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Introduction
Drug discovery is a challenging task that has consistently proven to be time-consuming 
and expensive [1]. As a result, pharmaceutical companies are turning towards compu-
tational methods capable of automating more stages of their drug discovery pipelines. 
One of the earliest stages involves the prediction of interactions between chemical com-
pounds and biological targets, also known as drug–target interaction (DTI) prediction, 
replacing large-scale biological screening experiments with more efficient approaches. 
In this area, two groups of computational methods are distinguished: docking meth-
ods and machine learning approaches. Docking methods simulate the physical interac-
tion of molecules and proteins in the 3D space accounting for the physical structure [2]. 
Machine learning approaches, on the other hand, predict drug–target interactions by 
learning from data, using databases that contain results of traditional high-throughput 
screening experiments [3].

Abstract 

The prediction of interactions between novel drugs and biological targets is a vital 
step in the early stage of the drug discovery pipeline. Many deep learning approaches 
have been proposed over the last decade, with a substantial fraction of them sharing 
the same underlying two-branch architecture. Their distinction is limited to the use 
of different types of feature representations and branches (multi-layer perceptrons, 
convolutional neural networks, graph neural networks and transformers). In contrast, 
the strategy used to combine the outputs (embeddings) of the branches has remained 
mostly the same. The same general architecture has also been used extensively 
in the area of recommender systems, where the choice of an aggregation strategy 
is still an open question. In this work, we investigate the effectiveness of three different 
embedding aggregation strategies in the area of drug–target interaction (DTI) predic-
tion. We formally define these strategies and prove their universal approximator capa-
bilities. We then present experiments that compare the different strategies on bench-
mark datasets from the area of DTI prediction, showcasing conditions under which 
specific strategies could be the obvious choice.

Keywords:  Drug–target interaction prediction, Binding affinity prediction, 
Recommender systems, Deep learning

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Iliadis et al. BMC Bioinformatics           (2024) 25:59  
https://doi.org/10.1186/s12859-024-05684-y

BMC Bioinformatics

*Correspondence:   
dimitrios.iliadis@ugent.be

1 Department of Data Analysis 
and Mathematical Modelling, 
Ghent University, Coupure Links 
653, 9000 Ghent, Belgium
2 Department of Computing, 
University of Turku, 20500 Turku, 
Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05684-y&domain=pdf


Page 2 of 18Iliadis et al. BMC Bioinformatics           (2024) 25:59 

Recently, deep learning methods have gained a lot of interest in DTI prediction. In 
these methods, explicit features for the compounds and proteins are available before-
hand and passed to a deep neural network. Even though many approaches exist, we will 
focus on a quite popular sub-category of two-branch deep neural networks. As shown 
in Fig. 1, these architectures consist of two neural network components that encode the 
compound and protein features, respectively. The two embedding vectors generated by 
the branches are then aggregated to obtain the final prediction. A non-exhaustive list of 
recent approaches that consider an architecture of that kind can be found in Table 1.

DTI prediction is closely related to recommender systems based on collaborative fil-
tering, such as the well-known Netflix challenge [16]. In both cases, a standard dataset 
takes the form of triplets: {compound, protein, activity} or {user, item, interaction} . These 
triplets can be arranged in a sparse matrix, and in its simplest form the prediction task is 
matrix completion. However, when explicit feature representations are used, three addi-
tional prediction settings become feasible, in addition to matrix completion [17]: making 
predictions for new compounds, new proteins or new protein-compound combinations. 
In DTI prediction, every method utilizes the explicit features that are available for the 
compounds and proteins. In contrast, similar methods in recommender systems often 
do not use explicit features, but create one-hot dummy vectors (implicit features) to 
characterize the users and items [18, 19].

