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Abstract 

Background: A recent breakthrough in differential network (DN) analysis of microbi-
ome data has been realized with the advent of next-generation sequencing technolo-
gies. The DN analysis disentangles the microbial co-abundance among taxa by com-
paring the network properties between two or more graphs under different biological 
conditions. However, the existing methods to the DN analysis for microbiome data 
do not adjust for other clinical differences between subjects.

Results: We propose a Statistical Approach via Pseudo-value Information and Esti-
mation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional 
covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regres-
sion technique adopting jackknife pseudo-values that can be implemented readily 
for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently 
reaches higher recall and F1-score, while maintaining similar precision and accuracy 
to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real 
datasets from the American Gut Project and the Diet Exchange Study to showcase 
the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can 
also be used to incorporate the temporal change of connectivity of taxa with the inclu-
sion of additional covariates. As a result, our method has found taxa that are related 
to the prevention of intestinal inflammation and severity of fatigue in advanced meta-
static cancer patients.

Conclusion: SOHPIE-DNA is the first attempt of introducing the regression framework 
for the DN analysis in microbiome data. This enables the prediction of characteristics 
of a connectivity of a network with the presence of additional covariate informa-
tion in the regression. The R package with a vignette of our methodology is avail-
able through the CRAN repository (https:// CRAN.R- proje ct. org/ packa ge= SOHPIE), 
named SOHPIE (pronounced as Sofie). The source code and user manual can be found 
at https:// github. com/ sjahnn/ SOHPIE- DNA.
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Background
The human microbiome is the collective genomes of microbes or micro-organisms local-
ized to the various sites of human body [1]. Recent clinical studies have shown that the 
microbiome has a regulatory role in a wide array of illnesses in humans, such as can-
cer [2], human immunodeficiency virus [3], and inflammatory bowel disease (IBD) [4]. 
Moreover, the human microbiome is linked to emotional well-being [5] and mental 
health including depression [6], autism spectrum disorders [7], and human brain dis-
eases [8].

Following the advent of next-generation sequencing technologies, the taxonomic com-
position of microbial communities is better characterized by the amplification of small 
fragments (or amplicon) of the 16S ribosomal RNA (or 16S rRNA) gene. More recently, 
shotgun metagenomic sequencing has become an alternative for microbial community 
profiling [9]. Either sequencing platform typically employs similarity-based clustering 
algorithms to group 16S rRNA sequences into Operational Taxonomic Units (OTU) [10, 
11] that are compositional.

The applications of network theory have been successfully utilized to better appraise 
the complex symbiotic (or dysbiotic) relationship between microbiome and disease 
states – microbial co-abundances [12]. The abundance matrix or the observed OTU 
table is used to infer microbial co-abundances among taxa through either correlation-
based approaches or probabilistic graphical models.

The differential network (DN) analysis compares the network properties between two 
or more graphs under different biological conditions, such as degree centrality. Based on 
the recent review article [13], there are two methods that are newly available to the DN 
analysis for microbiome data: Microbiome Differential Network Estimation (MDiNE) 
[14] and Network Construction and comparison for Microbiome data (NetCoMi) [15]. 
These methods, however, do not assume that the association structure depends on addi-
tional binary and continuous covariates.

It has been recognized that the composition of the gut microbiome is central to the 
pathogenesis of IBD [4, 16]. In addition, the gut microbiome composition in patients 
with IBD is largely influenced by various factors including the use of antibiotics, diet, 
and cigarette smoking [4]. In an analogous fashion, it is not unreasonable to speculate 
that the structure of the microbial networks can also vary depending on these factors. 
Thereby, there is a need for statistical methods for DN analysis that can include addi-
tional predictor variables.

