
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Aslett and Christ BMC Bioinformatics (2024) 25:86
https://doi.org/10.1186/s12859-024-05688-8

BMC Bioinformatics

kalis: a modern implementation of the Li &
Stephens model for local ancestry inference in R
Louis J. M. Aslett1* and Ryan R. Christ2

Abstract

Background: Approximating the recent phylogeny of N phased haplotypes at a set
of variants along the genome is a core problem in modern population genomics
and central to performing genome-wide screens for association, selection, introgres-
sion, and other signals. The Li & Stephens (LS) model provides a simple yet powerful
hidden Markov model for inferring the recent ancestry at a given variant, represented
as an N × N distance matrix based on posterior decodings.

Results: We provide a high-performance engine to make these posterior decod-
ings readily accessible with minimal pre-processing via an easy to use package kalis,
in the statistical programming language R. kalis enables investigators to rapidly resolve
the ancestry at loci of interest and developers to build a range of variant-specific ances-
tral inference pipelines on top. kalis exploits both multi-core parallelism and modern
CPU vector instruction sets to enable scaling to hundreds of thousands of genomes.

Conclusions: The resulting distance matrices accessible via kalis enable local ancestry,
selection, and association studies in modern large scale genomic datasets.

Keywords: Li & Stephens model, R package, Probabilistic haplotype model, Hidden
Markov model, Genomics, High performance computation

Background
The hidden Markov model (HMM) of haplotype diversity proposed by Li & Stephens [1]
(hereinafter, the LS model) has become the basis for several probabilistic phasing, ances-
try inference, and demographic inference methods in modern genomics [2, 3].

Accelerated implementations of the LS model, typically targeting the Viterbi path,
are integral to many commonly used genomics software packages, including BEAGLE
[4], IMPUTE [5], and tsinfer [6]. A pioneering ancestry inference software package,
ChromoPainter, popularized the idea of using the LS model to summarize the ancestry
of N haplotypes with an N × N similarity matrix [7]. This matrix is obtained by run-
ning N independent HMMs in which each haplotype is modelled as a mosaic of all of
the other haplotypes in the sample. This ‘all-vs-all’ copying approach is motivated by
the product of approximate conditionals (PAC) likelihood originally proposed by [1] and
allows ChromoPainter to render a chromosome-wide estimate of the recent ancestry of
the N haplotypes with high resolution.

*Correspondence:
louis.aslett@durham.ac.uk

1 Department of Mathematical
Sciences, Durham University,
Stockton Road, Durham DH1
3LE, UK
2 Department of Genetics, Yale
School of Medicine, 333 Cedar
Street, New Haven, CT 06520,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05688-8&domain=pdf

Page 2 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

The Relate [2] software suite extended this idea to performing local (locus-specific)
ancestry inference along the genome. Internally, Relate uses high performance C++
implementations of the forward and backward algorithm to perform posterior decod-
ing under a modified version of the LS model that incorporates derived allele informa-
tion at many loci spaced along the genome. We will refer to this modified LS model as
the derived allele haplotype copying model. These posterior decodings are transformed
to N × N local genetic distance matrices and used to initialise variant-specific ancestral
trees for downstream population genetic analyses ranging from demography to selection
inference.

The current Relate software suite does not provide an interface for outputting the pos-
terior decodings at a locus of interest and does not support the original LS model, only
the derived allele haplotype copying model, which requires derived allele information.

Additionally, a LS-like model is implemented in [8] to run forward and backward
recursions to variants of interest. However, the transition kernel used is different to the
original LS model: upon a recombination event the transition kernel in [8] does not per-
mit a haplotype to continue copying from the same donor haplotype.

The focus of kalis is to provide a high-performance engine to directly obtain the pos-
terior decoding at a set of loci of interest for a dataset with hundreds of thousands of
phased haplotypes. kalis supports the original LS model and the derived allele haplotype
copying model. It provides a simple interface to enable rapid development of a range of
future variant-specific ancestral inference pipelines on top, in the easy to use statistical
programming language R [9].

At the same time, it has been recognised for over a decade [10] that the serial execu-
tion speed of CPUs will increase modestly, with additional performance primarily com-
ing from concurrency via multi-core architectures or the growing width of specialised
single instruction, multiple data (SIMD) instruction sets. Whilst multi-core architec-
tures are now somewhat routinely exploited via forked processes or threading, SIMD
instructions remain an often overlooked source of performance gains, possibly because
they are harder to program. There are a cornucopia of SIMD instruction sets: on the
Intel platform the genesis was in the 64-bit wide MMX instruction set [11] which allows
simultaneous operation on two 32-bit, four 16-bit or eight 8-bit integers. The most
recent incarnation on Intel CPUs is a suite of AVX-512 instruction sets [12], now capa-
ble of operating on 512-bits of various data types simultaneously (eg eight 64-bit floating
point, or sixteen 32-bit integer values). Other CPU designs have similar SIMD technolo-
gies, such as NEON on ARM CPU [13] designs (including the Apple M1 and M2 proces-
sors, as well as Amazon Web Services Graviton range). Additionally all modern CPUs
are superscalar architectures supporting instruction level parallelism, an advance that
has been in the consumer Intel platform since the Pentium [14]. Judicious programming
can make it easier for compilers and the deep reorder buffers of modern pipelined CPUs
to exploit this more hidden form of parallelism.

