
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Aslett and Christ  BMC Bioinformatics           (2024) 25:86  
https://doi.org/10.1186/s12859-024-05688-8

BMC Bioinformatics

kalis: a modern implementation of the Li & 
Stephens model for local ancestry inference in R
Louis J. M. Aslett1* and Ryan R. Christ2 

Abstract 

Background: Approximating the recent phylogeny of N phased haplotypes at a set 
of variants along the genome is a core problem in modern population genomics 
and central to performing genome-wide screens for association, selection, introgres-
sion, and other signals. The Li & Stephens (LS) model provides a simple yet powerful 
hidden Markov model for inferring the recent ancestry at a given variant, represented 
as an N × N distance matrix based on posterior decodings.

Results: We provide a high-performance engine to make these posterior decod-
ings readily accessible with minimal pre-processing via an easy to use package kalis, 
in the statistical programming language R. kalis enables investigators to rapidly resolve 
the ancestry at loci of interest and developers to build a range of variant-specific ances-
tral inference pipelines on top. kalis exploits both multi-core parallelism and modern 
CPU vector instruction sets to enable scaling to hundreds of thousands of genomes.

Conclusions: The resulting distance matrices accessible via kalis enable local ancestry, 
selection, and association studies in modern large scale genomic datasets.

Keywords: Li & Stephens model, R package, Probabilistic haplotype model, Hidden 
Markov model, Genomics, High performance computation

Background
The hidden Markov model (HMM) of haplotype diversity proposed by Li & Stephens [1] 
(hereinafter, the LS model) has become the basis for several probabilistic phasing, ances-
try inference, and demographic inference methods in modern genomics [2, 3].

Accelerated implementations of the LS model, typically targeting the Viterbi path, 
are integral to many commonly used genomics software packages, including BEAGLE 
[4], IMPUTE [5], and tsinfer [6]. A pioneering ancestry inference software package, 
ChromoPainter, popularized the idea of using the LS model to summarize the ancestry 
of N  haplotypes with an N × N  similarity matrix [7]. This matrix is obtained by run-
ning N  independent HMMs in which each haplotype is modelled as a mosaic of all of 
the other haplotypes in the sample. This ‘all-vs-all’ copying approach is motivated by 
the product of approximate conditionals (PAC) likelihood originally proposed by [1] and 
allows ChromoPainter to render a chromosome-wide estimate of the recent ancestry of 
the N  haplotypes with high resolution.
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The Relate [2] software suite extended this idea to performing local (locus-specific) 
ancestry inference along the genome. Internally, Relate uses high performance C++ 
implementations of the forward and backward algorithm to perform posterior decod-
ing under a modified version of the LS model that incorporates derived allele informa-
tion at many loci spaced along the genome. We will refer to this modified LS model as 
the derived allele haplotype copying model. These posterior decodings are transformed 
to N × N  local genetic distance matrices and used to initialise variant-specific ancestral 
trees for downstream population genetic analyses ranging from demography to selection 
inference.

The current Relate software suite does not provide an interface for outputting the pos-
terior decodings at a locus of interest and does not support the original LS model, only 
the derived allele haplotype copying model, which requires derived allele information.

Additionally, a LS-like model is implemented in [8] to run forward and backward 
recursions to variants of interest. However, the transition kernel used is different to the 
original LS model: upon a recombination event the transition kernel in [8] does not per-
mit a haplotype to continue copying from the same donor haplotype.

The focus of kalis is to provide a high-performance engine to directly obtain the pos-
terior decoding at a set of loci of interest for a dataset with hundreds of thousands of 
phased haplotypes. kalis supports the original LS model and the derived allele haplotype 
copying model. It provides a simple interface to enable rapid development of a range of 
future variant-specific ancestral inference pipelines on top, in the easy to use statistical 
programming language R [9].

At the same time, it has been recognised for over a decade [10] that the serial execu-
tion speed of CPUs will increase modestly, with additional performance primarily com-
ing from concurrency via multi-core architectures or the growing width of specialised 
single instruction, multiple data (SIMD) instruction sets. Whilst multi-core architec-
tures are now somewhat routinely exploited via forked processes or threading, SIMD 
instructions remain an often overlooked source of performance gains, possibly because 
they are harder to program. There are a cornucopia of SIMD instruction sets: on the 
Intel platform the genesis was in the 64-bit wide MMX instruction set [11] which allows 
simultaneous operation on two 32-bit, four 16-bit or eight 8-bit integers. The most 
recent incarnation on Intel CPUs is a suite of AVX-512 instruction sets [12], now capa-
ble of operating on 512-bits of various data types simultaneously (eg eight 64-bit floating 
point, or sixteen 32-bit integer values). Other CPU designs have similar SIMD technolo-
gies, such as NEON on ARM CPU [13] designs (including the Apple M1 and M2 proces-
sors, as well as Amazon Web Services Graviton range). Additionally all modern CPUs 
are superscalar architectures supporting instruction level parallelism, an advance that 
has been in the consumer Intel platform since the Pentium [14]. Judicious programming 
can make it easier for compilers and the deep reorder buffers of modern pipelined CPUs 
to exploit this more hidden form of parallelism.

