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Abstract 

Background: Genome-wide association studies have successfully identified genetic 
variants associated with human disease. Various statistical approaches based on penal-
ized and machine learning methods have recently been proposed for disease 
prediction. In this study, we evaluated the performance of several such methods 
for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome 
and Epidemiology Study (KoGES).

Results: First, single-nucleotide polymorphisms were selected via single-variant 
tests using logistic regression with the adjustment of several epidemiological fac-
tors. Next, we evaluated the following methods for disease prediction: ridge, least 
absolute shrinkage and selection operator, elastic net, smoothly clipped absolute 
deviation, support vector machine, random forest, boosting, bagging, naïve Bayes, 
and k-nearest neighbor. Finally, we compared their predictive performance based 
on the area under the curve of the receiver operating characteristic curves, precision, 
recall, F1-score, Cohen′s Kappa, balanced accuracy, error rate, Matthews correlation 
coefficient, and area under the precision-recall curve. Additionally, three oversampling 
algorithms are used to deal with imbalance problems.

Conclusions: Our results show that penalized methods exhibit better predictive per-
formance for asthma than that achieved via machine learning methods. On the other 
hand, in the oversampling study, randomforest and boosting methods overall showed 
better prediction performance than penalized methods.

Keywords: Disease risk prediction model, Large-scale genetic data, Asthma, Penalized 
methods, Machine learning methods, Ensemble methods, Genome-wide association 
study, GWAS, Korean Genome and Epidemiology Study, KoGES, Oversampling

Background
Asthma is a major global health problem estimated to affect approximately 334 million 
people in 2019 [1–3]. It is a leading cause of rhinitis, chronic bronchitis, heart disease, 
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stroke, vascular disease, arthritis, and osteoporosis [4]. Although there is no cure for 
asthma, several medications can be used to treat and control the symptoms. However, 
the treatment of early-onset asthma patients results in a considerable socioeconomic 
burden due to substantial medical expenses and decreased work productivity of the 
affected individuals [2, 5].

Over the last decade, genome-wide association studies (GWASs) have identified 140 
susceptibility single-nucleotide polymorphisms (SNPs) associated with asthma, greatly 
advancing our understanding of asthma genetics [6–12]. Thus, potentially causal SNPs 
in genes or gene sets also contribute to the construction of more informed prediction 
models. Despite these advances, discovered asthma-associated loci explain only a small 
fraction of overall disease heritability [6, 8, 13]. In fact, most complex disease suscep-
tibility loci identified via GWASs have rather modest effects, except for in the case of 
Mendelian dyslipidemias [14]. The huge number of genetic variants identified from a 
small number of samples (or so-called “large P and small N” problem) [15] represents a 
major challenge in predictive model construction. Regression analysis does not account 
for the multicollinearity caused by linkage disequilibrium among predictor SNPs and 
can therefore yield misleading results [16]. Many penalized and machine learning meth-
ods have recently been proposed to solve these issues. However, a comprehensive evalu-
ation of the existing approaches for disease risk prediction has not yet been conducted.

The most popular approach for constructing a disease risk prediction model employs 
a simple linear (logistic) regression model with genotype scores [17–19]. Regression 
coefficients of previously known disease-associated SNPs are estimated using a training 
dataset. The sum of regression coefficients for each individual can then be incorporated 
to construct the disease risk prediction model for the test dataset. Many studies have 
shown that a genetic score-based approach for predicting disease risk is partially helpful 
[20]. However, these approaches often show reduced predictive performance for com-
plex diseases [21, 22]. Understanding the causes of complex diseases, such as cancer, dia-
betes, and asthma, can be improved by considering complex genetic and environmental 
risk factors as well as gene–gene and gene-environment interactions.

As an alternative to the genetic score-based approach, machine learning algorithms 
have been widely used to improve disease risk prediction performance. For example, 
support vector machines (SVMs) [23] often outperform other classification methods 
in terms of classification accuracy [24]. Furthermore, several studies have shown that 
ensemble methods, particularly random forest (RF) [25], boosting [26], bagging [27], 
naïve Bayes (NB) [28], and k-nearest neighbor classification (KNN) [29], improve the 
prediction of complex diseases [30, 31]. However, despite advances in machine learning 
algorithms, certain limitations remain. Machine learning algorithms find it difficult to 
interpret the underlying genetic factors of disease in the prediction model. Furthermore, 
these approaches do not provide conditional probabilities for each individual prediction 
[32].

Penalized methods, such as ridge [33–35], least absolute shrinkage and selection 
operator (Lasso) [36], elastic net (Enet) [37], and smoothly clipped absolute deviation 
(SCAD), have been proposed to solve large P and small N problems [38]. Although 
penalized methods yield biased estimates by considering the regression coefficients 
as zero, these regression coefficient estimates will have a small variance. Thus, such 
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approaches enhance the accuracy of predictions because of their small mean squared 
error [39]. In addition, many penalized methods have recently been used for variable 
selection in large-scale genetic data [40–44].

