
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Hauchamps et al. BMC Bioinformatics (2024) 25:80
https://doi.org/10.1186/s12859-024-05691-z

BMC Bioinformatics

CytoPipeline and CytoPipelineGUI:
a Bioconductor R package suite for building
and visualizing automated pre-processing
pipelines for flow cytometry data
Philippe Hauchamps1, Babak Bayat2, Simon Delandre2, Mehdi Hamrouni2, Marie Toussaint2,
Stephane Temmerman2, Dan Lin2 and Laurent Gatto1*

Abstract

Background: With the increase of the dimensionality in flow cytometry data
over the past years, there is a growing need to replace or complement traditional
manual analysis (i.e. iterative 2D gating) with automated data analysis pipelines.
A crucial part of these pipelines consists of pre-processing and applying quality control
filtering to the raw data, in order to use high quality events in the downstream analy-
ses. This part can in turn be split into a number of elementary steps: signal compensa-
tion or unmixing, scale transformation, debris, doublets and dead cells removal, batch
effect correction, etc. However, assembling and assessing the pre-processing part
can be challenging for a number of reasons. First, each of the involved elementary
steps can be implemented using various methods and R packages. Second, the order
of the steps can have an impact on the downstream analysis results. Finally, each
method typically comes with its specific, non standardized diagnostic and visualiza-
tions, making objective comparison difficult for the end user.

Results: Here, we present CytoPipeline and CytoPipelineGUI, two R packages to build,
compare and assess pre-processing pipelines for flow cytometry data. To exemplify
these new tools, we present the steps involved in designing a pre-processing pipeline
on a real life dataset and demonstrate different visual assessment use cases. We also set
up a benchmarking comparing two pre-processing pipelines differing by their quality
control methods, and show how the package visualization utilities can provide crucial
user insight into the obtained benchmark metrics.

Conclusion: CytoPipeline and CytoPipelineGUI are two Bioconductor R packages
that help building, visualizing and assessing pre-processing pipelines for flow cytom-
etry data. They increase productivity during pipeline development and testing,
and complement benchmarking tools, by providing user intuitive insight into bench-
marking results.

Keywords: Flow cytometry, Automated data analysis pipeline, Pre-processing, Quality
control, Visualization

*Correspondence:
laurent.gatto@uclouvain.be

1 Computational Biology
and Bioinformatics, de duve
Institute, UCLouvain, Brussels,
Belgium
2 GSK, Rixensart, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05691-z&domain=pdf

Page 2 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Background
With recent advances in flow cytometry technologies, it has become possible to measure
up to 50 markers simultaneously for the same single cells [1]. As an immediate benefit,
scientists now have access to richer flow cytometry experimental data. However, these
advances also come at a cost, i.e. a more complex data analysis task. Indeed, traditional
’manual gating’ data analysis procedures, which proceed by iterative hierarchical 2D rep-
resentations of the data guided by biological knowledge, are unable to thoroughly extract
the signal of interest from such high-dimensional data [2]. There is therefore a need to
complement such manual, expert-based approaches with computational flow cytometry,
i.e. a set of computational algorithms and methods for automated, reproducible and
data-driven flow cytometry data analysis [2].

Those computational flow cytometry approaches translate into so-called data analysis
pipelines. Examples of such automated pipelines have been published in the recent lit-
terature (e.g. [3–7]). These consist of a series of data processing steps that are executed,
one after the other, with the output of one step becoming the input of the next step.
Schematically, for a typical flow cytometry data analysis, these numerous steps can usu-
ally be grouped into three big parts, coming after initial data sample acquisition:

• data pre-processing and quality control, which consists in both filtering undesirable
and low quality events, and increasing the signal to noise ratio of the raw data, in
order to feed the downstream steps with data of the highest possible quality;

• population identification, which aims at labelling the events with names of cell popu-
lations of interest;

• downstream statistical analysis, which can range from the simplest descriptive
count/frequencies per population, to building complex prediction models for an out-
come of interest, possibly for a high number of samples.

In what follows, we will mainly focus on the data pre-processing part, which can itself
be split into several sub-tasks, or steps [8]: compensation, scale transformation, control
(and possibly removal) of batch effects, control of signal stability in time (QC in time),
filtering of undesirable events like debris, doublets and dead cells. All these steps are
crucial to avoid that the subsequent analysis gets perturbed with erroneous signal (see
e.g. [9] for compensation, [10] for scale transformation, [11] for signal stability in time,
and [12] for other steps).