In this work we provide a reformulation of the LS model and an optimised memory
representation for haplotypes, which together enable us to leverage both multi-core and
SIMD vector instruction parallelism to obtain local genetic distance matrices for problem
sizes that previously appeared out of reach. This high performance implementation is pro-
grammed in C [15], with an easy to use interface provided in R [9]. We provide low-level

Page 3 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

targets of AVX2, AVX-512 and NEON instruction sets (covering the vast majority of CPUs
in use today), and the whole package has an extensive suite of 162, 835 unit tests.

In the Implementation section below, we start with a description of the LS model and
our reformulation which makes it amenable to these high-performance CPU technologies.
We also describe the technical details of the underlying low-level implementation for the
interested reader. We then demonstrate the performance that can be achieved with kalis,
including examples with 100,000 haplotypes capable of running on a single machine. We
also present a real data example using kalis to examine the ancestry at the LCT gene. In
the following Discussion section, we describe the user friendly R interface which enables
easy use of the high performance implementation without any knowledge of the underlying
CPU technologies.

The kalis package is fully documented both within the package and on the package web-
site https:// kalis. louis aslett. com/.

Implementation
The LS model

To formalize our objective, let h be an L× N matrix of 0 s and 1 s encoding N phased haplo-
types at L sites. Let hℓi ∈ {0, 1} denote the the (ℓ, i) th element of h . For brevity, let hi denote
the i th haplotype (the i th column of h) and h−i denote all of the haplotypes excluding the
i th haplotype. The LS model proposes an HMM for hi|h−i in which the hidden state at vari-
ant ℓ , Xℓ

i ∈ {1, . . . ,N } \ i , is an index indicating the haplotype in h−i that hi is most closely
related to (or “copies from”) at variant l . We present here their proposed emission and tran-
sition kernels (see Equation A1 and Equation A2 in [1]) with a simplified parametrisation
that is similar, but not identical, to that used by ChromoPainter.

While the original LS model assumes that each haplotype has an equal a priori probabil-
ity of copying from any other, following ChromoPainter, we define a left stochastic matrix
of prior copying probabilities � ∈ R

N×N where �ji is the prior probability that haplotype
j is copied by i and, by convention, �ii = 0 . In other words, the donor haplotype (hidden
state) that is sampled at the first variant and after every “recombination event” in the cop-
ying path is drawn according to � . Here and whenever possible in kalis, all matrices are
column-oriented such that the i th column pertains to an independent HMM where hi is
treated as the observation. There is some probability of a mis-copy at variant ℓ , µℓ , which
under the LS model is set proportional to the mutation rate at ℓ . This leads to an emission
kernel of the form

The transition kernel between hidden states is based on the recombination rate between
sites. Let mℓ be the genetic distance between variant ℓ and variant ℓ+ 1 in Morgans (the
expected number of recombination events per meiosis). Define Ne = 4Ñe/N where Ñe
is the effective diploid population size (ie half of the haploid effective population size).
Then, under the LS model the transition kernel is

(1)θℓji := P hℓi Xℓ
i = j =

1− µℓ
if hℓi = hℓj

µℓ if hℓi �= hℓj

.

https://kalis.louisaslett.com/

Page 4 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

where ρℓ = 1− exp
(

−Nem
ℓ
)

 and 1{·} is the indicator function. Intuitively, this transi-
tion kernel asserts that upon a “recombination event,” where a recipient haplotype i may
change the donor haplotype j it is copying from, the new donor haplotype is resampled
from the prior copying distribution �·i . [1, Appendix B] observe that in practice the esti-
mation of recombination rates can be improved when the scaled recombination rate is
raised to a power, so we adopt this approach and introduce an exponent γ . By default,
kalis sets γ = 1 , but this can be changed by the user. For γ > 1 the recombination map
becomes more heavily peaked, whereas γ < 1 tempers the recombination map to make
it more flat and smooth. Hence, in kalis, we set

calculated using expm1() to help avoid underflow.
In keeping with the nomenclature introduced by [7], we refer to hi as the “recipient hap-

lotype” and the remaining haplotypes, h−i , as the “donor haplotypes”, in the context of the
HMM where hi is treated as the emitted observation vector. This reflects the fact that each
recipient haplotype hi is modelled as an imperfectly copied mosaic of the other observed
haplotypes under the LS model. Hence, the posterior marginal probability at variant ℓ ,
pℓji := P

(

Xℓ
i = j

∣

∣h
)

 , is the probability that donor j is copied by recipient i at variant ℓ given
the haplotypes h . Under the above definitions of the prior copying probabilities � , the emis-
sion kernel (1), and the transition kernel (2), the full N × N matrix of copying probabilities
at ℓ , pℓ , can be obtained by running the standard forward and backward recursions [16] for
each column (ie for each independent HMM).

From these posterior probabilities, we calculate a local N × N distance matrix, dℓ .
Firstly, notice that theoretically pℓij > 0 , but it can be that pℓij < ε , where ε is the double

precision machine epsilon (≈ 2.22× 10−16 , [15], pp.26). Effectively this means dℓij is too
large to reliably work with precisely, and so for the purposes of distance calculations we
treat ε as the smallest observable posterior probability, yielding

where ∨ is the maximum binary operator. By convention dii = 0 for all i.
We proceed in the next Section to reformulate the forward and backward recursions

so that we can more fully exploit modern high-performance CPU instruction sets, while
preserving numerical precision.