DTI prediction and collaborative filtering methods also consider different aggregation 
strategies for the drug–target or user-item embeddings. Every DTI prediction method in 
Table 1 concatenates the two embeddings and then passes the resulting vector to a multi-
layer perceptron (MLP strategy, see Fig. 1). Conversely, the area of collaborative filtering 
has a more diverse landscape, with various aggregation strategies that are regularly used, 

Table 1  Two-branch methods

Method Compound 
representation

Compound branch Protein 
representation

Protein branch

DeepConv-DTI [4] Morgan MLP Amino acid 
sequence

CNN

DeepDTA [5] SMILES CNN Amino acid 
sequence

CNN

Shin et al. [6] SMILES Transformer Fasta CNN

MDeePred [7] ECFP4 MLP Multi-channel pro-
tein features

CNN

Chen et al. [8] Molecular graph GNN Amino acid 
sequence

BERT

Torng et al. [9] Molecular graph GCNN Protein graph GCNN

SSnet [10] Fingerprint MLP Backbone curvature, 
torsion

CNN

Tsubaki et al. [11] Molecular graph GNN Amino acid 
sequence

CNN

Kang et al. [12] SMILES BERT Amino acid 
sequence

BERT

Nguyen et al. [13] Molecular graph GCN, GAT, GIN, GAT-
GCN

Amino acid 
sequence

CNN

Mingjian et al. [14] Molecular graph GNN Protein graph GNN

DeepPurpose [15] Various encodings MLP, CNN, CNN–
RNN...

Various encodings MLP, CNN, CNN–RNN...
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see e.g. [18, 20–26]. Especially the dot product has been extensively used in that area, 
and papers benchmarking the dot product versus the MLP have been published [27, 28]. 
Currently, a similar investigation is missing from the area of DTI prediction.

In this work, we will discuss the behavior of different embedding aggregation strate-
gies in DTI prediction. To this end, we will analyze the above-mentioned MLP and dot 
product strategies, as well as a third strategy, the tensor product, which used to be popu-
lar in the era of kernel methods [29–31]. First, we will present theoretical results high-
lighting the universal approximation properties of all three strategies, departing from 
well-known mathematical building blocks. Subsequently, we will present benchmarking 
results of the three strategies on combinations of DTI datasets, branch types and predic-
tion settings. Furthermore, we will investigate the effect of adding implicit feature rep-
resentations, and we will interpret the learned embeddings. As a result, the main goal of 
this paper is to compare the aggregation strategies in detail and not to present a winning 
architecture that achieves state-of-the-art performance.

Methods
Aggregation strategies

We first describe the details of the considered aggregation strategies. As shown in Fig. 1, 
we compare three strategies: the dot product, the multi-layer perceptron and the tensor 
product. 

1.	 Dot product In the dot product strategy, the dot product of the two embeddings is 
directly computed and used as the prediction of the model. This strategy requires 

Fig. 1  A summary of the two main versions of the architecture we used. First, the two-branch architecture 
(A) encodes the explicit feature representations that are available for the compounds and proteins. The 
resulting embeddings can be aggregated with one of the three strategies (MLP, dot product, tensor product). 
The second version of the architecture combines both the implicit and explicit information available for the 
compounds and proteins (B). The explicit features can be encoded in the exact same manner as shown in 
(A), while the one-hot encoded dummy vectors for the compounds and proteins can be transformed into 
dense representations using a single fully-connected layer. The intermediate embeddings from the explicit 
and implicit features are aggregated using the MLP strategy. This output of the MLPs is the compound and 
protein embeddings that can then be aggregated with any of the three available strategies
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both embeddings to have the same size, a restriction that we will further investigate 
in a later section.

2.	 Multi-layer perceptron The MLP strategy concatenates the embeddings and then 
passes the resulting vector as input to a multi-layer perceptron, which, in turn, ter-
minates at a single output node. As stated before, the use of an MLP increases the 
capacity of the overall model compared to the simple dot product operation, but, 
perhaps, also introduces an unwanted overhead.

3.	 Tensor product The tensor product strategy first computes the tensor product of 
the two embeddings and then uses a single fully-connected layer that terminates 
at an output node. In fact, this aggregation strategy has never been suggested as an 
embedding aggregation strategy for deep neural networks, but it has been extensively 
used in kernel methods [29–31].