However, building good, automated pre-processing pipelines, suitable for the particu-
lar type of biological samples and biological question, can be challenging for a number
of reasons. First, for each elementary step, there might exist a number of different com-
putational methods, each of those having numerous parameters available to the user. For
example, looking only into methods available on the Bioconductor project [13] for con-
trolling the signal stability (QC in time), one finds at least four different methods avail-
able: flowAI [14], flowClean [15], PeacoQC [11], flowCut [16], and each of these methods
comes with 7 to 11 different parameters. Second, the order of steps is not always set
in stone, and applying different orders can lead to different outcomes, an effect coined
steps interaction. These two facts lead to what we refer to as the combinatorial prob-
lem of designing pipelines, which means that, as the number of necessary elementary

Page 3 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

steps increases, the number of possible pipeline designs grows exponentially. As a con-
sequence, for the user, it becomes time consuming to build and assess even only a few
of the possible step combinations, let alone testing a representative sample of them in a
systematic manner.

On top of that combinatorial problem, the user is also faced with a lack of generic,
standardized and user-friendly tools to evaluate and compare data pre-processing pipe-
lines. On the one hand, each single pre-processing step method might come with its own
approach for diagnostic and visualization (e.g. ad hoc plots, html or pdf reports), which
allows the user neither to standardize the comparison process, nor to easily investigate
the links and interactions between the different steps. On the other hand, there are a
number of benchmarking studies comparing computational methods for flow cytometry
data [17–20], but they tend to focus on only one part of the pipeline, which is usually the
downstream analysis. Finally, there also exist some generic tools and frameworks to sys-
tematize the benchmarking process, including the interactions between different steps,
such as for example pipeComp [21] and CellBench [22], and as well as some attempts
to formally model the pipeline optimization problem in mathematical terms [23]. How-
ever, what is lacking for the end user is the ability to intuitively interpret the results of
such benchmarkings. In other words, could one translate that a pipeline A outperforms
a pipeline B, with respect to a specific performance metric, in terms of the obtained
data characteristics, or number of filtered events. Therefore, there is still a need for flow
cytometry practitioner-focused standardized tools for visual comparison of pre-process-
ing pipelines.

Here, we present CytoPipeline and CytoPipelineGUI, two R packages aimed at facili-
tating the design and visual comparison of pre-processing pipelines for flow cytometry
data. We describe the concepts underlying the software, provide some illustrative exam-
ples and demonstrate the use of the accompanying visualization utilities. We show that
these new tools can help increasing the productivity during pipeline development and
testing, and that they can complement benchmarking tools and studies, by providing
the user with intuitive insight into benchmarking results. The CytoPipeline and Cyto-
PipelineGUI packages are available on Bioconductor [13], as of version 3.17 and 3.18,
respectively.

Methods
Implementation

In what follows, we assume that we have a dataset, provided as a set of files in Flow
Cytometry Standard (fcs) format [24], on which we would like to apply a data pre-pro-
cessing pipeline.

The CytoPipeline suite is composed of two main R packages, CytoPipeline and Cyto-
PipelineGUI. While CytoPipeline is the main package, providing support for pipeline
definition, running, monitoring and basic plotting functions, CytoPipelineGUI provides
two interactive GUI applications enabling users to interactively explore and visualize the
pipeline results. The CytoPipeline framework is based on two main concepts, namely
CytoPipeline and CytoProcessingStep. A CytoPipeline object centralizes the pipeline defi-
nition, and specifies the run order of the different pipeline steps. These steps materialize
as CytoProcessingStep objects, which store pipeline step names and the corresponding

Page 4 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

R functions that will be called at execution time. These functions are either provided
within the CytoPipeline package itself, exported from third party packages, or coded by
the user themself. Together with the function name to be called, a CytoProcessingStep
object also contains the list of parameters that are used as arguments to the function.

When creating a CytoPipeline object, the user can provide the description of the
pipeline as a text file in json format [25]. Figure 1 shows the typical structure of such a
json file. Note that, in practice, two different sets of processing steps, or pipelines, are
described:

• A scaleTransformProcessingSteps pipeline, which describes the set of successive steps
needed to generate the scale transformations that will be applied to the different
channels of each of the fcs files that are included in the dataset. The CytoPipeline
engine will run this pipeline first, and only once, prior to running the pre-processing
on each fcs file.

• A flowFramesPreProcessingSteps pipeline, which describes the set of pre-processing
steps that will be applied on each of the different fcs file independently.

Steps in both pipelines are described in the exact same way, i.e. by providing a user-
chosen name for the step, the corresponding function that needs to be called by the
engine upon running, and the set of arguments (i.e. the list of parameter names and cor-
responding values) that need to be provided to the function. Note that, on top of these
explicitely defined arguments, the running engine will also take the output of each step
as an implicit additional argument to the function called by the subsequent step.