In this study, we compared the performance of various penalized and machine learn-
ing methods for predicting asthma development using data from the Korean Genome 
and Epidemiology Study (KoGES) [45–47]. We considered the following methods for 
disease risk prediction: ridge, Lasso, Enet, SCAD, SVM, RF, boosting, bagging, NB, and 
KNN. The predictive performances of penalized and machine learning methods were 
compared using the area under the curve (AUC) of the receiver operating characteris-
tic (ROC) curves, precision, recall, F1-score, Cohen′s Kappa, balanced accuracy (BA), 
error rate, Matthews correlation coefficient (MCC), and area under the precision-recall 
curve (AUPRC), which are the most widely used methods for evaluating prediction 
performance.

For an imbalanced dataset, most prediction methods are not able to establish mean-
ingful classifiers. Therefore, many approaches have been proposed to address the class 
imbalance, in which the most commonly used technique is oversampling or under-
sampling algorithms. The oversampling algorithms generate the synthetic data points 
belonging to the minority class to obtain the desired balancing ratio. In contrast, the 
undersampling algorithms remove several data points from the majority class. In this 
study, we utilize several oversampling algorithms for handling an imbalanced dataset, 
including the majority weighted minority oversampling technique (MWMOTE) [48], the 
random walk oversampling (RWO) [49], and the synthetic minority oversampling tech-
nique (SMOTE) [50]. The most famous oversampling algorithm is SMOTE, which gen-
erates synthetic data from the minor class using KNN. The MWMOTE is an extension 
of the SMOTE algorithm that assigns a higher weight to borderline samples, minority 
clusters and examples near the borderline of the two classes. The RWO algorithm, moti-
vated by the central limit theorem, generates synthetic samples so that the mean and 
deviation of numerical attributes remain as close as the original ones.

Finally, We inferred the pathogenicity and deleteriousness of the observed variants via 
combined annotation-dependent depletion (CADD) [51] and deleterious annotation of 
genetic variants using neural network (DANN) scores [52], which take genetic, evolu-
tionary, structural, functional, and biochemical properties into account.

Results
Demographic characteristics

Table 1 shows the distribution of demographic characteristics of unaffected participants 
(controls) and patients with asthma (cases) in each cohort of the KoGES. Of the 3,003 
participants in the Cardiovascular Disease Association Study (CAVAS) cohort, 2,908 
(96.8%) were controls, and 95 (3.2%) were patients. Among the 5,420 participants in the 
Korea Association Resource Study (KARE) cohort, 5,308 (97.9%) were controls, and 112 
(2.1%) were patients. Of the 58,434 participants in the Health Examinees Study (HEXA) 
cohort, 57,459 (98.3%) were controls, and 975 (1.7%) were patients. The associations of 
asthma with environmental risk factors (smoking status and allergy status) and human 
anthropometric dimensions (sex, age, and body mass index [BMI]) were analyzed in 
the CAVAS, KARE, and HEXA cohorts using the t-test and chi-square test, respectively 
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(Table  1). The demographic analysis demonstrated that asthma was significantly asso-
ciated with age (p = 0.0025 in the CAVAS cohort, p = 0.0026 in the KARE cohort, 
p < 0.0001 in the HEXA cohort) and allergy status (p < 0.0001 in all cohorts). As shown in 
Table 1, asthma was significantly associated with sex (p = 0.0048 in the KARE cohort and 
p < 0.0001 in the HEXA cohort) and BMI (p = 0.0002 in the CAVAS and HEXA cohorts). 
Although smoking status was not associated with asthma in this study, it was considered 
a covariate in many previous studies on asthma prediction [53–55].

Comparison of the predictive performance

To compare the performance of the penalized and machine learning methods, we cal-
culated the AUCs of those methods on the test dataset using the R-package pROC [56]. 
Their performances were also assessed based on precision, recall, F1-score, Cohen′s 
Kappa, BA, and error rate using the caret package in R [57]. The MCC and AUPRC 
were performed using the R-package mltools and precrec packages, respectively [58, 59]. 
Table 2 and Additional file 1: Tables S1-S2 illustrate that the relative performance of each 
method generally depended on the number of SNPs within the cohorts. These perfor-
mance measurements may be explained by the relative importance of genetic compo-
nents in asthma. We calculated the proportion of variances, h2, for asthma explained by 
the top SNP sets (50, 100, 200, and 400 SNPs) and SNP-based heritability [60] using the 
genomic relatedness-based restricted maximum-likelihood approaches implemented 
in the GCTA program [61]. As shown in Table 3, the heritability estimates for asthma 
ranged from 16.6% to 45.7% in the CAVAS cohort, 7.4% to 29.0% in the KARE cohort, 

Table 1 Demographic variables for the CAVAS, KARE, and HEXA cohorts

a p-value from t-test or chi-square test
b Means ± standard deviation (SD)
c Smoking status (No: never smoker, Yes: former smoker or current smoker)