For reproducibility reasons, and to describe the universal approximation capabilities 
of the three aggregation strategies, we present formal definitions of the three strat-
egies. Let X  and T  be two Euclidean spaces for compounds �x and proteins �t , respec-
tively. We formally define the problem of DTI prediction as that of estimating functions 
f : X × T → Y , where Y = R in case of regression problems. Let us consider hypoth-
esis spaces

for learning compound embeddings from X  to RD1 with dimensionality D1 , and protein 
embeddings from T  to RD2 with dimensionality D2 . �θX and �θT  denote the parameteriza-
tions of the two types of functions. Moreover, let us consider the space C(X × T ) of all 
continuous real-valued functions f : X × T → R . A subspace HDP of C(X × T ) cor-
responds to the dot product strategy of the two-branch architecture, i.e., functions of the 
form

with �gθX = (g1, . . . , gD) ∈ HX , �hθT = (h1, . . . , hD) ∈ HT  , and D the common dimen-
sionality of the two embeddings.

A second subspace HMLP corresponds to the MLP strategy of the two-branch architec-
ture, in which the MLP is comprised of one hidden layer of size L ∈ N , i.e., functions of 
the form

where �C(3) ∈ R
L×(D1+D2) , �B(3) ∈ R

1×L , �b(3) ∈ R
D1+D2 , and [�g , �h] denotes vector concat-

enation of the D1-dimensional vector �g and the D2-dimensional vector �h . σ◦ represents 
an elementwise nonlinear transformation.

We introduce a third and final subspace HTP that defines the tensor product strat-
egy of the two-branch architecture, in which compound and protein embeddings are 

HX = �g�θX : X → R
D1 | D1 ∈ N

HT = �h�θT
: T → R

D2 | D2 ∈ N

f (�x, �t) =

D
∑

d=1

gd(�x) hd(�t),

f (�x, �t) = �C(3)(σ ◦ (�B(3)[�g(�x), �h(�t)] + �b(3))),
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aggregated by means of a tensor product, followed by a linear layer with a single out-
put neuron. The resulting functions are of the form

where �gθX = (g1, . . . , gD1) ∈ HX , �hθT = (h1, . . . , hD2) ∈ HT  , and �W ∈ R
D1×D2.

Datasets

The proposed variants of the two-branch neural network architecture were evaluated 
on two benchmarks, Davis [32] and KIBA [33], because of their use as benchmarks in 
many of the studies presented in Table 1 and their varying numbers of compounds, 
proteins, and recorded affinities (see Table 2). The models were trained on the regres-
sion task, which aims to predict the affinity scores for compound-target pairs.

Prediction settings

Collaborative filtering methods usually predict missing interactions between col-
lections of users and items that have been observed during training (random-split), 
something that does not require any explicit feature representations. In contrast, the 
availability of such features in the typical DTI prediction task makes three additional 
prediction settings feasible [17]. The model could be expected to generate predictions 
for novel drugs (cold-drug) or novel targets (cold-target) that have not been observed 
during training. A fourth option that combines the strategies of the previous two is 
concerned with the prediction for pairs of novel drugs and targets that have not been 
observed during training. In the collaborative filtering area, these types of predic-
tion settings are used less frequently but also witness a growing interest (cold start 
collaborative filtering). In this paper, we run experiments for the first three predic-
tion settings: random-split, cold-drug and cold-target. The fourth prediction setting 
(combination of cold-drug and cold-target) was excluded from our analysis, as it is 
not implemented in the DeepPurpose library, which is used as the building block for 
protein and compound branches—see next paragraph. For each prediction setting, 
every dataset is split into training, validation and test sets (70–10–20%). However, the 
way the data is separated differs. For the cold-target setting, 70% of the targets only 
appear in the training dataset, 10% only appear in the validation datasets, and the 
remaining 20% only appear in the test set. In the cold-drug setting, the same ratios 
are used to split the drugs. Finally, for the random-split, the ratios are used to split the 
{compound, protein, activity} triplets in the dataset.