The standard process for using CytoPipeline to build, run and inspect pre-processing
pipelines is the following:

• define the pipeline by specifying the different steps using a descriptive text file, in
json format;1

• run the pipeline, possibly for several data files in parallel, which involves writing and
executing a short R script (see following sections);

• monitor the execution process thanks to a CytoPipeline provided workflow visualiza-
tion utility;

• visualize and compare the results at different stages, using the CytoPipelineGUI inter-
active GUI applications.

In terms of technical infrastructure, the CytoPipeline package suite makes itself internal
use of several technical R packages:

• BiocParallel [26] enabling parallel pre-processing of fcs sample files;
• BiocFileCache [27] enabling storage (i.e. caching) of all intermediary results for fur-

ther inspection;
• shiny [28] for interactive visualizations.

1 Note that CytoPipeline also provides methods to define a pipeline and its steps programmatically in R, without provid-
ing a text file as an input.

Page 5 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Illustrative dataset

In order to demonstrate CytoPipeline functionalities, we make use of an illustrative
dataset, the HBV chronic mouse dataset. This dataset was collected during a preclini-
cal study aimed at assessing the effect of different therapeutic vaccine regimens on
the immune response of Hepatitis B Virus transduced mice.

Fig. 1 Structure of the user provided json file that describes a CytoPipeline object. The first pipeline (i.e.
“scaleTransformProcessingSteps”) specifies how the preliminary calculation of the scale transformations is
performed. Here only its first two steps are described. The first step, named “my_scale_transform_step1”,
consists in calling the “scaleTransFormFunc1” function, with 3 parameters (“paramName1”, “paramName2” and
“paramName3” provided as arguments, taking the specified “value1”, “value2” and “value3” value respectively.
The second step, named “my_scale_transform_step2”, calls the “scaleTransFormFunc2”, with only one single
parameter, i.e. “paramName4” taking “value4” as value. The second pipeline (i.e. “flowFramesPreProcessingSteps”)
specifies the set of pre-processing steps performed on each data file independently. Here again, only the first
two steps are described. The first one, named “my_fcsfile_preprocessing_step1” calls the “preprocessingFunc1”
function with two parameters, while the second one, named “my_fcsfile_preprocessing_step2” calls the
“preprocessingFunc2” function with no parameter (apart from the output of the previous step which is always
used as an implicit additional argument)

Page 6 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

In this study, 56 male and female HLA.A2/DRB1 transgenic mice (transgenic for the
human HLA-A2 and HLA-DRB1 molecules) were used. HLA.A2/DRB1 mice from
groups 1, 2 and 4 were transduced at day 0 with adeno-associated virus serotype 2/8
(AAV2/8-HBV) vector carrying a replication-competent HBV DNA genome and rand-
omized before immunization with 4 doses of vaccine candidate, based on level of HBs
circulating antigen detected in the sera at day 21, age and gender proportions. Mice
from group 3 were not transduced with AAV2/8-HBV viral vector and were immunized
with four doses of vaccine candidate and finally, mice from group 5 were not transduced
and received four doses of NaCl solution. Upon sacrifice, livers were collected, perfused
with Phosphate Buffered Saline (PBS) to remove blood cells and after enzymatic treat-
ment, lymphocytes were isolated, and stained with different monoclonal antibodies. The
stained cells were acquired by flow cytometry using a BD Symphony A5 flow cytometer
- the same instrument for all biological samples - and analyzed using the FlowJo v10.8
Software (BD Life Sciences).

Animal husbandry and experimental procedures were ethically reviewed and carried
out in accordance with European Directive 2010/63/EU and the GlaxoSmithKline Bio-
logicals’ policy on the care, welfare and treatment of animals, in GSK animal facilities
located in Rixensart, Belgium (AAALAC accredited). The ethical protocol of the GSK
in vivo study was approved by the local GSK ethical committee.

This experiment resulted in the acquisition of 55 different fcs raw data file - one sample
could not be acquired - with a flow cytometry panel of 12 different channels. The HBV
chronic mouse dataset is available on Zenodo (DOI:10.5281/zenodo.8425840).

Applied pre‑processing pipelines

Pipeline set‑up

For the purpose of illustrating CytoPipeline functionalities, the 55 raw data files of the
HBV chronic mouse dataset were used as input of two different pre-processing pipelines.
Each pipeline was composed of the following steps:

• Reading of the raw fcs sample files, using the flowCore package [29].
• Margin events removal, which consists in identifying and removing the outliers using

the PeacoQC package [11]. In short, manual boundaries per channel, corresponding
to the instrument detection limits, are applied, and all events falling outside these
boundaries are removed.

• Signal compensation, which consists in applying an existing compensation matrix.
This matrix was generated by the flow cytometer at data acquisition time, and subse-
quently manually adjusted by the expert scientist.