In this work we provide a reformulation of the LS model and an optimised memory 
representation for haplotypes, which together enable us to leverage both multi-core and 
SIMD vector instruction parallelism to obtain local genetic distance matrices for problem 
sizes that previously appeared out of reach. This high performance implementation is pro-
grammed in C [15], with an easy to use interface provided in R [9]. We provide low-level 
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targets of AVX2, AVX-512 and NEON instruction sets (covering the vast majority of CPUs 
in use today), and the whole package has an extensive suite of 162, 835 unit tests.

In the Implementation section below, we start with a description of the LS model and 
our reformulation which makes it amenable to these high-performance CPU technologies. 
We also describe the technical details of the underlying low-level implementation for the 
interested reader. We then demonstrate the performance that can be achieved with kalis, 
including examples with 100,000 haplotypes capable of running on a single machine. We 
also present a real data example using kalis to examine the ancestry at the LCT gene. In 
the following Discussion section, we describe the user friendly R interface which enables 
easy use of the high performance implementation without any knowledge of the underlying 
CPU technologies.

The kalis package is fully documented both within the package and on the package web-
site https:// kalis. louis aslett. com/.

Implementation
The LS model

To formalize our objective, let h be an L× N  matrix of 0 s and 1 s encoding N  phased haplo-
types at L sites. Let hℓi ∈ {0, 1} denote the the (ℓ, i) th element of h . For brevity, let hi denote 
the i th haplotype (the i th column of h ) and h−i denote all of the haplotypes excluding the 
i th haplotype. The LS model proposes an HMM for hi|h−i in which the hidden state at vari-
ant ℓ , Xℓ

i ∈ {1, . . . ,N } \ i , is an index indicating the haplotype in h−i that hi is most closely 
related to (or “copies from”) at variant l . We present here their proposed emission and tran-
sition kernels (see Equation A1 and Equation A2 in [1]) with a simplified parametrisation 
that is similar, but not identical, to that used by ChromoPainter.

While the original LS model assumes that each haplotype has an equal a priori probabil-
ity of copying from any other, following ChromoPainter, we define a left stochastic matrix 
of prior copying probabilities � ∈ R

N×N where �ji is the prior probability that haplotype 
j is copied by i and, by convention, �ii = 0 . In other words, the donor haplotype (hidden 
state) that is sampled at the first variant and after every “recombination event” in the cop-
ying path is drawn according to � . Here and whenever possible in kalis, all matrices are 
column-oriented such that the i th column pertains to an independent HMM where hi is 
treated as the observation. There is some probability of a mis-copy at variant ℓ , µℓ , which 
under the LS model is set proportional to the mutation rate at ℓ . This leads to an emission 
kernel of the form

The transition kernel between hidden states is based on the recombination rate between 
sites. Let mℓ be the genetic distance between variant ℓ and variant ℓ+ 1 in Morgans (the 
expected number of recombination events per meiosis). Define Ne = 4Ñe/N  where Ñe 
is the effective diploid population size (ie half of the haploid effective population size). 
Then, under the LS model the transition kernel is

(1)θℓji := P hℓi Xℓ
i = j =

1− µℓ
if hℓi = hℓj

µℓ if hℓi �= hℓj

.

https://kalis.louisaslett.com/
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where ρℓ = 1− exp
(

−Nem
ℓ
)

 and 1{·} is the indicator function. Intuitively, this transi-
tion kernel asserts that upon a “recombination event,” where a recipient haplotype i may 
change the donor haplotype j it is copying from, the new donor haplotype is resampled 
from the prior copying distribution �·i . [1, Appendix B] observe that in practice the esti-
mation of recombination rates can be improved when the scaled recombination rate is 
raised to a power, so we adopt this approach and introduce an exponent γ . By default, 
kalis sets γ = 1 , but this can be changed by the user. For γ > 1 the recombination map 
becomes more heavily peaked, whereas γ < 1 tempers the recombination map to make 
it more flat and smooth. Hence, in kalis, we set

calculated using expm1() to help avoid underflow.
In keeping with the nomenclature introduced by [7], we refer to hi as the “recipient hap-

lotype” and the remaining haplotypes, h−i , as the “donor haplotypes”, in the context of the 
HMM where hi is treated as the emitted observation vector. This reflects the fact that each 
recipient haplotype hi is modelled as an imperfectly copied mosaic of the other observed 
haplotypes under the LS model. Hence, the posterior marginal probability at variant ℓ , 
pℓji := P

(

Xℓ
i = j

∣

∣h
)

 , is the probability that donor j is copied by recipient i at variant ℓ given 
the haplotypes h . Under the above definitions of the prior copying probabilities � , the emis-
sion kernel (1), and the transition kernel (2), the full N × N  matrix of copying probabilities 
at ℓ , pℓ , can be obtained by running the standard forward and backward recursions [16] for 
each column (ie for each independent HMM).