CAVAS pa KARE p HEXA p

Case
(n = 95)

Control
(n = 2908)

Case
(n = 112)

Control
(n = 5308)

Case
(n = 975)

Control
(n = 57,459)

Sex

 Male 37
(3.1%)

1164
(96.9%)

0.8325 39
(1.5%)

2563
(98.5%)

0.0048 283
(1.4%)

19,924
(98.6%)

 < 0.0001

 Female 58
(3.2%)

1744
(96.8%)

73
(2.6%)

2745
(97.4%)

692
(1.8%)

37,535
(98.2%)

Age 
(years)b

57.9 ± 7.8 55.4 ± 7.8 0.0025 53.3 ± 7.9 51.5 ± 8.5 0.0026 55.4 ± 8.4 53.8 ± 8.0  < 0.0001

BMI (kg/
m2)

25.5 ± 3.4 24.5 ± 3.0 0.0002 25.0 ± 3.5 24.6 ± 3.0 0.1536 24.3 ± 3.2 23.9 ± 2.9 0.0002

Smoking  statusc

 Non-
Smok-
ers

72
(3.0%)

2123
(97.0%)

0.5471 71
(2.2%)

3173
(97.8%)

0.4397 721
(1.7%)

42,070
(98.3%)

0.6348

 Smok-
ers

23
(2.8%)

785
(97.2%)

41
(1.9%)

2135
(98.1%)

254
(1.6%)

15,389
(98.4%)

Allergy status

 Non-
allergy

74
(2.7%)

2695
(97.3%)

 < 0.0001 86
(1.7%)

5015
(98.3%)

 < 0.0001 727
(1.3%)

53,642
(98.7%)

 < 0.0001

 Allergy 21
(9.0%)

213
(91.0%)

26
(8.2%)

293
(91.8%)

248
(6.1%)

3,817
(93.9%)
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and 0.7% to 4.9% in the HEXA cohort. Our findings reveal that various evaluation met-
rics showed higher values in the CAVAS cohort compared to those observed in the 
KARE and HEXA cohorts.

Table 2 and Additional file 1: Tables S1–S2 show that evaluation metrics such as preci-
sion, F1-score, Cohen′s Kappa, and MCC produced low results that indicated a problem 
in evaluating the prediction models. Furthermore, recall for the SVM and KNN methods 
also produced low scores that correctly reflected the prediction issue. In the case of an 
imbalanced dataset, the predictive methods were not able to correctly recognize positive 
data instances and therefore produced a confusion matrix with a low number of true 
positives (i.e., case-patient ratio: 3.2% in the CAVAS cohort, 2.1% in the KARE cohort, 
and 1.7% in the HEXA cohort). Therefore, the results were mainly examined by focusing 
on AUC and AUPRC as an indicator of model performance.

The AUCs of penalized methods on the test sets were outperformed by the machine 
learning methods across the various top SNP sets in Table 2 and Additional file 1: Tables 
S1–S2. Some of the differences in performance may be explained by penalized meth-
ods shrinking the estimated causal SNP weights, which is useful for reducing the effects 
of overfitting. Overall performance comparison among penalized methods shows that 
Lasso and Enet exhibited the best performance, followed by the ridge and then SCAD, 
even though the performance of each penalized method depends on the cohort and the 
size of top SNP sets. The robustness of Lasso with a variable selection could be explained 
by lower model complexity when compared to the ridge method in Fig. 1a. For instance, 
Lasso usually selected a small number of classifiers (8 SNPs of the top 50 SNPs and 88 
SNPs of the top 400 SNPs in the CAVAS cohort) but achieved similar or higher pre-
dictive accuracy than the ridge method. Therefore, Lasso was able to deal with a large 
number of SNPs for better risk estimation than non-penalized or ridge methods. Com-
paring the overall performances of machine learning methods, it can be seen that SVM 
exhibited the best performance; RF, Boosting, and NB exhibited the second best perfor-
mance, followed by bagging and, finally, KNN. For instance, utilizing the top 50 SNPs in 
the CAVAS cohort, Lasso established the best model, with an AUC of 0.805, while SVM 
had an AUC of 0.659.

In Table  2 and Additional file  1: Tables S1-S2, the improvement of AUPRC for 
the penalized methods with a larger number of SNPs is more significant than the 
machine learning methods. Figure  1b shows that the Lasso method achieved simi-
lar or higher AUPRCs than the ridge method across various scenarios. For example, 
the Lasso method consistently selected a relatively small number of SNPs (at most 

Table 3 Proportion of variance explained by genotyped single-nucleotide polymorphisms

Cohort 50 SNPs 100 SNPs 200 SNPs 400 SNPs

CAVAS h2 0.166 0.260 0.359 0.457

σ(h2) 0.069 0.059 0.052 0.040

KARE h2 0.074 0.119 0.189 0.290

σ(h2) 0.022 0.026 0.028 0.030

HEXA h2 0.007 0.011 0.030 0.049

σ(h2) 0.002 0.003 0.006 0.006
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8 SNPs for the top 50 SNPs set and 88 SNPs for the top 400 SNPs sets) but achieved 
higher AUPRC values than the ridge method when con-sidering the top 400 SNP sets 
in CAVAS cohort. Thus, we can conclude that the Lasso method seems a more rea-
sonable choice than the Ridge method in terms of model complexity.