• QC in time, which consists in eliminating parts of the signal that are not stable in
time, using one of the corresponding QC algorithms (see below).

• Doublet removal, which consists in keeping the events that have a similar area vs.
height ratio of the FSC channel signal pulse, and eliminating the doublets, which
have a significantly higher ratio. This was performed using an ad hoc implementation
in the CytoPipeline package.

• Debris removal, which consists in clustering the events in the (FSC-A, SSC-A) 2D
representation, targetting a number of clusters provided by the user. After the clus-

Page 7 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

ters are obtained, the cluster of which the centroid lies nearest to the origin, i.e. with
the smallest FSC-A (size) and smallest SSC-A (content, granularity), is considered as
containing debris and removed. This was done using the flowClust package [30].

• Scale transformation, which consists in automatically estimating the parameters of
a logicle transformation [31], using the flowCore package [29]. The obtained scale
transformations were applied on all 55 sample files, and the parameters were esti-
mated on an aggregation of a subset of 4 randomly chosen sample fcs files, after mar-
gin events removal and signal compensation.

• Dead cells removal, which consists in automatically setting a threshold between live
cells and dead cells in the corresponding fluorescent ’Live & Dead’ channel dimen-
sion, using the flowDensity package. The events having a ’Live & Dead’ intensity
above the found threshold are eliminated as dead cells.

However, the two pre-processing pipelines essentially differed by the method used
for the QC in time step, as one used the PeacoQC package [11], while the other used
the flowAI package [14]. In addition, the step order was also different, as the PeacoQC
method is based on a peak detection algorithm which needs to run on compensated,
scaled transformed data [11], while the flowAI method is advised to be applied on raw
data [14]. Figure 2 outlines the different steps applied in the pre-processing of each fcs
files, for both the PeacoQC-based pipeline, and the flowAI-based pipeline.

More detailed information on packages, versions and methods underlying each step
(Additional file 1: Tables S1, S2 and S3), as well as the json configuration files defining
respectively the PeacoQC-based and flowAI-based pipelines are available in the Addi-
tional file 1.

Running the pipelines and visualizing the results

In order to create the CytoPipeline objects representing the pipelines, run them and
visualizing the results - including monitoring of the pipeline execution - a short R
script needs to be written and executed. An example of such R script is provided in
Additional file 1: Fig. S1. Note that, as a result of the centralization of the pipeline

Fig. 2 Workflow of the subsequent steps applied in the pre-processing of each fcs file, for both pipelines.
These plots have been generated using the CytoPipeline package

Page 8 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

definition, the code is very simple and concise, as for example, creating and run-
ning the pipeline boils down to essentially two R statements. Also, note that it is the
same R code that triggers the execution of both pre-processing pipelines described
in the previous section (except for the selection of the appropriate input json file and
the choice of the experiment name under which to store the results). The distinctive
part of the pipeline is located in the input json file, which describes the pipelines
steps and their execution order.

Example benchmarking

Aiming at illustrating the use of CytoPipeline to provide insights into benchmarking
results, we designed a benchmarking, which consisted in comparing the outcome
of the two competing PeacoQC-based and flowAI-based pipelines described in the
previous section, using the HBV chronic mouse dataset, to a ground truth. The latter
was obtained by submitting the 55 raw data fcs files to an expert scientist, who man-
ually pre-processed the files, gated the events using FlowJo. The obtained FlowJo
workspace file was subsequently automatically processed using the CytoML pack-
age [32] version 2.12.0, and incorporated into a dedicated CytoPipeline ground truth
pipeline for comparison with the two automated pipelines.

Regarding the benchmark evaluation metrics, for each single fcs file, the final
output of each pipeline was compared to the ground truth, in terms of number of
events, and the following metrics were calculated: sensitivity, specificity, precision
and recall, which are defined as follows: let

• G (resp. B) be the set of events that are considered as Good (resp. Bad) in the
manual gating i.e. in the ground truth;

• FG (resp FB) be the set of events that are flagged as good (resp. flagged as bad) by
the considered automated pipeline.

We can additionally define the following sets of events:

• FG, correct = FG ∩ G , the set of events that are correctly flagged as good;
• FB, correct = FB ∩ B , the set of events that are correctly flagged as bad.

The chosen evaluation metrics are then defined as:
sensitivity =

|FB, correct|

|B|
; specificity =

|FG, correct|

|G|
; precision =

|FB, correct|

|FB|
; recall =

|FG, correct|

|FG |
 ,

where |A| stands for the number of elements in the set A.
The benchmark was set up and performed using the pipeComp package [21], ver-

sion 1.10.0. Indeed, pipeComp is a convenient tool to efficiently automate multiple
alternative pipelines to be compared in the benchmark, as well as to automate the
calculation of the evaluation metrics for each dataset used as benchmark input.