(1)f (�x, �t) =

D1
∑

k=1

D2
∑

l=1

wkl gk(�x) hl(�t),

Table 2  Dataset statistics

Dataset #Drugs #Targets #Interactions

DAVIS 68 379 30,056

KIBA 2068 229 118,254
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Benchmarking experiments

For the implementation of the two-branch architectures, the DeepPurpose library [15] 
was chosen as the starting point. A forked version of the repository, which has been 
heavily modified is available online.1

Since multiple branch pairings were possible, we included three combinations, reflect-
ing varying degrees of descriptor and branch baseline complexity. These combinations 
included:

•	 An MLP compound branch on Morgan fingerprints [34] and an MLP protein branch 
on amino acid composition descriptors [35].

•	 A 1D Convolutional Neural Network (CNN) [36] compound branch on SMILES 
strings and a CNN protein branch on amino acid sequences.

•	 A Message-Passing Neural Network (MPNN) [37] compound branch on molecular 
graphs and a CNN protein branch on amino acid sequences.

Implicit feature representations

All the experiments mentioned above utilize different forms of explicit feature repre-
sentations for both compounds and proteins, but not the structure of the interaction 
matrix. To better investigate the quality of these sources of information, we conducted 
additional experiments with the following differences:

•	 An MLP branch for the compounds and proteins that, instead of using explicit fea-
tures, utilizes one-hot encoded dummy vectors. Since no generalization to new com-
pounds or new proteins is possible when using this type of feature, we only focus 
on the random-split setting. When the dot product is used as the aggregation strat-
egy the resulting architecture is a close analogue to traditional matrix factorization 
methods.

•	 A two-branch architecture where each branch is comprised of an internal two-
branch model (Fig.  1B). The internal model is designed to utilize the explicit and 
implicit features of the compounds/proteins, something that could potentially lead 
to improved performance. The MLP strategy is always used for the aggregation of the 
internal embeddings, while all three strategies of interest are available for the exter-
nal embeddings.

Hyperparameter optimization

For the comparison of the three aggregation strategies across two DTI prediction data-
sets and the three prediction settings, we utilized random search as the hyperparameter 
optimization method of choice. For every optimization round, a budget of 100 configu-
rations was allocated, with each experiment training for up to 100 epochs (early stopping 
on the validation loss was also used).

1  https://​github.​com/​dilia​dis/​DeepP​urpose.

https://github.com/diliadis/DeepPurpose
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The hyperparameter ranges of every experiment had to be adapted based on the 
aggregation strategy and branch architectures used. The full details can be found in the 
Additional file 1: Appendix. Every model was trained on a single GPU (either NVIDIA 
Ampere A100 or NVIDIA Volta V100), and all the results were logged using the Weights 
and Biases platform [38].

Metrics

To guarantee a consistent comparison across all our experiments, we adopted the same 
regression metrics as used in the majority of the work presented in Table  1. These 
include metrics like: 

	(i)	 Mean squared error (MSE): Measures the differences between the predicted values 
and the real values. Assuming n drug–target pairs, the MSE is calculated as the 
average of the squared differences between the predicted affinity scores ŷ and the 
true affinity scores y. The goal is to minimize the MSE score as this means that the 
predictions are close to the true values: 

	(ii)	 R-squared (R2 ): Also known as the coefficient of determination, R 2 is a statistical 
measure that represents the proportion of the variance of the dependent variable 
that is explained by the independent variables in a regression model. Unlike MSE, 
which is a measure of the model’s absolute error, R 2 is a relative measure of how 
well the regression predictions approximate the true values. An R 2 of 1 indicates 
that the regression predictions perfectly fit the data. In the context of drug–target 
interaction prediction, it quantifies how well the variations in the predicted affin-
ity scores ŷ explain the variation in the true affinity scores y. The formula for R 2 is 
given by: 

 where ȳ is the mean of the true affinity scores. A higher R 2 score indicates a better 
model fit.

	(iii)	 Concordance index (CI): CI is the probability that the predicted affinity scores of 
two randomly chosen drug–target pairs are in the correct order: 

 where I is the indicator function, taking value 1 if its argument is true, 0 otherwise. 
A higher value of the concordance index indicates a better model fit.