One way to accomplish this goal is to use a regression technique based on pseudo-
values, a component to calculate the bias-corrected estimator of leave-one-out jack-
knife resampling procedure [17]. The pseudo-value technique was first postulated by 
Andersen and his colleagues [18, 19] in the context of multi-state survival models with 
right-censored data. Since then, it has been well studied in various disciplines of statis-
tics including the interval-censored data [20, 21], clustered data [22, 23], and machine 
learning methods [24, 25].

The ultimate benefit of this technique is its straightforward inclusion of additional 
covariates in the generalized linear model [26]. An asymptotic linearity and consistency 
of pseudo-values given covariates are shown with the second-order von Mises expansion 
[27, 28]. The pseudo-values can then be used as the response variable in a regression 
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model with the covariates [29]. Several studies reported that the type I error is well con-
trolled at a nominal level of 0.05 while maintaining a high statistical power under the 
quasi-likelihood generalized linear mixed model [30] and generalized estimating equa-
tions framework [23, 31] for pseudo-value regression approach.

Hence, we propose a regression modeling method for differential connectivity (DC) 
analysis that regresses the jackknife pseudo-values calculated from a degree centrality 
of taxa in a microbial network to directly estimate the effects of predictors. The primary 
focus of the methodological innovation presented in this manuscript is centered on 
DC analysis, a subset of the broader DN analysis. The findings of DC analysis primarily 
describe the DC of individual nodes (or taxa) instead of taxon-taxon co-abundance rela-
tionships [32]. In this approach, the grouping variable itself could also be included in the 
regression model along with additional clinical covariates while regressing the pseudo-
values. We loosely refer to this as a “multivariable setting”, whereas in “univariable set-
tings” only the grouping variable is utilized in a DN analysis.

In the present study, we introduce Statistical ApprOacH via Pseudo-value Informa-
tion and Estimation for Differential Network Analysis (SOHPIE-DNA) that can include 
covariate information in analyzing microbiome data. We firstly demonstrate the plausi-
bility of the proposed method by comparing the model performances with MDiNE and 
NetCoMi through simulations under multivariable and univariable settings. Of note, 
the covariate adjustment is the main strength of our proposed method. Therefore, the 
findings from multivariable simulation setting corroborates the main reason for our 
methods paper. Furthermore, the SOHPIE-DNA is applied to illustrate its clinical util-
ity by examining real data from the American Gut Project [33] and the Diet Exchange 
Study [34] to identify DC taxa with presence of covariates. All statistical analyses are 
performed in R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria).

Results
Simulation study

The sample size n = 20, 50, 200, 500 are considered for each microbial network with 
p = 20, 40 taxa over 1,000 Monte Carlo replicates. Simulations are repeated to assess 
the effects of covariates on taxa by changing the effect size, δ = 0.05, 0.1, 0.2 , which is 
described in “Simulated data” section. A new network is generated at each simulation 
replicate to account for biological variability of the network structure.

The performance metrics provided in “Performance measures” section are computed 
by comparing the test results with the true network. In the true network setting, a taxon 
is truly DC between groups if it is connected to at least one different neighbor taxon 
between groups. Tables  1 and 2 summarize simulation results under the multivari-
able setting. That is, a continuous covariate is included with the binary group variable 
in the regression model. To illustrate the utility of the proposed method on covariate-
dependent network, we compared the pseudo-value regression approach with the 
recent methods available (NetCoMi and MDiNE) that cannot incorporate the additional 
covariate. Results show that the SOHPIE-DNA consistently maintains high recall values 
in all specifications of taxa, sample sizes, and effect sizes, and outperforms NetCoMi 
and MDiNE in almost all cases. A higher F1 score of SOHPIE-DNA indicates that the 
proposed method can achieve a better overall model performance in the presence of 
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additional covariates, compared with the two competing methods. In general, all met-
rics improve as n increases and/or when the larger effect size is provided ( δ = 0.2) , as 
expected. It is worth noting that the MDiNE poses a practical challenge associated with 
substantially large computational time and costs. For instance, it requires more than 9 
days to complete each simulation for p = 40 and n = 200 from the University of Florida 
Research Computing Linux server, HiPerGator 3.0 with 32CPU cores and 4GB of RAM 
per node, while it takes up to 18  h to execute the same simulation tasks for both the 
SOHPIE-DNA and NetCoMi with 4CPU cores and 6GB of RAM per node. See Addi-
tional file 1: Table S1 for more details.