Page 9 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Results
Visual assessment and comparison of pipeline outputs

We used CytoPipeline to define both PeacoQC and flowAI-based pre-processing pipe-
lines, as described in the Methods section, on the HBV chronic mouse dataset. We
obtained results in the form of sets of data matrices (or flowFrames) after each step
for each pre-processing pipeline. In the following paragraphs, we present some Cyto-
Pipeline visual assessment plots, according to 6 different use cases (Table 1). Use case
#1 consists in visualizing a run and monitoring the status of the different steps. Use
cases #2 to #5 consist in either looking at ’what happened’ within a single pipeline for
a single biological sample in isolation (use case #2), or comparing two different situ-
ations (flow frames) involving different pipelines (use cases #3 and #4), or involving
different biological samples within the same pipeline (use case #5). Finally, use case
#6 consists in assessing, and possibly modifying, the scale transformations obtained
during a pipeline execution.

Table 1 Use cases of visual assessment and comparison of pipeline outputs. When the use case
involves comparing two flowFrames obtained from different steps and/or different pipelines (i.e.
use cases #2 to #4), or different samples (i.e. use case #5) the 3 columns ’sample’, ’pipeline’ and
’output’ designate the initial flowFrame (referring to Fig. 2), while the 3 columns ’compared sample’,
’compared pipeline’ and ’compared output’ designate the flowFrame that is compared to the initial
flowFrame

Use case Description Sample Pipeline Output (cf.
Fig. 2)

Compared
sample

Compared
pipeline

Compared
output (cf.
Fig. 2)

#1 Monitoring
a run

D91_G01 PeacoQC All Not appli-
cable

Not appli-
cable

Not applicable

#2 Visualizing
the effect of
a single pipe-
line step

D91_G01 PeacoQC Output
2 (before
’compensate’)

D91_G01 PeacoQC Output 3 (after
’compensate’)

#3 Comparing
the outcome
of a pipeline
step with dif-
ferent param-
eter values

D91_G01 PeacoQC Output
6 (after
’remove_
debris’), run
with 3
clusters

D91_G01 PeacoQC Output 6 (after
’remove_
debris’), run
with 2 clusters

#4 Comparing
two different
methods for
one or several
step(s)

D91_A01 PeacoQC Output
7 (after
’remove_
dead_cells’)

D91_A01 flowAI Output 7 (after
’remove_
dead_cells’)

#5 Comparing
two differ-
ent biological
samples

D91_A01 PeacoQC Output
7 (after
’remove_
dead_cells’)

D93_B05 PeacoQC Output 7 (after
’remove_
dead_cells’)

#6 Visu-
alization and
update of
generate
scale transfor-
mations

D91_G01 PeacoQC Not appli-
cable

Not appli-
cable

Not appli-
cable

Not applicable

Page 10 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Use case #1: monitoring a run

As all the intermediate results produced during pipeline execution are saved (see
Methods/Implementation section), it is possible to generate a summary workflow
view, consecutive to a run. Figure 3 shows an example of such a display, obtained
after running the flowAI-based pipeline described above, where there was a spelling
error in one of the parameter names of the “remove_debris” step. On top of show-
ing the sequence of steps, a colour code is used to highlight which of the steps have
run to completion, and which of the steps need to be re-run. Here, for the selected
sample, the pipeline ran correctly until the “remove_doublets” step (green nodes), but
did not produce any output for the subsequent steps (orange nodes), which is due to
the spelling error in the definition of the “remove_debris” step. Based on this summa-
rized visual information, the user can now dig into the flagged problematic step, and/
or track the particular characteristics of the sample which generated the error. More
details on the colour code used in this plot can be found in Additional file 1: Fig. S2.

Use case #2: visualizing the effect of a single pipeline step

In Fig. 4, the user is visually assessing two consecutive states of the flowFrame of sam-
ple D91_G01, within the same run of the PeacoQC-based pipeline. To evaluate the
effect of the compensation step, the “before compensation” (output 2, cf. Fig. 2) and
the “after compensation” (output 3) states of the pipeline are visually compared. Note
that this visualization can be done according to any pair of selected channels/markers
(2D distribution representation), or according to a 1D marginal distribution represen-
tation for any selected channel/marker. Here, the (CD8, CD38) 2D view shows, on the
left, that the fluorescence of the dye BB700 (CD38) spills into the CD8 channel. On
the right, application of a pre-computed compensation matrix (see Methods section)
has rectified the distribution of the two markers, revealing different ranges of CD38
(an activation marker) between the CD8+ and CD8- populations. A corresponding

Fig. 3 Use case #1: summary workflow view of the run - green nodes correspond to steps that ran to
completion for the selected sample file, orange nodes correspond to steps that have not generated an
output yet

Page 11 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

screenshot of the interactive GUI application, implemented in the CytoPipelineGUI
package, can be found in Additional file 1: Fig. S3.