From these posterior probabilities, we calculate a local N × N  distance matrix, dℓ . 
Firstly, notice that theoretically pℓij > 0 , but it can be that pℓij < ε , where ε is the double 

precision machine epsilon ( ≈ 2.22× 10−16 , [15], pp.26). Effectively this means dℓij is too 
large to reliably work with precisely, and so for the purposes of distance calculations we 
treat ε as the smallest observable posterior probability, yielding

where ∨ is the maximum binary operator. By convention dii = 0 for all i.
We proceed in the next Section to reformulate the forward and backward recursions 

so that we can more fully exploit modern high-performance CPU instruction sets, while 
preserving numerical precision.

Modification of the forward‑backward algorithm

The N  independent HMMs of the LS model have forward and backward probabilities, 
respectively:

where h1:ℓi  denotes haplotype i from variant 1 to ℓ inclusive.

(2)P(Xℓ
i = k|Xℓ−1

i = j) = �kiρ
ℓ−1 + 1

{

k = j
}

(

1− ρℓ−1
)

,

(3)ρℓ := 1− exp
(

−Ne

(

mℓ
)γ)

,

(4)dℓji = −
log

(

pℓji ∨ ε

)

+ log
(

pℓij ∨ ε

)

2
∀ j �= i

α̃ℓ
ji = P

(

Xℓ
i = j, h1:ℓi

)

, β̃ℓ
ji = P

(

hℓ+1:L
i

∣

∣

∣
Xℓ
i = j

)

, i ∈ {1, . . . ,N },
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Define,

Then the forward and backward recursions for the LS model can be written in vector 
notation (subscript · denoting a vectorised index),

with recursions initialised with α1
·i ← θ1·i�·i and βL

·i ← 1 . Note that Eq. (7) corresponds 
to Equation A5 in [1].

To partially mitigate the risk of underflow, the forward recursion can be rearranged in 

terms of αℓ
·i :=

α̃ℓ·i

Fℓ−1
i

 , and the backward recursion in terms of βℓ
·i :=

β̃ℓ
·i

Gℓ
i

 (see Additional file 1 

for details). Thus, in full for ℓ ∈ {1, . . . , L} we compute,

and

Given αℓ
·i and βℓ

·i , the vector of posterior probabilities for recipient i , pℓ·i , can be calcu-
lated directly by normalising,

where ⊙ denotes the Hadamard product. In the event that 
∑

j

αℓ
ji ⊙ βℓ

ji = 0 , the distance 

between the recipient haplotype i and all of the donor haplotypes is beyond numerical 
precision, so as per the earlier discussion we define pℓji = ε ∀ j �= i.

(5)Fℓ
i :=

N
∑

j=1

α̃ℓ
ji F0

i := 1

(6)Gℓ
i :=

N
∑

j=1

β̃ℓ+1
ji θℓ+1

ji �ji GL
i := 1

(7)α̃ℓ
·i ← θℓ·i

((

1− ρℓ−1

)

α̃ℓ−1

·i + ρℓ−1Fℓ−1

i �·i

)

for ℓ ∈ {2, . . . , L},

(8)β̃ℓ
·i ←

(

1− ρℓ
)

β̃ℓ+1

·i θℓ+1

·i + ρℓ
G

ℓ
i for ℓ ∈ {1, . . . , L− 1}.

(9)α1
·i ← θ1·i�·i for ℓ = 1

(10)αℓ
·i ← θℓ·i







�

1− ρℓ−1

� αℓ−1

·i
�

j

αℓ−1

ji

+ ρℓ−1�·i






for ℓ > 1

(11)βL
·i ← 1 for ℓ = L

(12)βℓ
·i ←

(

1− ρℓ
) βℓ+1

·i θℓ+1

·i
∑

j

βℓ+1

ji θℓ+1

ji �ji

+ ρℓ
for ℓ < L

(13)pℓ·i =
αℓ
·i ⊙ βℓ

·i
∑

j

αℓ
ji ⊙ βℓ

ji
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Finally, the local distances follow by taking the negative log and symmetrising. Note 
that if the distances are standardised for one of these columns, to account for the fact 
that the standard deviation will be 0, we set all of the standardised distances to 0. Please 
see Additional file 1 for a discussion on parameter values and exactly how kalis performs 
certain computations to maintain the numerical stability of the algorithm.