Comparison of the prediction performance of methods with oversampling algorithms

To handle the imbalance problem, we analyzed the prediction model’s performance 
using three oversampling techniques, including MWMOTE, RWO, and SMOTE, 
which were performed using the R-package imbalance [62]. The oversampling algo-
rithms were applied only to the training set during a cross-validation (CV) procedure. 

Fig. 1 Comparison of a AUCs and non-zero estimate parameters of SNPs, and b AUPRCs for ridge and Lasso 
predictions using test datasets. CAVAS, Cardiovascular Disease Association Study; KARE, Korea Association 
Resource Study; HEXA, Health Examinees Study; AUC, area under the curve; AUPRC, area under the 
precision-recall curve; SNP, single-nucleotide polymorphism; Lasso, least absolute shrinkage and selection 
operator
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The penalized and machine learning methods were built, tuned, and trained on an 
oversampled training set with five-fold CVs, followed by validation on the testing set 
across the top SNP sets (50, 100, and 200 SNPs) in all cohorts.

Table  4 and Additional file  1: Tables S3–S4 show the various additional evaluation 
metrics of predictive methods with oversampling algorithms. Similar to the original data 
set analysis results, some evaluation metrics such as precision, F1-score, Cohen′s Kappa, 
and MCC still showed low results. Furthermore, recall and error rate measures showed 
wide variability depending on oversampling algorithms. Therefore, we focused on the 
AUC and AUPRC evaluation as a key indicator of model performance.

As shown in Table  4 and Additional file  1: Tables S3-S4, applying various oversam-
pling algorithms results in improved AUCs for the machine learning methods compared 
to the results obtained from the analysis of the original data sets. However, it was con-
firmed that the performance of the penalized methods was inferior to that of using the 
original data set through oversampling algorithms. Especially, RF, boosting, and bag-
ging methods outperformed penalized methods across the various top SNP sets in all 
cohorts. Furthermore, these methods showed that the prediction model′s performance 
improved as the number of SNP markers used increased. On the other hand, SVM, NB 
and KNN methods provided worse accuracy than the other methods for asthma under 
consideration. In Fig. 2a, the RWO algorithm showed the highest performance among 
oversampling algorithms for the RF, Boosting and Bagging methods. For instance, utiliz-
ing the top 200 SNPs in the CAVAS cohort, in the analysis using the RWO algorithm, the 
RF method established the best model with an AUC of 0.870, while in the analyses using 
the MWMOTE and SMOTE algorithms, the AUC values of the RF method were 0.704 
and 0.787. respectively.

The improvement in AUPRC for the RF and boosting methods is more significant than 
the penalized and the other machine learning methods in Table 4 and Additional file 1: 
Tables S3-S4. For example, utilizing the top 200 SNPs in the KARE cohort, the boosting 
method established the best model using the RWO algorithm with an AUPRC of 0.293, 
while the AUPRC values of the Lasso and SCAD methods were 0.175 and 0.181. respec-
tively. Figure 2b shows that the boosting method achieved higher AUPRCs than the RF 
and Bagging methods across various scenarios. Therefore, we can conclude that there is 
a difference in prediction model performance among oversampling algorithms, and the 
boosting method showed better prediction performance than penalized methods in the 
oversampling study.

Functional annotations

Identified variants were annotated via ANNOVAR [63] from 1000 genomes using the 
human genome build 19 (hg19). We then conducted integrative functional annotation 
of the genetic variants via CADD [51] and DANN scores [52]. The CADD score is cal-
culated into a scaled unit of 0 to 10 using the bottom 90% of all hg19 reference SNPs, 
while the top 10% to 1% occupy 10 to 20 units over. The DANN score ranges from 0 to 
1, with a higher score more strongly suggesting deleterious variants. In order to reduce 
false positives, a threshold was adopted for each prediction algorithm (CADD ≥ 10 and 
DANN ≥ 0.6). Fifteen SNPs from 14 loci yielded consistent results in all algorithms 
(Additional file 1: Table S5). These variants were considered as prioritized putative SNPs, 
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within the following corresponding genes: RP3-348I23.3, PAK6, HOXB8, PPP3CA, 
GAPDHP56-RP11-401I19.1, LRBA, AC006145.1-CACNA2D1, COL4A3, RP11-138I17.1, 
RP11-1220K2.2, PDLIM2, LTA4H-RP11-256L6.4, KLF12, and SYNE2. These genes were 
mainly related to asthma and lung disease [64–85].

