled error rate for this analysis. The blue and 
green lines show approximately where the model reaches the well-controlled type 1 error. (c) Power analysis 
over cohort size for the 3 models. The global model, while well-controlled at very small cohort sizes, has very 
low statistical power. The GAMLSS adjusted model, while having very high statistical power, requires a large 
cohort to control type 1 error. The regularized model controls for type 1 error at a cohort size smaller than 
that available to this study while still greatly improving the statistical power over the global model
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Machine learning predicts disease class with high accuracy

Detection of individual probe outliers is an important aspect of clinically relevant meth-
ylation screening pipelines. However, manual review of outlier probes is only feasible 
on a small scale. In the case of SRS and other methylation disorders which present with 
global methylation patterns, we needed to develop our method to interrogate the com-
bined effects of the global methylation levels of the approximately 850,000 probes in the 
EPIC array. We implemented a machine learning classification scheme as follows. We 
first split our cohort into an 80/20 train and test set. For the train set, we created the 
age and sex adjusted GAM as described above. We used this model to generate adjusted 
z-scores as defined above for both the train and the test set. As a means of reducing the 
number of potential features to examine in the downstream machine learning, we fil-
tered the data removing probes rarely significantly differentially methylated in the cohort 
as described in the methods. We extracted 98 unique probes from our target region, and 
for the non-target probes that passed the previous filters we applied Uniform Manifold 
Approximation and Projection (UMAP) to reduce this feature set of 109,135 probes to 
50 global features representing methylation patterns across the global methylation space 
save for the target region. We then combined the 98 probes and the 50 global features 
to generate a 148-feature dataset. Finally, we removed highly correlated features with a 
correlation cutoff of 0.9 from this set. In order to avoid data leakage, we selected probes 
and UMAP features using only the train set and applied these criteria to the test set as a 
separate step.

AutoGluon was used to train the classifier to predict disease class. AutoGluon employs 
an ensemble learning method using several individual models including ’LightGBM’, 
’XGBoost’, ’Random Forest’, ’CatBoost’, a feedforward ’Neural Net’ implemented with 
MXnet Gluon, and ’K Nearest Neighbors’ [27]. A weighted ensemble model is automati-
cally generated from the stacked input models. We employed a 5-fold cross-validation 
within the training set by setting the AutoGluon parameter numBagFolds = 5 and report 
the cross-validation accuracy of AutoGluon’s component models (Additional file 1: Fig. 
S9). The cross-validation accuracy of the weighted ensemble model was 0.978355. After 
cross-validation, the model was used to predict classes for the test set. The model cor-
rectly classified all the 29 control samples in the test set as normal with an average prob-
ability of 0.913740 (Additional file 1: Table S3). The samples with imprinting disorders 
labeled as BWS2, AS2, PWS1, PWS2 and FXS were also correctly classified (Table 2). 
Two misclassified samples included a BWS1 which was misclassified as BWS2 and a 
SRS1 which was misclassified as normal (Table 2, shown in bold). The combined accu-
racy of prediction by this model was 0.9615 (Binomial 95% Confidence Interval 0.868−
0.995). A classifier trained from the features engineered using the same method from 
unadjusted z-scores yielded an overall accuracy of 0.90 with a binomial 95% confidence 
interval from 0.79 to 0.97, which is lower in accuracy and higher in variability. These 
results suggested that the model we trained using the methylation data with sex and age 
adjustment could successfully discriminate abnormality from normality and with a high 
accuracy of predicting specific disease status.
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Discussion
In this study, we performed a whole genome methylation study of a cohort with 283 
patients using the Illumina MethylationEPIC BeadChip [18]. The control cohort 
included in this study is, to our best knowledge, one of the largest reference methyl-
omes for whole blood samples from ages 0 through 81 years old including both male and 
female. A key limitation in current clinical detection of methylation abnormalities is MS-
MLPA tests only detecting a handful of well-characterized methylation sites. In order to 
detect methylation abnormalities which are present more variably across the genome, 
it is necessary to take genomic methylation patterns into account. As more methylation 
sites are utilized, the need exists to account for known patterns such as methylation level 
changes over age and sex at certain probe locations. Thus, we developed a general addi-
tive model implemented in the GAMLSS package [28] to correct age and sex effects on 
methylation levels and to enable precise outlier detection for any given probe in a par-
ticular male or female patient at a specific age.