Modification of the forward‑backward algorithm

The N independent HMMs of the LS model have forward and backward probabilities,
respectively:

where h1:ℓi denotes haplotype i from variant 1 to ℓ inclusive.

(2)P(Xℓ
i = k|Xℓ−1

i = j) = �kiρ
ℓ−1 + 1

{

k = j
}

(

1− ρℓ−1
)

,

(3)ρℓ := 1− exp
(

−Ne

(

mℓ
)γ)

,

(4)dℓji = −
log

(

pℓji ∨ ε

)

+ log
(

pℓij ∨ ε

)

2
∀ j �= i

α̃ℓ
ji = P

(

Xℓ
i = j, h1:ℓi

)

, β̃ℓ
ji = P

(

hℓ+1:L
i

∣

∣

∣
Xℓ
i = j

)

, i ∈ {1, . . . ,N },

Page 5 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Define,

Then the forward and backward recursions for the LS model can be written in vector
notation (subscript · denoting a vectorised index),

with recursions initialised with α1
·i ← θ1·i�·i and βL

·i ← 1 . Note that Eq. (7) corresponds
to Equation A5 in [1].

To partially mitigate the risk of underflow, the forward recursion can be rearranged in

terms of αℓ
·i :=

α̃ℓ·i

Fℓ−1
i

 , and the backward recursion in terms of βℓ
·i :=

β̃ℓ
·i

Gℓ
i

 (see Additional file 1

for details). Thus, in full for ℓ ∈ {1, . . . , L} we compute,

and

Given αℓ
·i and βℓ

·i , the vector of posterior probabilities for recipient i , pℓ·i , can be calcu-
lated directly by normalising,

where ⊙ denotes the Hadamard product. In the event that
∑

j

αℓ
ji ⊙ βℓ

ji = 0 , the distance

between the recipient haplotype i and all of the donor haplotypes is beyond numerical
precision, so as per the earlier discussion we define pℓji = ε ∀ j �= i.

(5)Fℓ
i :=

N
∑

j=1

α̃ℓ
ji F0

i := 1

(6)Gℓ
i :=

N
∑

j=1

β̃ℓ+1
ji θℓ+1

ji �ji GL
i := 1

(7)α̃ℓ
·i ← θℓ·i

((

1− ρℓ−1

)

α̃ℓ−1

·i + ρℓ−1Fℓ−1

i �·i

)

for ℓ ∈ {2, . . . , L},

(8)β̃ℓ
·i ←

(

1− ρℓ
)

β̃ℓ+1

·i θℓ+1

·i + ρℓ
G

ℓ
i for ℓ ∈ {1, . . . , L− 1}.

(9)α1
·i ← θ1·i�·i for ℓ = 1

(10)αℓ
·i ← θℓ·i

�

1− ρℓ−1

� αℓ−1

·i
�

j

αℓ−1

ji

+ ρℓ−1�·i

for ℓ > 1

(11)βL
·i ← 1 for ℓ = L

(12)βℓ
·i ←

(

1− ρℓ
) βℓ+1

·i θℓ+1

·i
∑

j

βℓ+1

ji θℓ+1

ji �ji

+ ρℓ
for ℓ < L

(13)pℓ·i =
αℓ
·i ⊙ βℓ

·i
∑

j

αℓ
ji ⊙ βℓ

ji

Page 6 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Finally, the local distances follow by taking the negative log and symmetrising. Note
that if the distances are standardised for one of these columns, to account for the fact
that the standard deviation will be 0, we set all of the standardised distances to 0. Please
see Additional file 1 for a discussion on parameter values and exactly how kalis performs
certain computations to maintain the numerical stability of the algorithm.

Core implementation details

The R interface described hereinbefore is a thin wrapper layer around a high-perfor-
mance implementation of the core algorithm which is written in standards compliant
C18 [15]. Most data structures are represented with native R types enabling user inspec-
tion and manipulation, except for the haplotype sequences themselves.

Computationally, the innermost forward and backward recursions are implemented
using compiler intrinsics to exploit a variety of modern CPU instruction sets, includ-
ing Streaming SIMD Extensions (SSE2 and SSE4.1), Advanced Vector Extensions (AVX,
AVX2, AVX-512 and FMA) and Bit Manipulation Instructions (BMI2) on Intel plat-
forms; as well as NEON on ARM platforms. AVX2 is supported in Intel CPUs of the
Haswell generation (released Q2 of 2013) or later, AVX-512 tends to be available only
in recent Intel server and workstation grade CPUs, and NEON is available for ARM
Cortex-A and Cortex-R series CPUs, as well as Apple M1/M2 and Amazon Web Ser-
vices Graviton processors. Although this covers most CPUs likely to be in use today, we
none-the-less provide reference implementations in pure standards compliant C which
will operate on any CPU architecture with a C18 compliant compiler. During package
compilation, the correct code-paths are compiled based on detection of the presence or
absence of the required instruction sets, or at the direction of the user via compiler flags.
See Additional file 1 for more details, and for guidance on how to directly check your
CPU for SIMD support.

It may be worth noting at this juncture that it was an explicit design choice to target
CPUs and not GPU or tensor cards initially. This is because most University high per-
formance computing clusters have plentiful CPU resources, often with untapped power
in advanced SIMD instructions sets. We believe that the problem size that can be real-
istically tackled in many genetics studies can be massively increased without needing to
resort to add-on cards, though to scale beyond even this we may explore heterogeneous
computing architectures in future kalis research.