Comparison of computing time

Computation was performed using an Intel Xeon Gold 6230 CPU @ 2.10 GHz, and the 
computation of the prediction process for each method was parallelized with five cores. 
Figure 3 shows that the computing time of the penalized and machine learning methods 
was calculated for five-fold CV. As shown in Fig. 3, prediction methods require greater 
computing time with an increasing number of SNPs. The ridge, Lasso, NB, and KNN 

Fig. 2 Comparison of a AUCs and b AUPRCs of RF, Boosting, and Bagging methods with oversampling 
algorithms on test datasets. CAVAS, Cardiovascular Disease Association Study; KARE, Korea Association 
Resource Study; HEXA, Health Examinees Study; AUC, area under the curve; AUPRC, area under the 
precision-recall curve; SNP, single-nucleotide polymorphism; RF, random forest; MWMOTE, majority weighted 
minority oversampling technique; RWO, random walk oversampling; SMOTE, synthetic minority oversampling 
technique
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methods have a faster computing speed than the other prediction methods. Interest-
ingly, in the HEXA cohort, the SVM method was the slowest to predict the processing of 
large genetic and cohort datasets as computation time increased when obtaining param-
eters with various kernel options. Therefore, the SVM method heavily depends on sam-
ple size (n) rather than the SNPs (p). Comparing the computing time for the Lasso and 
Enet methods, which showed the best performance with regard to prediction accuracy, 
we determined that the Enet method takes 25 to 60 times more computing time than the 
Lasso method requires. Therefore, we can conclude that the Lasso method seems a more 
reasonable choice for reducing the computing time and maintaining the highest accu-
racy among prediction methods.

Discussion
This study considered four penalized and six machine learning methods with three 
Korean trial cohorts that are computationally feasible for genome-wide SNP selection. 
Each method was used to construct a risk prediction model for asthma with a differ-
ent number of SNPs. Then, five-fold CVs were used to fit the model, choose the tuning 
parameters, and evaluate the accuracy of predictive models. According to our results, 
penalized methods, such as Lasso and Enet, were generally more accurate than machine 
learning methods. Especially the Lasso method had the advantage of high computing 
speed in large genetic datasets compared to other existing methods. Furthermore, we 
applied three oversampling algorithms to deal with imbalance problems. In oversam-
pling datasets, our results show that the boosting method generally performed superior 
to the penalized and the other machine learning methods.

Nevertheless, the current study has several limitations. First, the CV design tended 
to overestimate the prediction model’s accuracy. Therefore, we believe that the results 
should be interpreted with caution and may provide a general idea of the prediction 
accuracy of penalized and machine learning methods. Another limitation of this study 

Fig. 3 Bar plots showing the computing times for athma prediction methods in the a CAVAS cohort, b 
KARE cohort, and c HEXA cohort. CAVAS, Cardiovascular Disease Association Study; KARE, Korea Association 
Resource Study; HEXA, Health Examinees Study; SNP, single-nucleotide polymorphism; Lasso, least absolute 
shrinkage and selection operator; Enet, elastic net; SCAD, smoothly clipped absolute deviation; SVM, support 
vector machines; RF, random forest; NB, naïve Bayes; KNN, k-nearest neighbor classification
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is that various factors, such as filtering conditions for individuals or SNPs, covariates, 
and methods for choosing tuning parameters, can affect the accuracy of the final pre-
diction model. In this study, we applied a one-standard deviation rule that could miti-
gate the overfitting problem for tuning the parameters [39]. However, this did not lead 
to a noticeable improvement in the results, indicating that the asthma-associated SNPs 
had small effect sizes and accounted for only a small fraction of the phenotypic vari-
ances. This explains why the penalized methods outperformed other machine-learning 
methods in our study. A third limitation of this study is that we did not consider most 
current prediction algorithms, such as deep learning and bootstrapping methods [86–
89]. However, these approaches suffer from a heavy computational burden, which com-
plicates their application on a genome-wide scale. As a final limitation of this study, 
an imbalanced dataset is recognized as a major cause of prediction performance deg-
radation for machine learning methods. GWASs always suffer from the problem of an 
imbalanced dataset, having a sufficient control group and a limited case group. Such an 
imbalance issue can significantly challenge disease prediction [90–93]. To address the 
imbalance problem, we evaluated the performance of prediction methods by compre-
hensively considering AUC, precision, recall, F1-score, Cohen′s Kappa, BA, error rate, 
MCC, and AUPRC. Furthermore, we considered various oversampling techniques, such 
as MWMOTE, RWO, and SMOTE algorithms, to solve the imbalance problem. Our 
results show the differences between the various evaluation measures from overall sce-
narios. Although the recall value of the Lasso method was 0.947, the best score for the 
precision measure was only 0.548 using the ridge method when considering the top 400 
SNP set in the CAVAS cohort. These results mean that our prediction model generates 
very few false negatives while generating many false positives. This consistently explains 
why the AUPRC measure can be a good performance evaluation in research on develop-
ing prediction models based on imbalanced data sets. However, we still have not com-
pletely solved the problem of many false positives generated in our prediction model. 
As one solution to these limitations, algorithm-level approaches can be considered. 
Algorithm-level approaches for addressing the imbalance problem have been adjusted to 
focus on learning the minority class by modifying the weight or cost of misclassification 
[94]. To explore the efficiency of algorithm-level approaches, we will study a large num-
ber of recently described methods in diverse genomic datasets.