Simulating cohorts with different numbers of individuals drawn from a population 
of uniformly distributed age and sex for a probe with a hypermethylation effect size of 
0.3 revealed that a cohort of 100 samples could effectively achieve statistical power of 
0.775 with type 1 error controlled at 0.05. Given our cohort size included 149 controls, 
our model likely achieved a well-controlled type 1 error rate while also improving the 
statistical power over a base model using a globally derived reference range. While our 
method was able to achieve high classification accuracy, we recognize there were two 
misclassified samples in the results. One SRS1 sample was misclassified as normal with 
a predication probability of 0.433498. We observed that the predication probability of 
this sample being classified correctly as SRS1 is 0.413866, which is slightly less than that 
of the incorrectly called class. We consider this as a ’near miss’ in the sense that the top 
two prediction probabilities for this sample were both relatively low scores and were 
relatively similar scores, which seems to indicate that the classifier did not have strong 
confidence in one call over the other. In a clinical setting, this would still be a useful data 
point which could indicate a need for further investigation. The other error was a BWS1 
sample which was misclassified as BWS2 with a prediction probability of 0.812139. The 
second highest prediction probability for this sample was at 0.118237 for the correct 
class of BWS1. In light of the fact that the methylation loci know to be associated with 

Table 2 Confusion matrix, precision, recall, and F1 Score of AutoGluon prediction. Misclassified 
samples are shown in bold

The items in bold in Table  2 are samples that were misclassified by the model

Normal BWS1 BWS2 SRS1 AS2 PWS1 PWS2 FXS Precision Recall F1 Score

Normal 29 0 0 1 0 0 0 0 0.97 1.00 0.98

BWS1 0 2 0 0 0 0 0 0 1.00 0.67 0.80

BWS2 0 1 3 0 0 0 0 0 0.75 1.00 0.86

SRS1 0 0 0 5 0 0 0 0 1.00 0.83 0.91

AS2 0 0 0 0 3 0 0 0 1.00 1.00 1.00

PWS1 0 0 0 0 0 3 0 0 1.00 1.00 1.00

PWS2 0 0 0 0 0 0 3 0 1.00 1.00 1.00

FXS 0 0 0 0 0 0 0 2 1.00 1.00 1.00
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BWS1 and BWS2 overlap, we consider this misclassification another ’near-miss’. Again, 
in a clinical setting, this data point would still be useful and may indicate a need for sam-
ples classified positively for any disorder to be confirmed using an orthogonal method.

This study demonstrates the potential for methylation disorder classification using a 
combination of targeted probes and global methylation features generated using UMAP 
for dimensionality reduction. UMAP and other dimensionality reduction tools such as 
Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [29] are frequently used to reduce high-dimensional -omics data to lower 
dimensions for visualization or machine learning applications [30, 31]. A recent study 
has demonstrated that high dimensional data can become distorted relative to the orig-
inal space when reduced to very few dimensions [32]. While this study found that 50 
dimensions was sufficient to supplement the targeted features and lead to strong classi-
fier performance in this dataset, it did not attempt to show that 50 dimensions was opti-
mal or that it would necessarily generalize to other datasets.

It is also important to consider that the majority of samples in this study were taken 
from young patients from the Mayo Clinic, and as such these results may not be repre-
sentative of outside populations. In particular, it would be of great interest in a future 
study to include more samples from older patients with confirmed disorders. The low 
availability of such samples is likely due to higher mortality in older adults with con-
genital disease and participant recruitment readiness [33, 34, 34–36]. The majority of 
confirmed abnormal samples in this cohort were taken from patients younger than 1 
year old in both male and female for each disorder except FXS cases which occur only 
in males (Fig. 2a, b). We also acknowledge a sex bias in our abnormal samples, which 
was a result of there not being enough samples available for each disorder class for both 
sexes. The ratio for our cohort was in favor of males for BWS (male-to-female ratio: 
1.24), AS2 (male–female-ratio: 2.0) and PWS1 (male–female-ratio: 1.43), while being in 
favor of females for SRS1 (male-to-female ratio: 0.79). The samples without any confirm-
atory clinical diagnosis of congenital disease, labeled as normal, are evenly distribution 
across all age groups in both male and female samples with a male-to-female ratio of 
1.01 (75/74). The broad sampling of normal cases across ages and sex provided sufficient 
data for standardizing a normal methylation range for methylation outlier identification.