Core implementation details

The R interface described hereinbefore is a thin wrapper layer around a high-perfor-
mance implementation of the core algorithm which is written in standards compliant 
C18 [15]. Most data structures are represented with native R types enabling user inspec-
tion and manipulation, except for the haplotype sequences themselves.

Computationally, the innermost forward and backward recursions are implemented 
using compiler intrinsics to exploit a variety of modern CPU instruction sets, includ-
ing Streaming SIMD Extensions (SSE2 and SSE4.1), Advanced Vector Extensions (AVX, 
AVX2, AVX-512 and FMA) and Bit Manipulation Instructions (BMI2) on Intel plat-
forms; as well as NEON on ARM platforms. AVX2 is supported in Intel CPUs of the 
Haswell generation (released Q2 of 2013) or later, AVX-512 tends to be available only 
in recent Intel server and workstation grade CPUs, and NEON is available for ARM 
Cortex-A and Cortex-R series CPUs, as well as Apple M1/M2 and Amazon Web Ser-
vices Graviton processors. Although this covers most CPUs likely to be in use today, we 
none-the-less provide reference implementations in pure standards compliant C which 
will operate on any CPU architecture with a C18 compliant compiler. During package 
compilation, the correct code-paths are compiled based on detection of the presence or 
absence of the required instruction sets, or at the direction of the user via compiler flags. 
See Additional file 1 for more details, and for guidance on how to directly check your 
CPU for SIMD support.

It may be worth noting at this juncture that it was an explicit design choice to target 
CPUs and not GPU or tensor cards initially. This is because most University high per-
formance computing clusters have plentiful CPU resources, often with untapped power 
in advanced SIMD instructions sets. We believe that the problem size that can be real-
istically tackled in many genetics studies can be massively increased without needing to 
resort to add-on cards, though to scale beyond even this we may explore heterogeneous 
computing architectures in future kalis research.

In this section, we now describe the inner workings and design principles of the pack-
age, first covering in detail the data structures (both user facing and internal), followed 
by the computational implementation.

Data structures

There are three user accessible data structures utilised in the package and a low level 
binary haplotype representation which is not directly user accessible. The two principle 
data structures of interest to users are forward and backward table objects, represented 
as native R lists with respective S3 class names kalisForwardTable and kalis-
BackwardTable (detailed in Table 2 and discussed later), which are created with pack-
age functions MakeForwardTable() and MakeBackwardTable() respectively. 
The third user accessible data structure holds the LS model parameters, represented as 
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a native R environment with S3 class name kalisParameters, which can be created 
with the package function Parameters().

Haplotype data

The haplotypes are stored in an optimised binary representation which is only natively 
accessible from within C. Note that here “optimised” is not a reference to space-opti-
misation: it would be possible to represent the haplotypes in an even more compressed 
manner, but we aim for streaming compute speed optimisation instead.

The haplotypes are loaded from disk and transformed to an in memory cache in this 
representation via CacheHaplotypes(), but this function does not return any handle 
to the loaded data. Thus the package provides the accessor function QueryCache(), 
which copies genome segments from the binary representation into native R integer vec-
tors for user inspection.

When CacheHaplotypes() loads haplotypes into the cache, they are interleaved 
into a flat memory space which is organised as variant-major. That is, variant 1 of each 
haplotype is loaded, converted to a binary 0/1 and then 32 consecutive haplotypes are 
packed into an unsigned integer. Moreover, the initial flat memory allocation is aligned 
on a 32-byte boundary to satisfy memory alignment requirements for some CPU vec-
tor instructions1, and after all haplotypes at a given variant are packed into consecu-
tive unsigned integers the pointer is wound forward to the next 32-byte boundary to 
ensure the next variant starts on an SSE/AVX vector compatible memory boundary. This 
is depicted in Fig. 1.

Firstly, note that this orientation is natural, since the forward and backward recursions 
operate variant by variant, meaning variant-major storage ensures sequential memory 
locations are fetched during a recursion. Indeed, with the cache line size of 64-bytes 
(starting Intel Pentium IV), we essentially trigger the loading of 64 × 8 = 512 neigh-
bouring variants upon accessing the first variant in a recursion. This effect is even more 
pronounced on Apple M1/M2 whose cache line size is 128-bytes, resulting in 1024 vari-
ants being pre-fetched upon access to the first variant in a recursion.