Conclusions
We compared penalized regression and machine learning methods (ridge, Lasso, Enet, 
SCAD, SVM, RF, boosting, bagging, NB, and KNN) for building asthma disease prediction 
models. Our results indicate that the former exhibited greater disease prediction accuracy. 
In particular, we recommend the Lasso method owing to its prediction accuracy and com-
puting speed across all experiments. Nevertheless, in the case of imbalanced datasets, most 
prediction models do not perform properly, and various measures must be examined in 
combination as an indicator to evaluate model performance. Therefore, we applied various 
oversampling algorithms to examine the prediction model’s performance comprehensively. 
Our results show that RWO algorithms performed better than the other oversampling algo-
rithms and that RF and boosting methods provide better prediction performance than the 
existing methods for asthma disease under consideration. In function annotation studies, 
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the top SNP sets were biologically associated with asthma or lung cancer based on func-
tional prediction scores such as CADD and DANN. The predictive value of genetic variants 
as biomarkers should be further evaluated in related diseases or traits, and these results 
should be validated in other study populations.

Materials and methods
Study participants

This study was conducted using data from the KoGES consortium, including the CAVAS, 
KARE, and HEXA. The KoGES consortium is a large-scale longitudinal survey conducted 
by the Korea National Institute of Health from 2001–2010 to identify biomarkers and 
examine risk factors for common chronic diseases, such as obesity, diabetes, hypertension, 
and dyslipidemia, in South Korea. The detailed design and procedure of the KoGES consor-
tium have been previously described [45].

In this study, there were a total of 72,296 participants, and participants with the following 
characteristics were excluded: did not provide asthma status (n = 5,182) (n = 5100 for the 
CAVAS cohort; n = 3 for the KARE cohort; and n = 79 for the HEXA cohort), did not pro-
vide allergy status (n = 5,187) (n = 5,100 for the CAVAS cohort; n = 3 for the KARE cohort; 
and n = 84 for the HEXA cohort), did not provide the smoking status (n = 265) (n = 4 for 
the CAVAS cohort; n = 67 for the KARE cohort; and n = 194 for the HEXA cohort), and 
did not provide BMI (n = 265) (n = 4 for the CAVAS cohort; n = 67 for the KARE cohort; 
and n = 194 for the HEXA cohort). A total of 66,857 participants (n = 3003 for the CAVAS 
cohort, n = 5,420 in the KARE cohort, and n = 58,434 for the HEXA cohort) were included 
in this analysis. The study was approved by the institutional review board of Hanyang Uni-
versity (IRB no. HYUIRB-202210–013).

Genotyping and quality control

DNA samples from the three cohorts were genotyped using the Korea Biobank array 
(Korean Chip, KORV1.1), which was designed by the Center for Genome Science, Korea 
National Institute of Health, based on the platform of the UK Biobank Axiom array and 
manufactured by Affymetrix [47]. SNP imputation was performed with IMPUTE2 [95] 
using 1000 genomes from phase 3 data as a reference panel. Further details on genotype 
and quality control can be found in the work by Moon et al. [47]. The PLINK program (ver. 
1.9) was used for quality control procedures [96]. Genetic variants with a high missing call 
rate > 0.05, missing rate per person > 0.05, low minor allele frequency < 0.05, and Hardy–
Weinberg equilibrium p-values ≤ 1 ×  10–5 were excluded. After quality control, 5,166,416 
autosomal SNPs remained for association analysis.

SNP prescreening

In GWASs, a logistic regression model is one of the most commonly used models to test 
for associations between genotype and phenotype while adjusting for a set of covariates. 
Therefore, we conducted a single SNP logistic regression analysis to select an effective list of 
SNPs for testing the model as follows:

(1)logit(π(X,COV)) = log
P(Y = 1|X,COV)

1− P(Y = 1|X,COV)
= Xβ + COVγ ,
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where Y is an n-dimensional vector of zeroes and ones (control = 0, case = 1), and X is a 
vector of genotypes for individuals. The genetic SNP values were encoded in three differ-
ent numbers (AA = 0, Aa = 1, aa = 2), where “A” and “a” indicate major and minor alleles, 
respectively. COV is an n × 16 matrix of covariates, representing sex, age, BMI, smoking 
status, allergy status, and the top 10 principal components (PCs) (including a column of 
ones for the intercept). We calculated the 10 PCs using train sets for autosomal chromo-
somes. Since the number of SNPs seems related to predictive performance, we selected 
SNP sets for each cohort based on the order of p-values (50, 100, 200, and 400 SNPs).