Table 3 presents results of the univariable setting, where only the binary group variable 
is included in the model. In other words, only the effect of group was considered when 
generating random networks. On the whole, a similar pattern is shown in the univariable 
setting that the SOHPIE-DNA reaches a higher level of recall, compared with NetCoMi 
and MDiNE. Overall, our method resulted in a higher F1 score when the smaller net-
work is considered. All of the methods suffer from a low precision with a small effect 
size ( δ = 0.05) , but eventually improves with a larger effect size ( δ = 0.2).

Analysis of the American Gut Project Data

Six out of 138 taxa are found significantly DC between migraineurs vs. non-migraineurs 
while adjusting for age, sex, exercise frequency, categorical alcohol consumption, oral 
hygiene behavior, and dog ownership. At the family-level, the DC taxa are members of 
Ruminococcaceae, Lachnospiraceae, Enterobacteriaceae, Erysipelotrichaceae, and Bac-
teroidaceae. Of these families, the absence of Lachnospiraceae has been linked to the 
active or severe Clostridium difficile infection [35]. Erysipelotrichaceae has been associ-
ated with dyslipidemic phenotypes and systemic inflammation [36]. Moreover, a recent 
study [37] reported that the species enriched among migraineurs include Ruminococ-
cus gnavus and Lachnospiraceae bacterium. The computational time for our analysis was 
about 12 h on the high-performance Linux cluster, HiPerGator 3.0 with 16CPU cores 
and 4GB of RAM per node.

Analysis of the diet exchange study data

Out of 112 taxa, 16 are predicted to be significantly DC between AA and RA after the 
two-week dietary exchange intervention while accounting for their age and BMI group. 
A complete list of DC taxa represent Bacillus, Bacteroides uniformis et rel., Bacteroides 
vulgatus et rel., Clostridium ramosum et rel., Coprococcus eutactus et rel., Eggerthella 
lenta et rel., Escherichia coli et rel., Eubacterium hallii et rel., Eubacterium siraeum et 
rel., Faecalibacterium prausnitzii et rel., Prevotella oralis et rel., Roseburia intestinalis 
et rel., Ruminococcus gnavus et rel., Staphylococcus, Uncultured Bacteroidetes, and Xan-
thomonadaceae. Notably, Roseburia intestinalis contributes to the prevention and man-
agement of intestinal inflammation and atherosclerosis [38]. Eubacterium hallii has been 
negatively associated with the fatigue severity scores of patients with advanced meta-
static cancer [39]. The analysis took about an hour and 11 min on the HiPerGator 3.0 
with 16CPU cores and 4GB of RAM per node.
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Discussion
In this manuscript, we introduce the SOHPIE-DNA, a pseudo-value regression approach 
that determines whether a microbial taxa is significantly DC between groups after 
adjusting for additional covariates. This study is the first of its kind in the literature to 
develop a regression modeling for the DN analysis in microbiome data, which includes 
more than one predictor (e.g., group) in the model and predicts features of connectivity 
of a network. A simulation study shows that, at least for the scenarios considered, the 
SOHPIE-DNA generally maintains higher recall and F1-score while maintaining similar 
precision and accuracy, when compared with the most recent state-of-the-art methods: 
NetCoMi and MDiNE.

In this study, the group-specific jackknife pseudo-values are calculated. Another way 
of calculating jackknife pseudo-values is to use the entire sample and introduce the 
group-level indicator as a covariate into the model. However, in our preliminary simula-
tions, we found that doing it that way led to worse performance.