Conclusion
The development of a single genome-wide methylation screening test for a large vari-
ety of methylation disorders remains an important goal for clinical testing. Age and sex 
effects are widely known to exist in the DNA methylome and are known to vary in signif-
icance between probes. Previous works have sought to account for age and/or sex effects 
in DNA methylation analysis. This work demonstrates a novel method to adjust for age 
and sex effects using a stratified cohort of normal samples to build a series of generalized 
models which are then applied for per-probe outlier detection. We show how adjust-
ing for age and sex can improve the statistical power of outlier detection particularly in 
the subset of probes that include a strong age or sex effect. We further demonstrate in 
a novel cohort of 283 samples how our method can be used to generate both targeted 
and global methylation features which can be used in machine learning classification to 
achieve high accuracy in classifying several methylation disorders.
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The results of this study are promising and could be useful for future development of a 
clinically validated set of features which can predict methylation disorders including dis-
eases which are defined by global methylation patterns. Our method was able to demon-
strate a significant increase in power over the baseline method at our cohort size while 
still controlling for type 1 error rates. The adjusted model achieved a higher accuracy 
than a similar model generated without age and sex adjustment, though the difference 
was not statistically significant as the adjusted model’s performance was slightly within 
the unadjusted model’s 95% CI. A larger cohort in the test data might feasibly be able to 
demonstrate a statistically significant improvement in the adjusted model over the unad-
justed model. Additionally, with a significantly large control cohort, it may be possible to 
control type 1 error rates without regulating the adjusted model toward the global mean 
which may further improve the statistical power of these methods.

Materials and methods
Whole genome methylation assay and data processing

Residual DNA from each patient was clinically isolated from whole blood. Approxi-
mately 1250 ng of each patient DNA was bisulfite converted using the Bisulphite 
treatment was performed using EZ DNA Methylation Spin Column kit (Zymo) per 
manufacturer’s instructions. Two rounds of bisulfite conversion were performed on each 
sample to ensure thorough bisulfite conversion of methylated cytosines. The DNA sam-
ples passed a DNA quantification QC check and then proceeded for processing onto the 
Infinium MethylationEPIC 850k (EPIC) arrays. Each 96-well plate of samples were pro-
cessed into 12 arrays yielding one batch of samples. A total of six batches were processed 
into EPIC arrays [18]. The processed arrays were scanned on an iScan to obtain methyla-
tion results. A total of 576 samples were run (including controls). The cohort used in this 
study excludes those samples with suspected imprinting issues (based on chart review), 
those with equivocal MS-MLPA results, and non-patient control samples, resulting in 
the final cohort of 283 samples.

Adjusting for age and sex using GAMLSS

We implemented the age and sex adjustment as follows. We first performed ChAMP 
normalization (see above) which resulted in 746,834 probes retained after quality control 
and filtering. After the 80/20 split, we then separated the controls from the abnormals in 
the train set. All beta values were logit transformed. We define an unadjusted z-score for 
a single logit-transformed methylation beta value against the global mean (globalMu) 
and the global standard deviation (globalSigma) of the normal cohort using the formula:

For each individual probe, we fit a GAM to the the logit transformed beta values using 
the R package GAMLSS command:
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resulting in a GAM for each probe. We converted the GAM into discrete age and sex 
combinations as the original model was prohibitively computationally expensive to store 
and use. Ages were defined in one day increments from 0 to 365 days old, then from 1 
month to 24 months in 1 month increments, and finally from age 3 to 85 in 1 year incre-
ments. The GAMLSS method “predictAll” was used to generate a mu and sigma for each 
of the discretized age and sex combinations. A z-score can be computed for any sample 
by comparing to the mu and sigma values of the closest discrete age and sex values to the 
sample. We define an adjusted z-score for a single logit-transformed methylation beta 
value against the GAM model using the formula:

A regularization was applied to the adjusted z-score by applying the following 
transformation:

Feature selection and classify model training

For classification, an original set of features composed of 98 [15] unique probes 
passed the z-score filter with known annotation for clinical utility and 50 global fea-
tures extracted by UMAP from the remaining probes were used for further feature 
filtering [37]. To remove similarity and redundancy of the features, a pairwise cor-
relation analysis between the original features were conducted to examine the simi-
larities using the “findCorrelation” function in caret R-package (v6.0-90) [38]. For 
the pairs with correlation coefficient higher than 0.9, one of the pair with the largest 
mean absolute correlation was removed from the feature matrix. The final feature 
set, after quality filters and correlation filters, reduced the combined 148 targeted 
and global features to 70 features for modeling. The train/test split was conducted 
in an 80/20 ratio using the “createDataPartition” function in caret R-package [38]. 
Models for classification were trained and evaluated for the accuracy using Auto-
Gluon (v0.3.0) [27]
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