Results
Universal approximation

Using existing mathematical results from [39, 40] as building blocks, one can easily show 
that all three aggregation strategies are universal approximators. We provide further 

(2)MSE =
1

n

n
∑

i=1

(ŷi − yi)
2.

(3)R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

,

(4)CI =
1

∑n
i=1

∑n
j=1 I(yi > yj)

n
∑

i=1

n
∑

j=1

I(yi > yj)I(Oyi >Oyj),
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details and formal derivations in Additional file 1: Appendix, but summarize the main 
insights here. Broadly speaking, universal approximation theorems imply that neural 
networks can represent a wide variety of interesting functions when given appropriate 
weights. On the other hand, they typically do not provide a construction for the weights, 
but merely state that such a construction is possible.

In the setting of DTI prediction, universal approximation can only be guaranteed if the 
protein branch, compound branch and the aggregation strategy are universal approxi-
mators. For the formal results presented in the Additional file 1: Appendix, we assume 
that the protein and compound branches are universal approximators, and we show 
that this is sufficient to prove universal approximation of the three aggregation strate-
gies. For simplicity, we also assume that protein and compound feature vectors can be 
represented in Euclidean spaces, with multi-layer perceptrons as protein and compound 
branches. Similar universal approximation theorems could be easily derived for different 
activation functions [41, 42], non-Euclidean spaces [43], and other types of neural net-
work architectures, such as deep convolutional neural networks [44].

Benchmarking experiments

In this section, we present extensive comparisons of the three embedding aggregation 
strategies on popular benchmark datasets from the field of DTI prediction. The experi-
ments span two different DTI prediction datasets, three prediction settings (random, 
cold-drug, cold-target), as well as three different combinations of input feature represen-
tations and compound-protein branch architectures. Table 3 offers a quick summary of 
the results that have been obtained.

In the majority of cases and for both recorded metrics, we see that the dot product and 
tensor product strategies can be seen as competitive alternatives to the MLP. In many 
cases, they achieve superior performance. At the same time, none of the three strategies 
can be highlighted as the strategy of choice purely based on the final performance, as 
none of them consistently outperforms the others. These results confirm our theoretical 
findings presented in the Additional file 1: Appendix, as all three strategies can approxi-
mate any target function. Interestingly, specific combinations of dataset, prediction 
setting and branch pair exist, in which the three strategies result in unexpected perfor-
mance differences. More specifically, when we used an MPNN as the compound branch 
and a CNN as the protein branch, the dot product and tensor product strategies clearly 
failed to reach the performance of the MLP strategy in both randomly split datasets. A 
more detailed investigation of the reasons behind this result as well as a potential rem-
edy for the dot product and tensor product strategies are presented in a later subsection.

An important characteristic of any model that can influence many practical aspects of 
the training process is its overall capacity. Even though capacity measures of neural net-
works exist (e.g. Vapnik–Chervonenkis dimension [45]), they are primarily dealing with 
simple MLP architectures. Since the two-branch architecture we utilize can be equipped 
with more complex branches (CNNs, MPNNs, etc.) we decided to simplify things and 
instead use the total number of trainable parameters as the measure of model capac-
ity. Since a smaller network with fewer parameters can result in reduced memory and 
lower computational requirements, a smaller model that can still achieve a similar per-
formance compared with a larger counterpart is highly desirable. Our initial hypothesis 
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was that the overhead of the MLP strategy introduced by the fully-connected layers after 
the concatenation of the compound and protein embeddings would result in larger mod-
els. Based on the results shown in Table 3 the aforementioned competitiveness of the dot 
product strategy is usually achieved by small models. By accounting for this extra infor-
mation, we can more confidently suggest the dot product strategy as a replacement for 
the MLP-based architecture.

Revisiting the close connection with recommender systems, a highly-cited publication 
by He et al. [18] first presented the dot product strategy as the simplest neural network 
approximation of matrix factorization. He et al. [18] then suggested the MLP strategy 
as a more powerful approach with the capacity to model more complex relationships 
between the items and users. This experimentally-backed strategy was then adopted by 
a series of subsequent publications [20–23] in the area of recommender systems, while 
proposals with the dot product strategy continued to be considered [24–26].