Use case #3: comparing the outcome of a pipeline step with different parameter values

This use case involves running the same pipeline, with the same steps but with amended
values for one or several steps, in order to investigate which parameter combination
performs better. An illustrating example is shown in Fig. 5, where the outcome of the
debris removal step is compared when applying two different user input number of
clusters (three on the left plot, vs. two on the middle plot). On the right plot, events
coloured in red are the ones that are eliminated when applying the debris removal step
when the number of clusters is two, but not eliminated when the number of clusters

Fig. 4 Use case #2: effect of a single pipeline step - here, the compensation step of the PeacoQC-based
pipeline for sample D91_G01. On the left, spillover of the BB700 (CD38) dye fluorescence into the CD8
channel creates a visual artefact, with events wrongly flagged as double positive CD8+ CD38+. On the right,
compensation has rectified the bivariate distribution of the two markers

Fig. 5 Use case #3: comparison of two different parameter settings for the debris removal step, on sample
D91_G01. The setting with two clusters (in the middle) better eliminates undesirable events than the
setting with three clusters (on the left). On the right, an explicit comparison between the two flowFrames is
performed. Red dots correspond to events that are present on the left hand side plot, but not present on the
middle plot, while blue dots correspond to events that are present on both plots

Page 12 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

is three. Let us recall that the debris elimination step consists in clustering the events
in a fixed number of clusters, followed by the elimination of the cluster nearest to the
origin - see Methods section. Here, specifically, the user can conclude that the debris
removal algorithm (based on flowClust package) does a better job selecting the target
events when the appropriate number of target clusters is used, i.e. two clusters, as on
the middle plot. This is because the cell population of interest, here a population of lym-
phocytes extracted from mice liver tissues, naturally groups into one single cluster in the
(FSC-A, SSC-A) 2D representation. As a consequence, in this case, two is the optimal
number of clusters (one cluster of debris, one cluster of lymphocytes). Additional file 1:
Fig. S4 illustrates the removal of events during the debris removal step, for the 2 clusters
and the 3 clusters cases.

Use case #4: comparing two different methods for one or several steps

This use case is a generalization of the preceeding one, where the user wants to compare
the performance of two different methods for one or several steps of the pre-processing
pipeline. For instance, Fig. 6 provides a comparison between the PeacoQC-based and
the flowAI-based pipelines, applied on a particular biological sample of the HBV chronic
mouse dataset. This comparison, obtained by plotting one specific channel (here the
FSC-A) as a function of time, reveals that flowAI removes time chunks more aggressively
than PeacoQC, for the current sample. Note that this comparison can also be done for
any 2D combination of makers (not shown here).

Use case #5: comparing two different biological samples

It is also possible to compare two different biological samples of the same dataset, at any
specific step of any pipeline. This allows e.g. to check that the methods used for the vari-
ous pre-processing steps perform consistently across the whole dataset. One example
is shown in Fig. 7, where two different samples are displayed in a 2D plot with the FSC-
A and Live &Dead channels. In this case, the two samples show very similar bivariate

Fig. 6 Use case #4: comparison of the final state results, for sample D91_A01, between the PeacoQC-based
pipeline and the flowAI-based pipeline - here using a (FSC-A vs. Time) plot. On the left, the end state of the
PeacoQC-based pipeline is shown, while the end state of the flowAI-based pipeline is shown on the middle
plot. On the right, an explicit comparison between the two flowFrames is performed. Red dots correspond
to events that are present on the left hand side plot, but not present on the middle plot, while blue dots
correspond to events that are present on both plots. This figure reveals that, for this particular sample, flowAI
tends to remove time chunks more aggressively than PeacoQC

Page 13 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

distributions. Based on this 2D representation, one could conclude that the pre-pro-
cessing pipeline has correctly selected the target cell population in both cases. This
would however need careful confirmation based on other 2D combinations of mark-
ers, e.g. FSC-H vs. FSC-A (for doublets elimination), and FSC-A vs. SSC-A (for debris
elimination).

Use case #6: visualization and update of generated scale transformations

Besides the flowFrame comparison tool, CytoPipelineGUI also provides a second inter-
active GUI application, which is aimed at inspecting the scale transformations obtained
from the corresponding scaleTransformProcessingSteps pipeline (see Methods/Imple-
mentation section). If the shape of the distribution after transformation needs adjust-
ment (for example for better separation of negative and positive populations for a
specific marker), the user can manually adapt the scale transformation parameters,
interactively assess the impact of their modifications, and apply these modifications to
the scale transformations for further use in the pre-processing pipelines (Fig. 8). These
manual adjustments can be very useful, for example when the automatic transformation
parameter adjustment algorithm has not worked satisfactorily. Figure 9 shows an exam-
ple where the logicle transformation [31] applied on marker CD38 (left) shows spuri-
ous density oscillations in the negative domain. Manually adjusting the positive decimals
parameter of the logicle transformation leads to a better looking density plot, where one
can more easily distinguish CD38-, CD38+ and CD38++ populations.