Albeit not reported, we also looked at the familywise error rate (FWER), as defined 
to be the probability of at least one false positive and the values were fairly high in some 
cases. However, our simulation results shown in this paper, still reassure the utility of 
our proposed method since we generally are not expecting the complete null (where 
none of the edges to be DC) to hold and the FWER is a stringent measure as generally 
accepted by many statisticians. In our opinion, the reverse engineering methods such as 
ours should only a used as a screening tool and any positive discovery should be experi-
mentally validated to alleviate such concerns. Incidentally, if FWER control is deemed 
to be very important for some situations, our tests could be combined with a Westfall-
Young type procedure [40]. The detailed performance of such a modification could be 
studied elsewhere.

Another issue that we encountered was the incorporation of q-values, into our proce-
dure. Since our individual tests are not independent, the q-values may not have the clas-
sical properties. Nevertheless, our tests seem to have reasonable FDR values as can be 
seen from the empirical results (Tables 1, 2 and 3).

We want to highlight that the SOHPIE-DNA is theoretically feasible to accommo-
date categorical biological groups, in lieu of binary biological groups. To the best of 
our knowledge, the use of binary groups has been commonly used for the DN analysis. 
Further, we have presented our simulation and real-data application studies with binary 
groups only.

We analyzed the data from two published studies to showcase the utility of the 
SOHPIE-DNA. Firstly, 6 taxa are found to be significantly DC between migraineurs 
and non-migraineurs while accounting for covariates using the data from the American 
Gut Project. A slight modification to the proposed method is grafted for analyzing the 
Diet Exchange Study data, where the group-specific difference of the estimated associa-
tion matrices between two time points are used for the pseudo-value calculation. As a 
result, 16 significantly DC taxa are identified between AA and RA after the two-week 
diet exchange intervention with the inclusion of covariates. The real-world microbiome 
data often includes hundreds to thousands of taxa. We recommend that the users should 
(1) focus on a subset of taxa that are chosen based on experts with biological or clinical 
knowledge or (2) utilize our method at higher taxonomic levels (such as phylum level).
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The latter application demonstrates the capability of assessing the temporal varia-
tion in connectivity measures. However, the SOHPIE-DNA currently has no feature 
to address the within-subject correlation for repeated measurements at different time 
points. This opens up an avenue for future investigation of longitudinal microbiome 
studies. One way of handling this is to use a generalized estimating equations (GEE) 
type approach for the pseudo-values and utilizing a jackknife estimate of the vari-
ance-covariance matrix of the pseudo-values at different time points.

Another line of future research direction to extend our work is to consider the idea 
of variable selection. This will help finding the best prediction model with a subset of 
phenotypic variables that are more biologically relevant across more heterogeneous 
study samples.

Additionally, we made an attempt of fitting a model under the generalized linear 
model for binary outcomes: logistic regression with or without the Firth’s correc-
tion, in case of small sample size. It was challenging to appropriately dichotomize 
the matrices with jackknife pseudo-values. Further studies will be needed to devise 
an adaptive algorithm to find a threshold value that better classify the jackknife 
pseudo-values.

As a last remark, it should be emphasized that methods other than SparCC were 
also considered for network estimation, which includes the CCLasso [41] and SPIEC-
EASI [42] with graphical lasso or neighborhood selection algorithms. However, these 
were not favorable in terms of runtime or due to not being able to run under certain 
simulation scenarios. For instance, the computational time to complete the re-esti-
mation step for the SPIEC-EASI took more than 200 min for p = 20 with n = 200 for 
a single simulation replicate. The CCLasso could not estimate the association matrix 
with small sample size for a smaller network ( p = 20 for n = 20, 40, 60).

Conclusions
There has been limited research to date that discusses how to adjust for additional 
covariate information in DN analysis for microbiome data. Herewith, we propose 
SOHPIE-DNA, a novel pseudo-value regression approach for the DN analysis, which 
can include additional clinical covariate in the model.