Fig. 1 Efficient binary representation of interleaved haplotypes in memory, with 32-byte boundary 
alignment for each variant start for SSE/AVX instructions (here i mod 32 = 0 ). The grey boxes indicate 
essentially ‘wasted’ bits which are ignored to ensure alignment for the start of the next variant

1 Certain modern CPUs do not require specific alignment to be able to load memory to SSE/AVX registers, but for 
maximum compatibility we honor the alignment anyway.
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Secondly, a possible drawback is that we must extract the individual bit into a double 
floating point representation in order to compute with it in the recursion. However, effi-
cient CPU instructions can help here too: take for example the following strategy kalis 
uses on an AVX2 capable CPU. Using the PDEP instruction in BMI2, we can efficiently 
deposit a bit into every ninth bit of an int (so there are now 4 8-bit integers taking on 
the value of the haplotype at this variant packed in an int). Then, using SSE2, SSE4.1 
and AVX instructions one can inflate through representations from 4 8-bit integers 
packed in an int up to 4 64-bit doubles packed in a 256-bit AVX register. As such, we 
are then ready to operate with this variant in parallel using AVX instructions.

During development, testing indicated the memory bandwidth and cache efficiency 
savings of the packed binary representation provided speed-ups thanks to these instruc-
tions efficiently enabling unpacking and spreading a haplotype variant bit for parallel 
use. Furthermore, such a compact representation means that more of L1/L2 cache and 
memory bus bandwidth is left available for forward and backward tables, which are the 
largest objects we work with in this problem.

Parameters

The parameter set used by kalis can be created by calling the Parameters() function, 
which retuns a kalisParameters object with structure shown in Table 1. This struc-
ture corresponds to the parameters required to specify the LS model (Eqs. (1) and (2)). 
To calculate ρ from a recombination map, Ne and γ , we also provide a helper function, 
CalcRho(), which implements Eq. (3).

The kalisParameters object uses an environment rather than list for parameters 
for two reasons: (i) the parameter environment and its bindings are locked which pre-
vents changes in parameter values between forward or backward table propagation 

Table 1 The content of the data structure representing parameter objects

kalisParameters object Data type

pars Locked R environment, containing:

rho Vector length L

mu Vector length L, or scalar

Pi N × N matrix, or scalar

sha256 Character

Table 2 The content of the core data structures representing forward and backward table objects, 
together with their correspondence to mathematical quantities

kalisForwardTable object kalisBackwardTable object Data type

alpha = αℓ
··

beta = βℓ
··

N × N matrix

alpha.f = F
ℓ beta.g = G

ℓ Vector length N

l = ℓ l = ℓ Integer scalar

from_recipient from_recipient Integer scalar

to_recipient to_recipient Integer scalar

pars.sha256 pars.sha256 Character

beta.theta Logical scalar
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steps, since parameters must be fixed for all steps of a given forward or backward com-
putation; and (ii) an environment explicitly ensures the (often large) parameter vectors 
are not copied when associated with potentially many different tables, but will always be 
purely referenced.

The environment contains only two members: another environment with the actual 
parameter values (which is locked with lockEnvironment()); and a SHA-256 hash 
of those parameter values (details in Table 1). The purpose of the hash is to be able to 
efficiently determine whether the correct parameter set for a given forward or backward 
table has been passed when computing forward or backward recursions from an already 
initialised table (since it would be incorrect to propagate forward or backward using dif-
ferent parameter sets in different parts of the genome).

Forward/backward tables

Recall that the recipients (columns) in the forward/backward tables correspond to inde-
pendent HMMs. Therefore, kalis enables storing only a ‘slice’ of recipients in a forward/
backward table, making parallelisation across non-shared memory clusters much sim-
pler: given all haplotype data, these recipient slices can be independently propagated in a 
communication free manner.

The forward and backward table objects contain not only the (upto) N  independent 
forward/backward vectors at variant ℓ , but also supporting meta-data. This includes 
the variant the table is currently at, the scaling constants Fℓ (forward, Eq. (5)) or Gℓ 
(backward, Eq. (6)), the range of recipient haplotypes represented (that is, the recipient 
HMMs to which the column corresponds), and a hash of the parameter values used in 
propagating this table.

In total, a full-size forward table for example requires 8N 2 + 8N + 1576 bytes of mem-
ory2 for storage and the small overhead of R object management. Since this grows quad-
ratically in the number of haplotypes, most functions in the package operate on forward 
and backward table objects in-place, rather than via the idiomatic copy-on-write mecha-
nism of standard R. The most important consequence of this for users is that standard 
assignment of a table object to another variable name only creates a reference and so an 
explicit copy must be made by using the CopyTable() utility function provided in the 
package.