The superiority of the MLP aggregation strategy in the area of collaborative filtering 
was questioned by several subsequent publications. Rendle et al. [27] showed that, with 
careful hyperparameter selection, the dot product strategy could outperform the MLP 
strategy. They also pointed out that an MLP cannot trivially approximate the seemingly 
basic dot product operation. Xu et al. [28] offered a more rigorous comparison by inves-
tigating the limiting expressivity of each strategy, the convergence under the practical 
gradient descent algorithm, and the generalization potential. The two aforementioned 
publications approach the comparison of strategies exclusively in the area of recom-
mender systems using benchmark datasets that are missing any explicit features for the 
users or items. In our investigation, which includes explicit feature representation and 
multiple generalization settings, we formulate similar conclusions as [27] and [28].

Implicit feature representations

Furthermore, Table 4 contains the results for two additional neural network configura-
tions: two-branch neural networks that only use implicit features, and two-branch neu-
ral networks that use implicit and explicit features. So, in combination with the results 
of Table  3, which summarized the results for two-branch neural networks that only 
included explicit features, we compare here three types of two-branch neural networks. 
Overall, the initial setup with only explicit features gives the best results, but the dif-
ferences between the three variants is small. The negligible differences let us conclude 
that adding implicit features does not have benefits for the datasets and models that we 
considered. However, the neural network that only uses implicit features still yields a sat-
isfactory performance, so a clear structure must be present in the interaction matrices of 
the two datasets.

In the last decade, matrix factorization methods have been extensively used to exploit 
the structure in the interaction matrix by decomposing it into two small matrices that 
contain the implicit features [46]. Formally speaking, the structure of the interaction 
matrix can be summarized using the singular values of that matrix. If most singular 
values differ from zero, the interaction matrix has a high rank, so approximating it as 
a product of two smaller matrices will lead to little predictive power and meaningless 
implicit features. Conversely, if most singular values are equal to zero, the interaction 
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matrix has a low rank, and low-rank matrix approximation via matrix factorization will 
result in good predictive performance and meaningful implicit features.

Matrix factorization methods share major similarities with the two-branch architec-
tures we consider in this work. The simplest version of the two-branch architecture, 
which uses only the implicit features and aggregates the embeddings via the dot prod-
uct strategy, can be seen as a way of performing matrix factorization [18, 28, 47–49]. 
For explicit feature representations and other aggregation strategies, the link with matrix 
factorization is less obvious, and the models become more difficult to analyze in a formal 
way. However, we believe that the structure of the interaction matrix is also exploited 
by the models in that case, because low-dimensional embeddings of proteins and com-
pounds are constructed. To our opinion, that’s the main reason why adding implicit fea-
tures does not lead to performance gains in our experiments.

Let us remark that matrix factorization methods have been extensively used for DTI 
prediction. Early work by Cobanoglu et  al. [50] used probabilistic matrix factoriza-
tion combined with active learning without relying on compound or protein similari-
ties. Ezzat et al. [51] proposed a graph regularized matrix factorization method (and a 
weighted variant) to perform manifold learning and improve the performance in the 
cold-drug and cold-target prediction settings. More recent work by Mazzone et al. [52] 
used the NXTfusion [53] library that extends traditional matrix factorization methods in 
a non-linear fashion by inferring over an arbitrary number of data matrices, which are 
built as an entity relation graph. The data fusion step was performed by training a multi-
task neural network that includes side information.

The concept of combining implicit and explicit information to improve the perfor-
mance of DTI prediction tasks has also been incorporated into various kernel-based 
methods. Gonen [29] proposed a Bayesian formulation that combines kenrel-based non-
linear dimensionality reduction, matrix factorization and binary classification to predict 
interactions using only the chemical similarity between compounds and genomic simi-
larity between proteins. Another kernel method, called NMTF-DTI [54], used a non-
negative tri-factorization technique based on Laplacian regularization and multiple 
similarity matrices for drugs and targets. A third approach defined the Gaussian interac-
tion profile kernel [55] to capture topological information from the drug–target inter-
action network, and a variation of that method improved the predictive performance 
even further by incorporating extra sources of chemical and genomic information with 
additional kernels. These results do not agree with our findings, but the datasets used in 
most kernel-based papers were significantly smaller than those we analyzed.