In this section, we now describe the inner workings and design principles of the pack-
age, first covering in detail the data structures (both user facing and internal), followed
by the computational implementation.

Data structures

There are three user accessible data structures utilised in the package and a low level
binary haplotype representation which is not directly user accessible. The two principle
data structures of interest to users are forward and backward table objects, represented
as native R lists with respective S3 class names kalisForwardTable and kalis-
BackwardTable (detailed in Table 2 and discussed later), which are created with pack-
age functions MakeForwardTable() and MakeBackwardTable() respectively.
The third user accessible data structure holds the LS model parameters, represented as

Page 7 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

a native R environment with S3 class name kalisParameters, which can be created
with the package function Parameters().

Haplotype data

The haplotypes are stored in an optimised binary representation which is only natively
accessible from within C. Note that here “optimised” is not a reference to space-opti-
misation: it would be possible to represent the haplotypes in an even more compressed
manner, but we aim for streaming compute speed optimisation instead.

The haplotypes are loaded from disk and transformed to an in memory cache in this
representation via CacheHaplotypes(), but this function does not return any handle
to the loaded data. Thus the package provides the accessor function QueryCache(),
which copies genome segments from the binary representation into native R integer vec-
tors for user inspection.

When CacheHaplotypes() loads haplotypes into the cache, they are interleaved
into a flat memory space which is organised as variant-major. That is, variant 1 of each
haplotype is loaded, converted to a binary 0/1 and then 32 consecutive haplotypes are
packed into an unsigned integer. Moreover, the initial flat memory allocation is aligned
on a 32-byte boundary to satisfy memory alignment requirements for some CPU vec-
tor instructions1, and after all haplotypes at a given variant are packed into consecu-
tive unsigned integers the pointer is wound forward to the next 32-byte boundary to
ensure the next variant starts on an SSE/AVX vector compatible memory boundary. This
is depicted in Fig. 1.

Firstly, note that this orientation is natural, since the forward and backward recursions
operate variant by variant, meaning variant-major storage ensures sequential memory
locations are fetched during a recursion. Indeed, with the cache line size of 64-bytes
(starting Intel Pentium IV), we essentially trigger the loading of 64 × 8 = 512 neigh-
bouring variants upon accessing the first variant in a recursion. This effect is even more
pronounced on Apple M1/M2 whose cache line size is 128-bytes, resulting in 1024 vari-
ants being pre-fetched upon access to the first variant in a recursion.

Fig. 1 Efficient binary representation of interleaved haplotypes in memory, with 32-byte boundary
alignment for each variant start for SSE/AVX instructions (here i mod 32 = 0). The grey boxes indicate
essentially ‘wasted’ bits which are ignored to ensure alignment for the start of the next variant

1 Certain modern CPUs do not require specific alignment to be able to load memory to SSE/AVX registers, but for
maximum compatibility we honor the alignment anyway.

Page 8 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Secondly, a possible drawback is that we must extract the individual bit into a double
floating point representation in order to compute with it in the recursion. However, effi-
cient CPU instructions can help here too: take for example the following strategy kalis
uses on an AVX2 capable CPU. Using the PDEP instruction in BMI2, we can efficiently
deposit a bit into every ninth bit of an int (so there are now 4 8-bit integers taking on
the value of the haplotype at this variant packed in an int). Then, using SSE2, SSE4.1
and AVX instructions one can inflate through representations from 4 8-bit integers
packed in an int up to 4 64-bit doubles packed in a 256-bit AVX register. As such, we
are then ready to operate with this variant in parallel using AVX instructions.

During development, testing indicated the memory bandwidth and cache efficiency
savings of the packed binary representation provided speed-ups thanks to these instruc-
tions efficiently enabling unpacking and spreading a haplotype variant bit for parallel
use. Furthermore, such a compact representation means that more of L1/L2 cache and
memory bus bandwidth is left available for forward and backward tables, which are the
largest objects we work with in this problem.

Parameters

The parameter set used by kalis can be created by calling the Parameters() function,
which retuns a kalisParameters object with structure shown in Table 1. This struc-
ture corresponds to the parameters required to specify the LS model (Eqs. (1) and (2)).
To calculate ρ from a recombination map, Ne and γ , we also provide a helper function,
CalcRho(), which implements Eq. (3).

The kalisParameters object uses an environment rather than list for parameters
for two reasons: (i) the parameter environment and its bindings are locked which pre-
vents changes in parameter values between forward or backward table propagation

Table 1 The content of the data structure representing parameter objects

kalisParameters object Data type

pars Locked R environment, containing:

rho Vector length L

mu Vector length L, or scalar

Pi N × N matrix, or scalar

sha256 Character

Table 2 The content of the core data structures representing forward and backward table objects,
together with their correspondence to mathematical quantities

kalisForwardTable object kalisBackwardTable object Data type

alpha = αℓ
··

beta = βℓ
··

N × N matrix

alpha.f = F
ℓ beta.g = G

ℓ Vector length N

l = ℓ l = ℓ Integer scalar

from_recipient from_recipient Integer scalar

to_recipient to_recipient Integer scalar

pars.sha256 pars.sha256 Character

beta.theta Logical scalar

Page 9 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

steps, since parameters must be fixed for all steps of a given forward or backward com-
putation; and (ii) an environment explicitly ensures the (often large) parameter vectors
are not copied when associated with potentially many different tables, but will always be
purely referenced.