Core SIMD code

The two most important core algorithms which are accelerated with SIMD vector 
instructions are the forward and backward recursions. This code is fully implemented in 
C, with tailored modifications accounting for all combinations of: scalar/vector µ , sca-
lar/matrix � , and use of the asymmetric mutation model of RELATE [2] or not (ie 8 
combinations); to ensure that minimal memory accesses are performed where possible. 
So, for example, scalar µ and scalar � parameters will be faster than any other combina-
tion since these values are likely to be held in registers (or at least L1 cache) for the dura-
tion of the recursion.

2 Measured under R 4.2.2
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Additionally, in all places where we identify SIMD instructions may be used, a macro 
is deployed, with a header file providing all mappings from these macros to a spe-
cific SIMD instruction for all supported instruction sets. Taking arguably the simplest 
non-trivial example, all src/ExactForward*.c and src/ExactBackward*.c 
files make us of the custom macro KALIS_MUL_DOUBLE(X, Y) when they need to 
multiply KALIS_DOUBLEVEC_SIZE double precision floating point values together. 
The file, src/StencilVec.h then provides definitions for these macros under each 
instruction set kalis supports (via assembly intrinsics), together with a pure C alterna-
tive. For this example, we have (with ... indicating other macro definitions):

The inner-most loop in these core files then includes a programmatically generated 
unroll to the depth specified during compilation. All this is wrapped in code which 
dispatches using pthreads to multiple threads, with automatic detection of the 
ability to pin to specific cores if that option is passed (important in some settings 
to ensure a hot L1/L2 core cache). In particular, each thread operates on a subset of 
columns of the forward and backward tables, ensuring spatial locality for memory 
accesses. Furthermore, when propagating by more than a single variant position, each 
column (ie each independent HMM) is propagated all the way to the target variant 
before proceeding to the next column, ensuing temporal locality of memory accesses.
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Unit tests

Given the complexity of the development described above, we have implemented a com-
prehensive suite of unit tests to ensure correctness. Internal to the package is a “gold 
master” implementation of the LS model, which is a pure R implementation that has 
been written for correctness and is not optimised for speed. These pure R implementa-
tions are callable with an undocumented argument option to the standard Forward() 
and Backward() functions: if the argument nthreads = “R” rather than a numeric 
value, then the gold master implementation is used (at the cost of running significantly 
slower).

Unit tests fall broadly into two categories, one verifying the correctness of loading 
from the different supported input formats (via R matrix, .hap.gz and h5) into the 
optimised binary representation of Fig.  1, the other checking forward and backward 
computations against a ground truth computed by the gold standard R implementation. 
The latter category of tests are the most extensive, since they cover tests of all combi-
nations of: single threaded and multi-threaded computation; moving different numbers 
of variants in a single call; different problem sizes where the numbers of haplotypes is 
either exactly divisible by the CPU vector unit length (i.e. 256-bits for AVX2 etc), or has 
different remainders; original LS and derived allele haplotype copying model; scalar and 
vector mutation probabilities ( µ ); uniform and matrix copying probabilities ( � ); and in 
the case of backward recursions, all combinations of starting and ending a recursion in 
standard or rescaled probability space (beta.theta argument to Backward()).

All these combinations give rise to over 162, 000 tests (note also that the exact number 
of tests varys by architecture due to the differing vector unit lengths). This large num-
ber of tests ensures all the separately optimised code paths for the various combinations 
of run-time options are covered. We note that the tests take quite some time to run 
(e.g. potentially 30-60 minutes on a laptop), precisely because the gold master R code is 
run to provide the ground truth for these tests.

If a user wishes to confirm correctness on their particular platform, they can be run 
with the following commands:

Results
We provide a brief overview of some example performance figures, though due to 
the highly tuned nature of kalis, the exact performance you can expect will be heavily 
dependent on your exact computer architecture and resources.

First, it is important to note we do not claim to have altered the scaling properties of 
the LS model, only that we provide an implementation which is highly optimised within 
the scaling constraints inherent to the model. As such, Fig.  2 demonstrates that kalis 
indeed inherits the O(N 2) and O(L) properties of the original LS model.
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We turn now to the benefits kalis does provide.
Firstly, for some of the reasons highlighted in the previous Section, kalis exhibits accel-

erated performance when propagating the forward/backward recursions over more 
extended stretches of the genome. This is because every effort has been made to be 
cache efficient, so that when more than a single variant step is taken, the strong cache 
locality design ensures that we are not memory bandwidth limited. This effect can be 
seen quite dramatically in Fig. 3 by the rapid decrease in compute time per variant as 
longer stretches are propagated.