Similar to the two-branch neural networks we discuss in this work, kernel methods 
enable the projection of the compounds and proteins into a shared space from which 
the predictions are generated. However, in two-branch neural networks, the branches 
“learn” the compound and protein embeddings, while kernel-based methods pre-com-
pute these embeddings by specifying a specific kernel. In general, one can assume that 
learning the embeddings is better than defining them based on a kernel, especially when 
datasets are large. That’s probably the reason why deep learning methods have won the 
battle against kernel methods in DTI prediction. Furthermore, it is worth mentioning 
that the use of multiple kernels for drugs and targets with the goal of improving perfor-
mance [56, 57] shows many similarities with multi-modal neural network architectures 
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that utilize multiple branches (one per feature representation) before the aggregation 
step [58–61]. Both concepts essentially try to boost performance by including different 
types of information from the same entity.

Embedding visualizations

To better understand the similarities and differences between the MLP and dot product, 
we experimented with various visualizations and included the most interesting exam-
ples in this work. From this point onwards, our analysis skips the tensor product, as it 
does not provide any performance gains or distinct characteristics compared with the 
MLP and dot product strategies. In their simplified form, one of the key conceptual dis-
tinctions among these strategies lies in the location of the learning process. In the dot 
product strategy, this is exclusively done in the two branches since the aggregation strat-
egy is just the dot product operation. In contrast, the MLP strategy shares the learning 
between the two branches and the fully-connected layers after the concatenation of the 
embeddings. A basic visualization of the compound-protein embeddings obtained from 
the fully-connected layers (Fig. 2) of a well-performing MLP strategy shows an improv-
ing separation of the active and inactive compound-protein pairs the closer we get to the 
output node.

To investigate the quality of the compound embeddings, we experimented with 
another type of visualization in Fig. 3. The four subplots visualize the affinity scores of 
four proteins (with the highest number of recorded affinities in the KIBA dataset) after 
the Uniform Manifold Approximation and Projection (UMAP) [62] is applied on the 
compound embeddings.

Even though the affinity differences observed in compound clusters between the four 
proteins are quite interesting, we focus on the relative comparison of the learned clus-
ters. Based on the aforementioned discussion about the location of the learning process, 
the well-defined clusters of the compound embeddings from the dot product strategy 
are largely expected, as the two branches are exclusively responsible for learning to pre-
dict affinities. At the same time and, somewhat surprisingly, the visual inspection of 
the compound embeddings obtained from the MLP strategy shows similar embedding 

Fig. 2  UMAP visualization of the test compound-protein embeddings extracted from the fully-connected 
layers of the best MLP configuration trained on the DAVIS dataset. The configuration uses CNN compound 
and protein branches. The points are colored using the binarized affinities (orange for active and green 
for inactive). From the figure, we observe that starting from the first layer (after the concatenation of the 
compound and protein branch embeddings) to the third, the separation of the two classes becomes clearer
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quality as the dot product, even though the fully-connected layers after the embedding 
concatenation share the learning responsibility.