Stratified k‑fold cross‑validation

As per GWAS data, the case group was much smaller than the control group (Table 1). 
If this condition is not considered, prediction methods may be biased and trained only 
based on the control group. Therefore, we applied a stratified k-fold CV method that 
enables each fold to have the same proportion of cases and controls. A k value of 5 was 
used to evaluate the accuracy of the disease prediction methods. Figure 4 shows a flow-
chart of prediction model construction and evaluation. The GWAS data were first ran-
domly divided into training (80%) and test (20%) sets, taking into account the ratio of 

Fig. 4 Flowchart of prediction model construction and evaluation. SNP, single-nucleotide polymorphism; 
Lasso, least absolute shrinkage and selection operator; Enet, elastic net; SCAD, smoothly clipped absolute 
deviation; SVM, support vector machines; RF, random forest; NB, naïve Bayes; KNN, k-nearest neighbor 
classification; CV, cross-validation
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cases and controls. Next, a stratified k-fold CV was performed on the training set and 
repeated five times after data shuffling.

Penalized methods

A number of penalized regression methods have been suggested recently, and we con-
sidered four of these in the current study: ridge [33], Lasso [36], Enet [37], and SCAD 
[38]. The penalized logistic regression coefficients were determined by minimizing the 
log-likelihood function l(β,γ) over n observations.

where Pλ(β, γ) is a general penalty function with the tuning parameter λ. We used five-
fold CV to find the value for the tuning parameter, λ, selected via the one standard devia-
tion rule [39]. That is, selecting the model that produces a mean squared error (MSE) 
within one standard deviation of the minimal MSE. Many researchers used penalized 
methods to investigate variable selection and classification problems considering linkage 
disequilibrium among predictor SNPs in GWASs [40–44]. We used the glmnet R-pack-
age to implement the penalized methods [97].

The ridge regression method proposed by Hoerl and Kennard [33] employs a penalty 
term that regularizes the regression coefficient through an L2–norm penalized least-
square criterion [i.e., Pλ(β, γ) = λ(∑ β2 + ∑ γ2)]. In ridge regression, the tuning param-
eter controls the amount of shrinkage. If it is set to a higher value, the ridge regression 
shrinks the estimated coefficients toward zero. However, the estimated coefficients will 
not be set to zero, and the intercept term is not penalized.

The Lasso method proposed by Tibshirani [36] employs the L1–norm penalized least-
square criterion [i.e., Pλ(β, γ) = λ(∑ |β|+ ∑ |γ|)]. Unlike the ridge method, the Lasso 
method performs variable selection, with higher values of λ leading some coefficients 
of the model toward zero. Hence, the Lasso method has the advantage of reducing 
overestimation by simultaneously performing estimation and variable selection of risk 
predictors.

The Enet method proposed by Zou and Hastie [37] is a hybrid of ridge and Lasso pen-
alties, defined as Pλ(β, γ) = λ[(1 – α)(∑ β2 + ∑ γ2) + α(∑ |β|+ ∑ |γ|)], where α is the pen-
alty weight of a value between 0 and 1. If α is set to zero, the Enet method is equivalent 
to the ridge method. Otherwise, setting α close to 1 makes the Enet method identical to 
the Lasso method. Empirical simulation studies and real data analysis have suggested 
that the Enet method often outperforms Lasso in data with highly correlated risk predic-
tors [37].

The SCAD penalty proposed by Fan and Li [38] is defined as follows:

where a is a fixed constant larger than 2, the notation (‧)+ stands for the positive part, 
and I(‧) denotes the indicator function. The SCAD method produces the same behav-
ior as the Lasso penalty for small coefficients but assigns a constant penalty for large 

(2)

l(β , γ ) = −
n

i=1

yi log (π(Xi,COVi))+ 1− yi log (1− π(Xi,COVi)) +P�(β , γ ),

(3)
∂P(β , γ )

∂(β , γ )
=

∑

�

{

I(|β , γ | ≤ �)+
(a�− |β , γ |)+

(a− 1)
I(|β , γ | > �)

}

,
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coefficients. Hence, the SCAD method can reduce the estimation bias and achieve a sta-
ble model of optimal subset selection.

Machine learning methods

Various machine learning methods have been proposed, and we consider six penal-
ized methods in this study: SVM [23], RF [25], boosting [26], bagging [27], NB [28, 98], 
and KNN [29]. We used fivefold CV to find out the optimal kernel and parameters of 
machine learning methods.

The SVM method, introduced by Vapnik [23], is widely used as a supervised learning 
algorithm to solve classification problems, with successful application in various bioin-
formatics tasks. The SVM method is based on finding the optimal hyperplane that best 
separates data points into two classes. However, this method does not provide a biologi-
cal interpretation of each predictor variable in an SNP set. We implemented the SVM 
method with sigmoid, linear, polynomial, and radial kernel functions using the R-pack-
age e1071 [99].