Methods
Compositional correlation‑based methods for network estimation

The correlation is a useful proxy measure for identifying co-abundances or depend-
encies among taxa (or OTUs) in a microbial network. The Sparse Correlations for 
Compositional Data (SparCC) [43] estimates the pairwise correlations of the log-ratio 
transformed OTU abundances. Of note, a recent method, namely a Pseudo-value 
Regression Approach for Network Analysis (PRANA) [44], operates on gene expres-
sion data only, which therefore does not use a correlation measure that preserves the 
compositional profiling.

The co-abundance among taxa is described by a covariance matrix T ∈ R
p×p where 

the non-diagonal elements tjk are expressed by
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where uj and uk are the fraction of OTU abundances, σ 2
j  and σ 2

k  are the variances of 
the log-transformed abundances, and ρjk is the correlation of taxa j and k, respectively. 
Moreover, the variance tjj is approximated by

where j, k ∈ {1, . . . p} . Then the correlation can be estimated by solving Eqs. 1 and 2:

where σ̂j , σ̂k , and t̂jk are the sample estimates of σj , σk , and tjk , respectively.
Furthermore, SparCC takes an iterative approach under the assumption (“sparsity of 

correlations” as in the original paper) that a small number of strong correlations exists in 
a true network, which hinders the detection of spurious correlations among taxa.

Besides SparCC, we have attempted to use other compositional correlation measures 
for our differential network analysis. See the “Discussion” section for further details.

Pseudo‑value approach

Consider undirected network estimated from n individuals. It can then be represented 
by the p× p association matrix that encodes the pairwise correlations ρ̂jk between a pair 
of taxa j, k ∈ {1, . . . , p} . The association matrix is symmetric ( ρ̂jk = ρ̂kj ) where the non-
diagonal entries are either non-zero (i.e., some association between two taxa) or zero 
(i.e., no association between two taxa). The diagonal entries are all equal to one, because 
the network is assumed that there is no self-loop (i.e., a node cannot redirect to itself ).

The network centrality has been studied to measure the extent of biological or topo-
logical importance that a node has in a network [45, 46]. For each taxa k, the network 
centrality is calculated as the marginal sum of the association matrix.

where k = 1, . . . , p.
The jackknife pseudo-values [17] for the ith individual and kth taxon are defined by:

where θ̂k(i) is the marginal sum of a taxon calculated based on the re-estimated associa-
tion matrix using the microbiome data eliminating the ith subject.

(1)

tjk ≡Var log
uj

uk

=Var log uj + Var log uk − 2Cov log uj , log uk

=σ 2
j + σ 2

k − 2ρjkσjσk ,

(2)tjj ∼= (p− 1)σ 2
j +

∑

k �=j

σ 2
k ,

(3)ρ̂jk =
σ̂ 2
j + σ̂ 2

k − t̂jk

2σ̂jσ̂k
,

θ̂k =

p
∑

j=1

ρ̂jk ,

(4)θ̃ik = nθ̂k − (n− 1)θ̂k(i),
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The computational cost of the re-estimation process is dependent on the sample 
size, as for each taxa k requires n such calculations with the data size of n− 1 . A solu-
tion to speed up the processing time is the use of parallel computing such as mclapply 
function in parallel R package.

Let Z ∈ {1, 2} be a binary group indicator and denote G1 = {i : Zi = 1} and 
G2 = {i : Zi = 2} . Each group has the same set of p taxa, but group-specific sample size 
nz = |Gz| for the two groups z = 1, 2 . Total sample size is n =

∑

z nz . The Eq. 4 is used 
to calculate the group-specific jackknife pseudo-values. That is, for taxon k and group z, 
we define θ̂ zk  and θ̂ zk(i) , where i = 1, . . . , nz . Then for each i ∈ Gz , the kth taxon jackknife 
pseudo-values are calculated from θ̃ik = nz θ̂

z
k − (nz − 1)θ̂ zk(i).