Oversmoothing effect and its importance when selecting an embedding aggregation 

strategy

For specific combinations of dataset, prediction setting and branch pair, Table 3 includes 
dot product and tensor product examples that are clearly outperformed by the MLP 
aggregation strategy. These cases include the use of the MPNN compound branch and 
the CNN protein branch on the randomly split version of the two datasets. As the CNN 
protein branch had been successfully used in the CNN–CNN combination, we focused 
our efforts on the MPNN branch as the defective model. In an effort to increase its 
capacity, we first tested configurations with deeper MPNNs, something that ultimately 
did not yield any improvements. Our hypothesis was that the over-smoothing effect that 
many graph neural networks suffer from [63] made any attempt to increase the capacity 
fail performance-wise. This is shown in the two plots of Fig. 4, where points from models 
that use the dot product strategy and varying sizes of the MPNN branch architecture 
fail to approach the performance the MLP strategy achieves. Assuming that the superior 
performance of the MLP-based architecture was a result of the fully-connected layers, 
we decided to test new dot-product-based configurations by appending fully-connected 
layers after a smaller MPNN model and before the embedding aggregation step. With 
this strategy, we managed to both increase the capacity of the compound branch and 
avoid the over-smoothing effect that larger MPNN models suffer from. Referring back 
to Fig. 4, these modified architectures colored in red show major improvements, as they 
became comparable performance-wise with the MLP strategy.

Oversmoothing is a well-recognized challenge in GNNs, and numerous research 
papers have been dedicated to address this issue [64–66]. The underlying message of this 
exploration is that the dot product has the inability to counterbalance weaknesses that 

Fig. 3  UMAP visualization of the compound embeddings extracted from the last fully-connected layer of the 
compound branch (CNN) of the best MLP (left) and dot product (right) configurations trained on the KIBA 
dataset. The points are colored based on the affinities of the four proteins in the training set with the highest 
number of recorded entries. Comparing the two strategies, we observe that both create clusters of similar 
quality
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may arise from the branches, as it lacks the trainable parameters that the MLP strat-
egy has. This problem can be tackled by increasing the capacity of the defective branch. 
However, cases still exist where this strategy is inadequate because of branch-specific 
weaknesses (e.g., over-smoothing in GNNs). In such cases, it is suggested to increase 
the capacity of the defective branch with fully-connected layers or replace the branch 
altogether.

Conclusion
In this work, we analyzed alternatives to the traditional embedding aggregation strat-
egy that has dominated the two-branch architectures in the field of DTI prediction. We 
presented formal and experimental results which show that all three analyzed strategies 

Fig. 4  Plot of the capacity of different models against their test MSE. All the points represent experiments 
with an MPNN as the compound branch and a CNN as the protein branch. The point colored green 
represents a well-performing experiment of the MLP strategy, while the blue points represent dot product 
strategies with similar branch configurations. The results illustrate the inability of the dot product to achieve 
comparable performance with the MLP strategy when one of the branches fails to utilize its input properly. 
Even after testing dot-product-based configurations with varying capacity (increasing the MPNN depth) 
exceeding that of the MLP benchmark, the performance does not improve. Our hypothesis is that the main 
reason for the underperforming experiments that use the dot product is the over-smoothing effect that 
graph neural networks suffer from. This assumption is supported by the significant improvements that a 
small modification attains (colored red). Instead of increasing the capacity of the MPNN directly, we instead 
append fully-connected layers immediately after it and before the embedding aggregation operation, thus 
increasing the overall capacity of the compound branch and bypassing the MPNN. The experiments colored 
red demonstrate that the dot product strategy can reach a comparable performance as the MLP strategy 
while keeping the overall capacity low
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can be used to aggregate embeddings. We identified conditions under which a particular 
type of aggregation strategy might outperform others, and we presented various visu-
alizations. We believe that this work can be the first step in convincing the DTI predic-
tion community to also focus on the embedding aggregation options. Even though this 
may not seem vital when aggregating only two embeddings, it can become an impor-
tant choice in multi-modal architectures or when more than two embeddings have to be 
aggregated (e.g. drug–drug–protein interaction prediction).

With regard to future work, we intend to test attention-based embedding aggrega-
tion methods, which have become popular in other application domains. Furthermore, 
increasing the number of embeddings that are aggregated is also an interesting avenue 
we intend to explore. This approach is used when different representations are available 
for the same entity. For example, different feature representations for a given compound 
(Morgan fingerprint, 2D image, molecular graph) could be combined in different ways. 
Thus, the order and strategy used at every stage of aggregating embeddings is a complex 
task. Finally, the evaluation of the added value that pre-trained embeddings from differ-
ent strategies can bring to transfer learning tasks is an interesting topic that we intend to 
investigate in future work.
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