The environment contains only two members: another environment with the actual
parameter values (which is locked with lockEnvironment()); and a SHA-256 hash
of those parameter values (details in Table 1). The purpose of the hash is to be able to
efficiently determine whether the correct parameter set for a given forward or backward
table has been passed when computing forward or backward recursions from an already
initialised table (since it would be incorrect to propagate forward or backward using dif-
ferent parameter sets in different parts of the genome).

Forward/backward tables

Recall that the recipients (columns) in the forward/backward tables correspond to inde-
pendent HMMs. Therefore, kalis enables storing only a ‘slice’ of recipients in a forward/
backward table, making parallelisation across non-shared memory clusters much sim-
pler: given all haplotype data, these recipient slices can be independently propagated in a
communication free manner.

The forward and backward table objects contain not only the (upto) N independent
forward/backward vectors at variant ℓ , but also supporting meta-data. This includes
the variant the table is currently at, the scaling constants Fℓ (forward, Eq. (5)) or Gℓ
(backward, Eq. (6)), the range of recipient haplotypes represented (that is, the recipient
HMMs to which the column corresponds), and a hash of the parameter values used in
propagating this table.

In total, a full-size forward table for example requires 8N 2 + 8N + 1576 bytes of mem-
ory2 for storage and the small overhead of R object management. Since this grows quad-
ratically in the number of haplotypes, most functions in the package operate on forward
and backward table objects in-place, rather than via the idiomatic copy-on-write mecha-
nism of standard R. The most important consequence of this for users is that standard
assignment of a table object to another variable name only creates a reference and so an
explicit copy must be made by using the CopyTable() utility function provided in the
package.

Core SIMD code

The two most important core algorithms which are accelerated with SIMD vector
instructions are the forward and backward recursions. This code is fully implemented in
C, with tailored modifications accounting for all combinations of: scalar/vector µ , sca-
lar/matrix � , and use of the asymmetric mutation model of RELATE [2] or not (ie 8
combinations); to ensure that minimal memory accesses are performed where possible.
So, for example, scalar µ and scalar � parameters will be faster than any other combina-
tion since these values are likely to be held in registers (or at least L1 cache) for the dura-
tion of the recursion.

2 Measured under R 4.2.2

Page 10 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Additionally, in all places where we identify SIMD instructions may be used, a macro
is deployed, with a header file providing all mappings from these macros to a spe-
cific SIMD instruction for all supported instruction sets. Taking arguably the simplest
non-trivial example, all src/ExactForward*.c and src/ExactBackward*.c
files make us of the custom macro KALIS_MUL_DOUBLE(X, Y) when they need to
multiply KALIS_DOUBLEVEC_SIZE double precision floating point values together.
The file, src/StencilVec.h then provides definitions for these macros under each
instruction set kalis supports (via assembly intrinsics), together with a pure C alterna-
tive. For this example, we have (with ... indicating other macro definitions):

The inner-most loop in these core files then includes a programmatically generated
unroll to the depth specified during compilation. All this is wrapped in code which
dispatches using pthreads to multiple threads, with automatic detection of the
ability to pin to specific cores if that option is passed (important in some settings
to ensure a hot L1/L2 core cache). In particular, each thread operates on a subset of
columns of the forward and backward tables, ensuring spatial locality for memory
accesses. Furthermore, when propagating by more than a single variant position, each
column (ie each independent HMM) is propagated all the way to the target variant
before proceeding to the next column, ensuing temporal locality of memory accesses.

Page 11 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Unit tests

Given the complexity of the development described above, we have implemented a com-
prehensive suite of unit tests to ensure correctness. Internal to the package is a “gold
master” implementation of the LS model, which is a pure R implementation that has
been written for correctness and is not optimised for speed. These pure R implementa-
tions are callable with an undocumented argument option to the standard Forward()
and Backward() functions: if the argument nthreads = “R” rather than a numeric
value, then the gold master implementation is used (at the cost of running significantly
slower).

Unit tests fall broadly into two categories, one verifying the correctness of loading
from the different supported input formats (via R matrix, .hap.gz and h5) into the
optimised binary representation of Fig. 1, the other checking forward and backward
computations against a ground truth computed by the gold standard R implementation.
The latter category of tests are the most extensive, since they cover tests of all combi-
nations of: single threaded and multi-threaded computation; moving different numbers
of variants in a single call; different problem sizes where the numbers of haplotypes is
either exactly divisible by the CPU vector unit length (i.e. 256-bits for AVX2 etc), or has
different remainders; original LS and derived allele haplotype copying model; scalar and
vector mutation probabilities (µ); uniform and matrix copying probabilities (�); and in
the case of backward recursions, all combinations of starting and ending a recursion in
standard or rescaled probability space (beta.theta argument to Backward()).

All these combinations give rise to over 162, 000 tests (note also that the exact number
of tests varys by architecture due to the differing vector unit lengths). This large num-
ber of tests ensures all the separately optimised code paths for the various combinations
of run-time options are covered. We note that the tests take quite some time to run
(e.g. potentially 30-60 minutes on a laptop), precisely because the gold master R code is
run to provide the ground truth for these tests.

If a user wishes to confirm correctness on their particular platform, they can be run
with the following commands:

Results
We provide a brief overview of some example performance figures, though due to
the highly tuned nature of kalis, the exact performance you can expect will be heavily
dependent on your exact computer architecture and resources.