Secondly, the hard-coded loop unrolling functionality which can be controlled at 
compile time by the user can be seen to be beneficial in Fig. 3. Clearly excessive loop 
unrolling is harmful, with depth 32 unrolls actually being substantially slower than no 
unrolling. However, unrolling to depth 8 does give a clear improvement. The best choice 
of unrolls will be both problem and architecture dependent, so we recommend testing 
different unroll levels on the target problem before performing long compute runs.

Figure 3 also illustrates that the hand-designed use of low-level vector SIMD instruc-
tions is not superfluous, with substantial speed-up afforded by their use (the difference 
between dashed and solid lines of the same colour).

Finally, Fig.  4 shows that in certain very large problem settings kalis’ ability to pin 
threads can make a substantial difference. In this setting, AVX2 showed the greatest 
benefit from eliminating context switching, ensuring that the cache is not invalidated by 
threads migrating between cores. The lack of substantial difference between AVX2 and 
AVX-512 here once thread pinning is employed calls for some investigation, though this 
may be a result of thermal/power throttling which is known to occur especially for AVX-
512 heavy code [17].

These performance examples again highlight the importance of pilot benchmark runs 
with different configurations of instruction set and unroll settings before embarking 
on long compute runs to ensure the greatest compute efficiency is achieved for a given 
problem and compute architecture.

Benchmarking comparison

We performed two benchmarking experiments to compare the implementations of the 
forward and backward algorithms in kalis to those in Relate [2]. While several other 
leading software suites, including BEAGLE [4] and IMPUTE [5], use high performance 

Fig. 2 kalis shows the expected order N2 and order L scaling of the LS model. Computed on an Amazon Web 
Services c4.8xlarge instance (36 vCPUs, 60 GB of RAM)
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implementations of the LS model, we chose to compare to Relate because it is explicitly 
optimized to target locus-specific N × N  genetic distance matrices analogous to those 
produced by kalis. We based all of our benchmarks on the same set of haplotypes, taken 
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from the 1000 Genomes Project [18], as used in our real-data example which follows 
below. The data include 5008 haplotypes observed at 29193 variants.

kalis can perform the forward and backward recursions under either the origi-
nal LS model (the default) or the derived allele haplotype copying model if use.
speidel=TRUE is passed to the Parameters() function. Since Relate only com-
putes these recursions for the derived allele copying model, it can exploit the asymme-
try in the emission kernel based on the derived allele orientation of each variant. When 
painting a given recipient haplotype as a mosaic of donor haplotypes, this allows Relate 
to effectively skip all variants where a recipient haplotype does not carry the derived 
allele. This acceleration cannot be applied to the original LS model, which kalis was pri-
marily designed for, because the symmetric emission kernel requires both the forward 
and backward algorithms to iterate over every variant for every recipient haplotype. 
Even with the derived allele copying model activated, kalis will still visit every variant for 
every recipient haplotype.

Accordingly, we found that the forward and backward recursions were approximately 
4× faster using Relate rather than using kalis. However, if Relate visits every locus, as 
would be necessary to compute the original LS model, we found that the forward and 
backward recursions were approximately 6× faster using kalis rather than using Relate. 
This demonstrates the benefit of the low-level optimisations made in kalis. In principle 
kalis could also employ the same optimisation as Relate and visit only derived sites for 
every recipient haplotype. We consider this an exciting avenue of future research. Oth-
erwise, kalis and Relate would be expected to share similar algorithmic scaling proper-
ties in data size.

Full details of how this benchmarking was performed are provided in Additional file 1, 
Section D.

Real‑data example: recent selection for lactase persistence

LCT is a gene on chromosome 2 that encodes lactase, the enzyme responsible for the 
breakdown and digestion of lactose, the sugar commonly found in milk. Ancestral 
humans had a regulatory ‘switch’ on chromosome 2 that stops lactase production after 
infancy when children would be weaned off breast milk. Mutations that disrupt this 
switch allow lactase production to persist into adulthood, conferring a lifelong ability to 
extract energy from milk [19]. Such mutations have arisen independently at least twice 
in human history, in Europe and in East Africa, and are among the strongest examples of 
recent positive natural selection in humans [20, 21]. These mutations have been shown 
to spread across standard human population boundaries. For example, [22] used another 
implementation of the LS model to compare haplotypes at the LCT locus sampled from 
the West African Fula population to haplotypes collected from across Europe and Asia 
as part of the 1000 Genomes project [18]. They found that the genetic distance between 
Fulani haplotypes and Eurasian haplotypes was unusually small at the LCT locus. With 
some further analysis, they interpreted this as evidence that a European haplotype con-
ferring lactase persistence became prevalent within the West African Fula population 
due to recent natural selection sometime over the past two thousand years.