Let X = (X1, . . . ,Xq ) denote q vector of covariates, such as age at diagnosis, current 
smoking status, and etc. The pseudo-value regression model for the ith individual and kth 
taxon is

where µi is the k-dimensional mean vector of pseudo-value θ̃ik for the ith individual, αk is 
the intercept, βk is the regression coefficient for Z, and γk1, . . . , γkq is the set of regression 
coefficients to be estimated for X . In our setting, the main parameter of interest is given 
by βk , the change in network centrality measure of the kth taxon between two groups.

The least trimmed squares (LTS), also known as least trimmed sum of squares [47], 
is then implemented to carry out a robust regression. The main advantages of the LTS 
estimator over other robust estimators including the M-estimator and least median of 
squares estimator are its computational efficiency and robustness to outliers in both the 
response and predictor variables [48, 49].

The LTS estimator is defined by

where r(i) is the set of ordered absolute values of the residuals sorted in increasing 
order of absolute value and h may depend on a pre-determined trimming proportion 
c ∈ [0.5, 1] [50]. For example, one can take h = [n(1− c)] + 1.

Hypothesis testing

We construct the null hypothesis of H0 : βk = 0 against the research hypothesis 
H1 : βk �= 0 to test if there is a true difference between groups in the network centrality 
measure of the kth taxon. The t-statistic is defined by Uk = β̂k/SE(β̂k) for k = 1, . . . , p , 
where β̂k is the least-squares estimator from the robust regression described in the 
above Eq. 5 and SE(β̂k) is the standard error of β̂k . As far as the decision-making pro-
cess, the asymptotically α-level test rejects H0 if |Uk | > tα/2 . p values are calculated using 
a t-distribution as in robustbase R package [51, 52].

Multiple hypothesis testing is a common feature in the DN analysis, and therefore 
it is crucial to appropriately control the false discovery rate (FDR). The FDR measures 
the proportion of false discoveries incurred among a set of DC taxa from the test. Most 

(5)µi = E[θ̃ik | Zi,Xi] = αk + βkZi +

q
∑

m=1

γkmXim,

min
αk ,βk ,γk1,...,γkq

h
∑

i=1

r(i)(αk ,βk , γk1, . . . , γkq)
2,
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classically, the concept of FDR was pioneered by Benjamini and Hochberg [53], shown 
to achieve the FDR control, whilst maintaining the adequate statistical power [54]. How-
ever, the q-value [55] offers a less conservative FDR estimation over the conventional 
Benjamini-Hochberg procedure [56]. The q-value is estimated from the empirical distri-
bution of the observed p values, and keeps the balance between true positives and false 
positives [57]. Accordingly, the q-value is applied to adjust for the multiplicity control in 
the present paper using fdrtool R package.

Algorithm

The SOHPIE-DNA algorithm is described below in Algorithm 1.

Algorithm 1 SOHPIE-DNA

Performance evaluations

Construction of adjacency matrices

Generate the scale-free random network (or Barabási-Albert network) [58] with p nodes 
using the igraph R package [59]. A network is scale-free if its degree distribution follows 
a power-law distribution. In other words, a small portion of “hub” nodes has the highest 
degree centrality, while most nodes have lower degree centrality.

The two identical p× p adjacency matrices, where the diagonal entries are 0 and 
non-diagonal entries are either {0, 1} , are obtained from this random network. At the 
end of the data generation phase using SparseDOSSA2 in Simulated Data in Materials 
subsection, we are able to identify which taxa are spike-in associated with the covariate 
for each z = 1, 2 . In order to distinguish networks representative of z = 1 (e.g., healthy 
control) from that of z = 2 (e.g., disease group), we keep track of the indices of these 
covariate-dependent taxa. Each index with a value of 1 indicates that the corresponding 
covariate-dependent taxon is connected with at least one of the neighboring taxa. We 
use these indices to perturb the random networks by changing a value from 1 to 0 (i.e. 
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synthetically removing all the connected edges) around the covariate-dependent taxa for 
each group. This perturbation is further explained and borrowed from the recent paper 
[60]. The network plots are provided to visually demonstrate the perturbed adjacency 
matrices (see Figs. 1 and 2). The figures represent two single networks for two particular 
realizations corresponding to covariate profiles. The effect sizes (i.e. pre-specified pro-
portion of taxa that are associated with the covariate; denoted as δ1 and δ2 ) control the 
amount of perturbation. If the effect sizes are different ( δ1  = δ2 ), then the covariates are 
affecting the networks differentially (Fig. 2). See Simulated Data in Materials subsection 
for further details.