The RF method, proposed by Breiman [25], is an ensemble classification approach that 
generates bootstrap sampling using sets of random decision trees for decision making 
and voting in classification problems. The RF method provides the relative importance of 
each feature in a prediction model. This method has been successfully applied in genet-
ics research [100–102]. We used the R-package randomForest with default settings [103].

The boosting method, proposed by Schapire [26], is one of the most popular 
approaches for reducing variance and bias in ensemble machine learning. The basic 
principle of the boosting method is to iteratively assemble multiple weak learning mod-
els in order to establish a robust model that is markedly better in prediction than any of 
the single models. Many researchers have demonstrated the performance of the boost-
ing method and its optimization for genomic selection, gene interaction, and genetic 
disease diagnosis [104–107]. We used the R-package ada, including discrete, real, and 
gentle type functions [108].

The bagging method, proposed by Breiman [27], is an ensemble algorithm used to 
generate many predictors and obtain an aggregated predictor to be used for statistical 
classification. The bagging method effectively reduces the variance of a model, increases 
accurate estimates, and prevents overfitting. Many researchers employed the bag-
ging method, demonstrating its performance in bioinformatics classification and gene 
selection [109–111]. We used the R-package ipred with different nbagg value options 
(nbagg = 25, 50, 100, and 200) [112].

The NB method based on Bayes′ theorem [28, 98] is a supervised learning algorithm 
for solving classification problems. The NB method is a probabilistic classifier using the 
assumption of conditional independence between the different variables in a given data-
set. It was previously employed to improve the performance of gene selection and classi-
fication based on gene expression [113–116]. We used the R-package e1071 with default 
settings [99].

The KNN method proposed by Cover and Hart [29] is one of the most common pat-
tern recognition algorithms. The main idea of the KNN method is to extract k closest 
data with input data existing in close. The KNN method is also helpful in gene selection, 
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cancer classification, and diagnosis based on gene expression [117–120]. We used the 
R-package caret with default settings [57].

Evaluation of disease risk prediction models

We compared and evaluated the performance of predictive models on imbalanced data-
sets based on precision, recall, F1-score, Cohen′s Kappa, BA, error rate, MCC, AUC, and 
AUPRC. The performance metrics can be calculated from the number of true positives 
(TPs), false positives (FPs), false negatives (FNs), and true negatives (TNs). Precision, 
also known as the positive predictive value, is calculated via the following formula:

The recall or sensitivity can be calculated via the following formula:

The F1-score is a combined measure of precision and recall, which can be determined 
via the following formula:

Cohen′s Kappa is commonly used to quantify the degree of agreement between raters 
on a nominal scale and can be calculated via the following formula:

The BA is the average of sensitivity and specificity that is defined via the following 
formula:

The error rate represents the ratio of incorrect predictions among a total number of 
results and can be calculated via the following formula:

The MCC calculates the Pearson correlation coefficient between observed and pre-
dicted classifications that range from -1 (worst value) to 1 (best value). The MCC is 
defined via the following formula:

The AUC of the ROC is widely used as an overall summary measure of discrimina-
tive accuracy in binary classification [121, 122]. ROC curve indicates the relationship 

(4)Precision =
TP

TP+ FP
.

(5)Recall =
TP

TP+ FN
.

(6)F1-score =
2× Precision× Recall

Precision + Recall
.

(7)Kappa =
TP+TN

TP+TN+FP+FN
TP+TN

TP+TN+FP+FN + (TP+TN)×(FP+FN)
2×(TP×TN−FP×FN)

.

(8)BA =
TP

TP+FN + TN
TN+FP

2
.

(9)Error rate =
FP+ FN

TP+ TN+ FP+ FN
.

(10)MCC =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

.
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between the true positive and false positive rates for all possible threshold values. For 
example, an AUC score close to 0.5 corresponds to random chance, whereas a maxi-
mum value of 1.0 implies perfect discriminatory power.

The AUPRC is an informative evaluation measure, especially on imbalanced bio-
logical and medical datasets [123–125]. The precision-recall curve (PRC) is composed 
of the recall (x-axis) and the precision (y-axis) for different probability thresholds 
[126]. Unlike the baseline of the ROC curve, which is fixed at 0.5, the baseline of 
PRC is determined by the ratio of positives (P) and negatives (N) as y = P/(P + N). 
For instance, the baseline of PRC is y = 0.5 in the case of balanced data. However, it 
is changed to y = 0.09 in the imbalanced data with a P:N ratio of 1:10. Thus, the AUC 
score is constant regardless of the positive rate, but the AUPRC decreases accordingly 
as the positive rate decreases. For example, when the positive rate is 0.01, an AUPRC 
of 0.10 means that the prediction model’s performance is ten times better than the 
baseline of 0.01.
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