First, it is important to note we do not claim to have altered the scaling properties of
the LS model, only that we provide an implementation which is highly optimised within
the scaling constraints inherent to the model. As such, Fig. 2 demonstrates that kalis
indeed inherits the O(N 2) and O(L) properties of the original LS model.

Page 12 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

We turn now to the benefits kalis does provide.
Firstly, for some of the reasons highlighted in the previous Section, kalis exhibits accel-

erated performance when propagating the forward/backward recursions over more
extended stretches of the genome. This is because every effort has been made to be
cache efficient, so that when more than a single variant step is taken, the strong cache
locality design ensures that we are not memory bandwidth limited. This effect can be
seen quite dramatically in Fig. 3 by the rapid decrease in compute time per variant as
longer stretches are propagated.

Secondly, the hard-coded loop unrolling functionality which can be controlled at
compile time by the user can be seen to be beneficial in Fig. 3. Clearly excessive loop
unrolling is harmful, with depth 32 unrolls actually being substantially slower than no
unrolling. However, unrolling to depth 8 does give a clear improvement. The best choice
of unrolls will be both problem and architecture dependent, so we recommend testing
different unroll levels on the target problem before performing long compute runs.

Figure 3 also illustrates that the hand-designed use of low-level vector SIMD instruc-
tions is not superfluous, with substantial speed-up afforded by their use (the difference
between dashed and solid lines of the same colour).

Finally, Fig. 4 shows that in certain very large problem settings kalis’ ability to pin
threads can make a substantial difference. In this setting, AVX2 showed the greatest
benefit from eliminating context switching, ensuring that the cache is not invalidated by
threads migrating between cores. The lack of substantial difference between AVX2 and
AVX-512 here once thread pinning is employed calls for some investigation, though this
may be a result of thermal/power throttling which is known to occur especially for AVX-
512 heavy code [17].

These performance examples again highlight the importance of pilot benchmark runs
with different configurations of instruction set and unroll settings before embarking
on long compute runs to ensure the greatest compute efficiency is achieved for a given
problem and compute architecture.

Benchmarking comparison

We performed two benchmarking experiments to compare the implementations of the
forward and backward algorithms in kalis to those in Relate [2]. While several other
leading software suites, including BEAGLE [4] and IMPUTE [5], use high performance

Fig. 2 kalis shows the expected order N2 and order L scaling of the LS model. Computed on an Amazon Web
Services c4.8xlarge instance (36 vCPUs, 60 GB of RAM)

Page 13 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

implementations of the LS model, we chose to compare to Relate because it is explicitly
optimized to target locus-specific N × N genetic distance matrices analogous to those
produced by kalis. We based all of our benchmarks on the same set of haplotypes, taken

8 16 32

1 2 4

1000 10001 10 100 1 10 100 1 10 100 1000

1

3

10

30

1

3

10

30

deltaL

m
s

/ v
ar

ia
nt

as.factor(threads) 4 16 48 isa AVX2 NOASM

Fig. 3 Log-log plot of milliseconds per variant performance (y-axis) of the forward algorithm on 10,000
haplotypes, against the number of variants propagated (x-axis). Each panel is a different loop unrolling depth
(panel title gives loop unrolling level). Line colour denotes number of CPU threads, whilst a dashed line
indicates vanilla C and a solid line indicates hand-coded AVX2 instructions. In total, using AVX2, 48 threads,
and loop unrolls to depth 8, it takes less than 10 seconds to propagate a 10000× 10000 forward table over
10,000 variants

AVX512 AVX2 NOASM

1 10 100 1 10 100 1 10 100

0.3

1.0

3.0

10.0

deltaL

se
co

nd
s

/ v
ar

ia
nt

pinned FALSE TRUE as.factor(threads) 1 4 16 48

Fig. 4 Log-log plot of seconds per variant performance (y-axis) of the forward algorithm on 100,000
haplotypes, against the number of variants propagated (x-axis). Each panel is a different instruction set
(AVX-512/AVX2/none). Line colour denotes number of CPU threads, whilst a dashed line indicates pinned
threads and a solid line indicates no thread pinning. In total, using AVX-512, 48 threads, and pinned threads, it
takes less approximately 38 minutes to propagate a 100000× 100000 forward table over 10,000 variants

Page 14 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

from the 1000 Genomes Project [18], as used in our real-data example which follows
below. The data include 5008 haplotypes observed at 29193 variants.

kalis can perform the forward and backward recursions under either the origi-
nal LS model (the default) or the derived allele haplotype copying model if use.
speidel=TRUE is passed to the Parameters() function. Since Relate only com-
putes these recursions for the derived allele copying model, it can exploit the asymme-
try in the emission kernel based on the derived allele orientation of each variant. When
painting a given recipient haplotype as a mosaic of donor haplotypes, this allows Relate
to effectively skip all variants where a recipient haplotype does not carry the derived
allele. This acceleration cannot be applied to the original LS model, which kalis was pri-
marily designed for, because the symmetric emission kernel requires both the forward
and backward algorithms to iterate over every variant for every recipient haplotype.
Even with the derived allele copying model activated, kalis will still visit every variant for
every recipient haplotype.