Performance measures

Four performance metrics are adopted to evaluate our proposed method: precision, 
recall, F1-score, and accuracy. Let �z ∈ R

p×p be the group-specific adjacency matrix, 
where

for z = 1, 2 . Next, a node-specific true connection is calculated

�z
jk =

{

1 if the two nodes j and k are connected
0 otherwise,

Fig. 1 Network plots visualizing the microbial network ( p = 20 ) with a covariate dependence structure that 
depends on continuous age and binary group information ( δ1 = 0.05 (left), δ2 = 0.2 (right)). This represents 
the multivariable setting

Fig. 2 Network plots visualizing the microbial network ( p = 20 ) without a covariate dependence structure 
that depends on binary group only ( δ1 = 0 (left), δ2 = 0.2 (right)). This represents the univariable setting
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indicating that taxa k has differential connectivity (DC).
In terms of notation, we use qks to denote a q-value [55] of taxa k at the simulation 

replicate s. An error rate control of α = 0.05 is used throughout the simulation. In the 
following, we present the details of each performance metric.

Precision is the fraction of taxa which are declared to be significantly DC from the test 
that are confirmed as true:

Recall is the fraction of truly DC taxa which are correctly declared to be significant 
between two comparing groups from the test:

The F1 score is the harmonic mean of precision and recall values. A higher F1 score 
indicates a better overall performance with lower false negative and false positive 
predictions:

Accuracy is defined as the fraction of total number of taxa that are correctly predicted 
to be DC. The accuracy ranges from 0 (no correct predictions) to 1 (perfect predictions):

Materials

Simulated data

The synthetic microbiome dataset are structured with p taxa and n sample size. In the 
simulation, binary group indicators 1 and 2 are generated from a Bernoulli distribu-
tion with equal probabilities and a single continuous covariate X ∼ N (55, 10) (e.g., age 
at diagnosis). We test our proposed method on datasets under two different simulation 
scenarios: taxa are impacted by the effect of (1) Z and X or (2) Z only, which each corre-
sponds to “multivariable” and “univariable” settings, respectively.

The actual microbial data generation (e.g., OTU counts) given the covariates is 
described next. In this context, it is perhaps worth mentioning that this part is com-
pletely different from generating gene expression data as in PRANA [44]. For each 
simulation scenario, we generate an OTU table that resembles the dependence struc-
ture of covariates Z and/or X on the microbial community (or the network) using the 
SparseDOSSA2 (Sparse Data Observations for the Simulation of Synthetic Abundances) 

ηk = I

( p
∑

j=1

|�1
jk −�2

jk | > 0

)

,

Precision =

∑p
k=1 ηk I(qks < α)
∑p

k=1 I(qks < α)
.

Recall =

∑p
k=1 ηk I(qks < α)

∑p
k=1 ηk

.

F1 = 2 ·
Precision · Recall

Precision+ Recall
.

Accuracy =

∑p
k=1 I(ηk = 1) I(qks < α)+

∑p
k=1 I(ηk = 0) I(qks ≥ α)

∑p
k=1 I(ηk = 1)+

∑p
k=1 I(ηk = 0)

.
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R package [61]. SparseDOSSA2 adopts a Bayesian Gaussian copula model with zero-
inflated, truncated log-normal distributions to capture the marginal distributions of 
each microbial taxa and to account for the correlation between taxa.