Although it is difficult to directly replicate [22] since the Fulani samples they studied 
are not a part of the 1000 Genomes project, we take inspiration from their analysis. 
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Here we present a small example using kalis to informally investigate whether there 
is evidence of recent gene-flow from Eurasia into any of the African populations in 
the 1000 Genomes dataset at the lactase locus. We run kalis on 5008 haplotypes from 
the 1000 Genomes Phase 3 release to revisit the haplotype structure around LCT; 
the haplotypes are sampled from 26 sub-populations all over the world [18]. Figure 5 
shows a clustered version of a distance matrix, calculated as in Eq. (4), at a variant 
in the regulatory region of LCT (rs4988235). To see if we could observe a pattern 
of gene-flow into or out of Africa similar to what was observed by [22], we use aver-
age pairwise linkage [23] to cluster the African haplotypes separately from the non-
African haplotypes. In Fig. 5, distances between African haplotypes are shown in the 
upper left corner; non-African haplotypes, in the lower right corner.

Rather than 26 clusters reflecting the 26 sampled human populations, we see that 
there are three very distinct lactase haplotypes that are common both within and out-
side Africa. This suggests that these three haplotypes, under strong positive selection 
pressure, recently spread across population boundaries and presumably confer lactase 
persistence. We cannot confirm whether any of these three haplotypes correspond 
to the one identified in the Fulani by [22]. These three haplotypes are not the only 
structure we see: in the upper left corner of the African (AFR) block we see some hap-
lotypes that are only found inside Africa; and in the non-African block, a haplotype 
that is only found outside Africa. We can also see some sub-structure within the clear 
haplotype blocks.

The code to reproduce this example is available in the examples directory of 
repository associated with this paper (https:// github. com/ louis aslett/ kalis- bmc), as a 
vignette in the package (if vignettes built at install time), or directly at the kalis pack-
age website https:// kalis. louis aslett. com/ artic les/ lct_ examp le. html

Fig. 5 Distance matrix among 5008 haplotypes calculated at rs4988235, upstream of LCT. African 
haplotypes are clustered in the upper left corner and separated by grey lines from non-African haplotypes 
from the Americas (AMR), East Asia (EAS), Europe (EUR), and SAS (South Asia). The scale on the right maps the 
colours to distances

https://github.com/louisaslett/kalis-bmc
https://kalis.louisaslett.com/articles/lct_example.html
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Discussion
In Additional file 2, we introduce the package from a user perspective, from package 
installation right through to decoding a single variant position in R using kalis.

There are many avenues for future research in developing kalis. On the model side, 
for example, allowing for different recombination rates between sub-populations as 
done in fastPHASE [24] would be a natural extension.

On the computational side, ARM scalable vector extensions [25] represent an inter-
esting new approach to SIMD instruction sets, where the width of instructions need 
not be hard coded prior to compilation. At present it is not widely available, but as 
this rolls out, it would be natural to extend kalis to enable targeting this new instruc-
tion set.

An important utility extension is expanding the file formats that kalis can natively 
read via CacheHaplotypes(), to enable simpler and more streamlined software 
pipelines when bioinformaticians incorporate kalis into their workflows.

Additionally, during development of kalis we have been congnisant of the potential 
interest in using the core C code from other languages. Therefore all core computa-
tional C code has been kept as low-dependency as possible, and in particular has no 
dependencies on R or any other external libraries. We hope in future to release a pure 
C library, or to provide other language bindings directly.

Finally, a future avenue of potential development is extension of kalis to support 
GPU or tensor cards. Note that it was an explicit design choice to initially target CPU 
SIMD extensions, since the vast majority of University high performance comput-
ing clusters have a huge amount of untapped compute power in this form, but often 
much more limited availability of specialist extension cards. Therefore, by pushing 
performance as extensively as possible via CPU only means, we provide the greatest 
potential impact for end users. This does not preclude future versions adding support 
for add-on compute cards.

Conclusion
kalis provides a R interface to a highly optimized C implementation of the LS model 
that enables local ancestry, selection, and associations studies in modern large 
genomic datasets.

Availability and requirements
Project name:  kalis
Project home page:  https:// kalis. louis aslett. com/
Operating system(s):  Linux, MacOS, Windows
Programming language:  R, C
Other requirements:  R ( ≥ 3.5.0)
License:  GPL ( ≥ 3)
Any restrictions to use by non-academics:  None beyond GPL ( ≥ 3).

https://kalis.louisaslett.com/
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Abbreviations
LS model  Li & Stephens model
HMM  hidden Markov model
SIMD  single instruction, multiple data

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05688-8.

Additional file 1. An appendix containing full derivations of mathematical reformulation; software installation 
details; HDF5 file format specifications; and additional benchmarking details.

Additional file 2. A user guide to the kalis R package.
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