Accordingly, we found that the forward and backward recursions were approximately
4× faster using Relate rather than using kalis. However, if Relate visits every locus, as
would be necessary to compute the original LS model, we found that the forward and
backward recursions were approximately 6× faster using kalis rather than using Relate.
This demonstrates the benefit of the low-level optimisations made in kalis. In principle
kalis could also employ the same optimisation as Relate and visit only derived sites for
every recipient haplotype. We consider this an exciting avenue of future research. Oth-
erwise, kalis and Relate would be expected to share similar algorithmic scaling proper-
ties in data size.

Full details of how this benchmarking was performed are provided in Additional file 1,
Section D.

Real‑data example: recent selection for lactase persistence

LCT is a gene on chromosome 2 that encodes lactase, the enzyme responsible for the
breakdown and digestion of lactose, the sugar commonly found in milk. Ancestral
humans had a regulatory ‘switch’ on chromosome 2 that stops lactase production after
infancy when children would be weaned off breast milk. Mutations that disrupt this
switch allow lactase production to persist into adulthood, conferring a lifelong ability to
extract energy from milk [19]. Such mutations have arisen independently at least twice
in human history, in Europe and in East Africa, and are among the strongest examples of
recent positive natural selection in humans [20, 21]. These mutations have been shown
to spread across standard human population boundaries. For example, [22] used another
implementation of the LS model to compare haplotypes at the LCT locus sampled from
the West African Fula population to haplotypes collected from across Europe and Asia
as part of the 1000 Genomes project [18]. They found that the genetic distance between
Fulani haplotypes and Eurasian haplotypes was unusually small at the LCT locus. With
some further analysis, they interpreted this as evidence that a European haplotype con-
ferring lactase persistence became prevalent within the West African Fula population
due to recent natural selection sometime over the past two thousand years.

Although it is difficult to directly replicate [22] since the Fulani samples they studied
are not a part of the 1000 Genomes project, we take inspiration from their analysis.

Page 15 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Here we present a small example using kalis to informally investigate whether there
is evidence of recent gene-flow from Eurasia into any of the African populations in
the 1000 Genomes dataset at the lactase locus. We run kalis on 5008 haplotypes from
the 1000 Genomes Phase 3 release to revisit the haplotype structure around LCT;
the haplotypes are sampled from 26 sub-populations all over the world [18]. Figure 5
shows a clustered version of a distance matrix, calculated as in Eq. (4), at a variant
in the regulatory region of LCT (rs4988235). To see if we could observe a pattern
of gene-flow into or out of Africa similar to what was observed by [22], we use aver-
age pairwise linkage [23] to cluster the African haplotypes separately from the non-
African haplotypes. In Fig. 5, distances between African haplotypes are shown in the
upper left corner; non-African haplotypes, in the lower right corner.

Rather than 26 clusters reflecting the 26 sampled human populations, we see that
there are three very distinct lactase haplotypes that are common both within and out-
side Africa. This suggests that these three haplotypes, under strong positive selection
pressure, recently spread across population boundaries and presumably confer lactase
persistence. We cannot confirm whether any of these three haplotypes correspond
to the one identified in the Fulani by [22]. These three haplotypes are not the only
structure we see: in the upper left corner of the African (AFR) block we see some hap-
lotypes that are only found inside Africa; and in the non-African block, a haplotype
that is only found outside Africa. We can also see some sub-structure within the clear
haplotype blocks.

The code to reproduce this example is available in the examples directory of
repository associated with this paper (https:// github. com/ louis aslett/ kalis- bmc), as a
vignette in the package (if vignettes built at install time), or directly at the kalis pack-
age website https:// kalis. louis aslett. com/ artic les/ lct_ examp le. html

Fig. 5 Distance matrix among 5008 haplotypes calculated at rs4988235, upstream of LCT. African
haplotypes are clustered in the upper left corner and separated by grey lines from non-African haplotypes
from the Americas (AMR), East Asia (EAS), Europe (EUR), and SAS (South Asia). The scale on the right maps the
colours to distances

https://github.com/louisaslett/kalis-bmc
https://kalis.louisaslett.com/articles/lct_example.html

Page 16 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Discussion
In Additional file 2, we introduce the package from a user perspective, from package
installation right through to decoding a single variant position in R using kalis.

There are many avenues for future research in developing kalis. On the model side,
for example, allowing for different recombination rates between sub-populations as
done in fastPHASE [24] would be a natural extension.

On the computational side, ARM scalable vector extensions [25] represent an inter-
esting new approach to SIMD instruction sets, where the width of instructions need
not be hard coded prior to compilation. At present it is not widely available, but as
this rolls out, it would be natural to extend kalis to enable targeting this new instruc-
tion set.

An important utility extension is expanding the file formats that kalis can natively
read via CacheHaplotypes(), to enable simpler and more streamlined software
pipelines when bioinformaticians incorporate kalis into their workflows.

Additionally, during development of kalis we have been congnisant of the potential
interest in using the core C code from other languages. Therefore all core computa-
tional C code has been kept as low-dependency as possible, and in particular has no
dependencies on R or any other external libraries. We hope in future to release a pure
C library, or to provide other language bindings directly.

Finally, a future avenue of potential development is extension of kalis to support
GPU or tensor cards. Note that it was an explicit design choice to initially target CPU
SIMD extensions, since the vast majority of University high performance comput-
ing clusters have a huge amount of untapped compute power in this form, but often
much more limited availability of specialist extension cards. Therefore, by pushing
performance as extensively as possible via CPU only means, we provide the greatest
potential impact for end users. This does not preclude future versions adding support
for add-on compute cards.