The package has a feature to indicate a user-specified percentage of taxa to be “spiked-
in” association with the clinical information (or metadata). This is referred to as the 
“effect size” of differential abundance δ . To evaluate the effect size of Z under the uni-
variable setting, we generate the data that half of the samples have taxa with no spike-in 
association, whereas the other half of the samples have spike-in association on 5% , 10% , 
or 20% of taxa. The distributions of age in the two groups are different. Therefore, under 
the multivariable setting, 5% , 10% , or 20% of taxa have spike-in association with X for 
each group z = 1, 2 . In both scenarios, nz × p matrices for each group z = 1, 2 will be 
available for use.

Application study

The American Gut Project Data A pre-processed OTU table of the human stool microbi-
ome samples from the American Gut Project [33] is available in the SpiecEasi R package, 
along with the corresponding metadata information. The gut microbiome is involved 
with the bidirectional relationship between the gastrointestinal system and central nerv-
ous system (i.e. gut-brain axis) that impacts on the migraine inflammation [62].

In the analysis, the main variable of interest is a binary variable indicating the migraine 
headache (yes or no). Age [63], sex [63], exercise frequency ( ≥ 3 days per week or oth-
erwise) [64], and categorical alcohol consumption (heavy, moderate, or non-drinking) 
[65] are covariates that are included in the multivariable model. Additionally, migraine 
has been associated with the periodontal inflammation [66] and pet ownership [67], and 
therefore the oral hygiene behavior such as dental floss frequency ( ≥ 3 times per week or 
otherwise) and living with a dog (yes or no) were included in the model.

The initial OTU table consists of 138 taxa with 296 subjects. No taxa were removed, 
however, 28 subjects were excluded due to unidentified sampling body site and missing 
age or sex information. Hence, 138 taxa and 268 subjects were used for the analysis.

The Diet Exchange Study Data A pre-processed data of the geographical epidemiology 
study [34] is available in microbiome [68] R package. The aim of the study was to assess 
the effect of fat and fiber intake of the diet on the composition of the colonic microbiota 
by switching the diet in study populations with high (African-Americans from Pitts-
burgh area of Pennsylvania; AA) and low (rural South Africans from KwaZulu region; 
RA) colon cancer risk for two weeks.

An initial OTU table contains 130 taxa with 38 subjects. After the exclusion of a sub-
ject with missing post-dietary intervention data and 18 rare taxa that appear in fewer 
than 10% of the samples, 112 taxa with 37 subjects (20 AA and 17 RA) are used for the 
analysis.

The main predictor variable is binary geographic location (AA or RA). Additional 
covariates considered in a multivariable model were sex and BMI groups (obese, over-
weight, or lean).

For each groups separately, we take the difference of the estimated association matri-
ces (as well as the re-estimated association matrices) between two time points, that is, 
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the endoscopy before and after two weeks of dietary change. The differences are then 
used to calculate the jackknife pseudo-values as in the previous sections. This additional 
step is intended to incorporate the temporal change of connectivity of each taxa after 
dietary interventions.

Abbreviations
AA  African-Americans from Pittsburgh area of Pennsylvania
RA  Rural South Africans from KwaZulu region
IBD  Inflammatory bowel disease
OTU  Operational taxonomic units
DC  Differentially connected
DE  Differential expression
DN  Differential network
MDiNE  Microbiome differential network estimation
NetCoMi  Network construction and comparison for microbiome data
SOHPIE-DNA  Statistical approach via pseudo-value information and estimation for differential network analysis
SparCC  Sparse correlations for compositional data
SparseDOSSA2  Sparse data observations for the simulation of synthetic abundances
CCLasso  Correlation inference for compositional data through lasso
SPIEC-EASI  Sparse inverse covariance estimation for ecological association inference
LASSO  Least absolute shrinkage and selection operator
LTS  Least trimmed squares
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