Benchmarking results

As mentioned in the Methods section, we used pipeComp [21] to perform a benchmark-
ing exercise, comparing two different pre-processing pipelines, i.e. the PeacoQC-based
and the flowAI-based pipelines, on the 55 sample files of the HBV chronic mouse dataset,

Fig. 7 Use case #5: comparison of the final state results between two different biological samples (on the
left: sample D91_A01 and on the right: sample D93_B05), within the same PeacoQC-based pipeline. For the
particular channels chosen (Live &Dead vs. FSC-A), the two samples show very similar bivariate distributions.
Based on this 2D representation, one could conclude that the pre-processing pipeline has correctly selected
the target cell population in both cases

Page 14 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Fig. 8 Use case #6: screenshot of the CytoPipelineGUI interactive GUI application enabling the inspection,
manual adjustment and save of pipeline generated scale transformations. Here the user is visualizing the
transformation applied on marker CD38, for sample D91_G01

Fig. 9 Manual parameters adjustment of the logicle transformation applied on marker CD38, for sample
D91_G01. On the left, the density plot shows spurious oscillations in the negative domain. On the right,
manual adjustment on the positive decimals parameter of the logicle transformation leads to a better looking
transformed density, where one can more easily identify CD38-, CD38+ and CD38++ populations

Page 15 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

and calculating evaluation metrics in terms of how well the automated pipelines could
match the manual pre-processing performed by an expert scientist (’ground truth’). A
global assessment shows comparable results between the two competing pipelines,
consistently across all metrics (Fig. 10). However, when directly contrasting sample by
sample results (Fig. 11) one can identify that the pipeline performance is rather hetero-
geneous across the 55 biological samples.

In order to better understand the behaviour of the two competing automated pipelines
on different samples, we selected three different samples, corresponding to different
locations into the specificity plot of Fig. 11. We then used CytoPipelineGUI to inspect
the results at different steps, for the two automated pipelines as well as for the ’ground
truth’:

• Sample D91_C07 was an outlier for which the PeacoQC-based pipeline obtained an
almost zero specificity, while flowAI-based pipeline specificity was around an accept-
able level of above 0.8. However, as shown in Fig. 12, this was not due to the different
QC in time algorithm (PeacoQC vs. flowAI), but to a lack of robustness of the dead
cells removal algorithm, leading to an interaction phenomenon by which almost all
events were removed in the dead cell removal step of the PeacoQC-based pipeline.

• Sample D93_A05 resulted in a very low specificity for both pipelines. Investigation
using CytoPipelineGUI revealed that this sample was in fact one of the low quality
samples wherein the interesting cell population was a small minority of the events,
while there was a great abundance of debris and dead cells (Additional file 1: Fig. S5).
As a consequence, both pipelines were unable to automatically select the correct cell
population, regardless of the QC in time method used.

Fig. 10 Box plots of the distributions of calculated evaluation metrics per sample, for the two competing
pipelines. Globally, both pipelines perform very similarly, for all four evaluation metrics, i.e. sensitivity,
specificity, precision and recall

Page 16 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

• Sample D91_D03 was an example where both automatic pipelines performed ade-
quately without major issues. Here, the difference in metrics is effectively related
to the choice of QC in time method. Looking at a specific visualization where time
is displayed on the x axis (Additional file 1: Fig. S6), and based on both qualitative
plot inspection and number of events comparison with the manual gating ground
truth, CytoPipelineGUI reveals that flowAI method is too agressive in this case,
while PeacoQC is too liberal.

Note that the conclusions of these visual inspections are particularly precious to
the scientist in charge of building the data analysis pipelines, who is now able to get
precise and accurate insight into why one pipeline performs better than the other, for
specific samples. In particular, they are much better equipped to distinguish between
an intrinsic performance difference between some competing methods, and surpris-
ing artefacts like a side effect of low sample quality or an interaction between two dif-
ferent steps.