Conclusion
kalis provides a R interface to a highly optimized C implementation of the LS model
that enables local ancestry, selection, and associations studies in modern large
genomic datasets.

Availability and requirements
Project name: kalis
Project home page: https:// kalis. louis aslett. com/
Operating system(s): Linux, MacOS, Windows
Programming language: R, C
Other requirements: R (≥ 3.5.0)
License: GPL (≥ 3)
Any restrictions to use by non-academics: None beyond GPL (≥ 3).

https://kalis.louisaslett.com/

Page 17 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

Abbreviations
LS model Li & Stephens model
HMM hidden Markov model
SIMD single instruction, multiple data

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05688-8.

Additional file 1. An appendix containing full derivations of mathematical reformulation; software installation
details; HDF5 file format specifications; and additional benchmarking details.

Additional file 2. A user guide to the kalis R package.

Acknowledgements
Both authors would like to acknowledge Professor Ira Hall, Professor Chris Holmes, and Dr Chris Spencer for their discus-
sions and advice on this project.

Author contributions
LA architected and wrote the C-core. LA and RC collaborated on the R interface. RC conducted the real-world lactase
persistence example. LA and RC wrote and approved the final manuscript.

Funding
This project was supported by the NHGRI Centers for Common Disease Genomics grant (UM1-HG008853), active from
2015-2022.

Availability of data and materials
The package source code repository is at https:// github. com/ louis aslett/ kalis. All scripts for reproducing the results of
this paper are available in this repository https:// github. com/ louis aslett/ kalis- bmc. The two external dependencies are:
1000 Genomes data which are available for download from https:// www. inter natio nalge nome. org/; and the msprime
simulator, which may be downloaded from https:// tskit. dev/ softw are/ mspri me. html.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 3 August 2023 Accepted: 1 February 2024

References
 1. Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide

polymorphism data. Genetics. 2003;165:2213–33.
 2. Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands of samples.

Nat Genet. 2019;51:1321–9.
 3. Song YS. Na Li and Matthew Stephens on Modeling Linkage Disequilibrium. Genetics. 2016;203:1005–6.
 4. Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet.

2021;108:1880–90.
 5. Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the positional burrows wheeler transform. PLoS

Genet. 2020;16:e1009049.
 6. Kelleher J, et al. Inferring whole-genome histories in large population datasets. Nat Genet. 2019;51:1330–8.
 7. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS

Genet. 2012;8:e1002453.
 8. Rosen YM, Paten BJ. An average-case sublinear forward algorithm for the haploid Li and Stephens model. Algo-

rithms Mol Biol. 2019;14:1–12.
 9. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria 2023. https:// www.R- proje ct. org/.
 10. Sutter H. The free lunch is over: a fundamental turn toward concurrency in software. Dr Dobb’s J. 2005;30:202–10.
 11. Peleg A, Weiser U. MMX technology extension to the Intel architecture. IEEE Micro. 1996;16:42–50.
 12. Intel Corporation. Intel Architecture Instruction Set Extensions and Future Features. Tech. Rep. 319433-046 (2022).
 13. ARM. NEON Programmer’s Guide. Tech. Rep. DEN0018A ID071613 (2013).
 14. Alpert D, Avnon D. Architecture of the Pentium microprocessor. IEEE Micro. 1993;13:11–21.

https://doi.org/10.1186/s12859-024-05688-8
https://github.com/louisaslett/kalis
https://github.com/louisaslett/kalis-bmc
https://www.internationalgenome.org/
https://tskit.dev/software/msprime.html
https://www.R-project.org/

Page 18 of 18Aslett and Christ BMC Bioinformatics (2024) 25:86

 15. ISO. ISO/IEC 9899:2018 Information technology—Programming languages—C Fourth edn (BSI, 2018). https:// www. iso.
org/ stand ard/ 74528. html.

 16. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE.
1989;77:257–86.

 17. Schöne R, Ilsche T, Bielert M, Gocht A, Hackenberg D. IEEE (ed.) Energy efficiency features of the Intel Skylake-SP pro-
cessor and their impact on performance. (ed. IEEE) 2019 International Conference on High Performance Computing
& Simulation (HPCS), 2019. pp. 399–406.

 18. Consortium GP, et al. A global reference for human genetic variation. Nature. 2015;526:68.
 19. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase

persistence. Hum Genet. 2009;124:579–91.
 20. Ranciaro A, et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet.

2014;94:496–510.
 21. Bersaglieri T, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet.

2004;74:1111–20.
 22. Busby G, et al. Inferring adaptive gene-flow in recent African history. BioRxiv 2017;205252.
 23. Sokal RR. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull. 1958;38:1409–38.
 24. Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to

inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78:629–44.
 25. Stephens N, et al. The ARM scalable vector extension. IEEE Micro. 2017;37:26–39.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html

	kalis: a modern implementation of the Li & Stephens model for local ancestry inference in R
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	The LS model
	Modification of the forward-backward algorithm
	Core implementation details
	Data structures
	Haplotype data
	Parameters
	Forwardbackward tables

	Core SIMD code
	Unit tests

	Results
	Benchmarking comparison
	Real-data example: recent selection for lactase persistence

	Discussion
	Conclusion
	Availability and requirements
	Acknowledgements
	References