Discussion
CytoPipeline, a flexible framework for building and running pre‑processing pipelines

In this work, we have demonstrated the use of the CytoPipeline suite by implementing
pre-processing pipelines on the HBV chronic mouse dataset. The implementation of

Fig. 11 Scatter plots comparing the two pre-processing pipelines, each dot representing one of the
55 samples. Three specific samples are highlighted in red, corresponding to very different comparative
behaviour of the two competing pipelines. Sample D91_C07 is a unique sample for which the flowAI-based
pipeline has a high specificity, but the PeacoQC-based pipeline has very low specificity. Sample D93_A05 is
one of the samples leading to low specificity for both pipelines, while sample D91_D03 is representative of
the samples for which both pipelines provide good specificity

Page 17 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

CytoPipeline, with a centralized specification of the pipeline definition in a json file,
leads to a better design of the pipeline code. As a result, we believe that the user pro-
ductivity, when coding and testing different pipelines, can be greatly improved.

In order to illustrate this, we implemented the two PeacoQC-based and flowAI-based
competing pipelines, described in Methods, in two R scripts, without using CytoPipeline
objects, and looked into the duplication effort as well as the future extensibility of the
code. These pieces of code are provided in the 2023-CytoPipeline-code GitHub reposi-
tory (see Code Availability in Declarations section).

Fig. 12 Comparison between the dead cells removal step between the flowAI pipeline (A), and the
PeacoQC-based pipeline (B), on sample D91_C07. While the input set of events look very similar (left plots of
panels A and B), the dead cells removal step of the PeacoQC-based pipeline (right plot of panel B) wrongly
removes most of the events. This reveals a lack of robustness of the algorithm, unrelated to the QC in time
method used (flowAI vs. PeacoQC)

Page 18 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Figure 13 provides a schematic comparison between these two pieces of code, as well
as indicative number of code lines. Of course, these relates to one particular implemen-
tation, as there are countless ways to program the same pipelines. What is interesting to
note, though, is that there is a high proportion of code duplication, but the differences
are not only located in one single place, due to the subtle differences induced by the
change of orders in the steps. This is likely to lead to a high code maintenance burden in
the future, for instance when extending the program to many more pipeline instances,
which can use different step methods, different method parameters etc. In constrast, let
us recall that, when using CytoPipeline, the R code itself stays the same, as all differ-
ences are explicitly described in the input json file. This json file is easier to maintain and
extend than the R scripts represented in Fig. 13.

CytoPipeline provides a standardized and user‑friendly tool for visual investigations

We have presented a series of use cases of CytoPipeline visualizations. In all these use
cases, we took advantage of the same set of visualization tools, in a standardized way,
but translated into different contexts, whatever the underlying methods used for the pre-
processing pipelines. Also during the investigation of the benchmarking results, visual
comparisons could be made with a ground truth manual gating, again using the same
tools. Besides, the interactive GUI applications, implemented in CytoPipelineGUI, pro-
vide user interactivity and facilitate the investigation process. As stated in the introduc-
tion, these visual assessments are extremely important for the scientists, as they provide
a unique mean to:

• visually control for the quality of the data samples, and acquire insight on the corre-
sponding sample variability;

• visually check the robustness of the methods used in a given pre-processing pipeline,
including the adequacy of the chosen user input parameters;

• visually compare different pre-processing pipeline settings. This can range from com-
paring different possible choices of method for a particular step, to assessing which
one of two or more competing pipelines, possibly mixing different step methods in
different orders, is performing better for the considered dataset.

CytoPipeline allows user intuitive insight into benchmarking results

As part of this work, we have implemented a benchmarking comparing two com-
peting pre-processing pipelines, with the main objective of showing the benefits of
using CytoPipeline visualization tools, as a complement to the benchmarking itself.

Fig. 13 Structure of the R script implementations of the PeacoQC-based and flowAI-based pipelines. The
common parts are shown in white, PeacoQC-based pipeline specific parts in yellow, and flowAI-based
pipeline specific parts in red. Between the two pipelines, 79% of the code is in common, and the pipeline
specific parts are not fully gathered in one single location

Page 19 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

We showed that detailed comparison plots help the user investigating some specific
benchmarking results, hence getting better intuition into the benchmarking outcome.
We have indeed demonstrated that there can be numerous reasons why a pipeline
instance performs better than another on specific samples, and it is key for the scien-
tist to get a clear view of these reasons, and their possible links with sample charac-
teristics. Therefore, we think that CytoPipeline is a powerful tool for interpreting the
outcome of benchmarking studies.

Using the proportion of events kept at each step as a diagnostic tool

As was shown in various figures in the Results section (see e.g. Fig. 12), CytoPipe-
lineGUI computes the number of events that are retained at each step (shown as
subtitles in the individual density plots). Tracking these changes throughout the pre-
processing steps of a pipeline for different samples is a useful quality control. This can
be implemented using some of the CytoPipeline functions, and is shown on Fig. 14.

Limitations and possible extensions of the work

The CytoPipeline suite of R packages can be positioned as a tool to facilitate the
design, testing and comparison of pre-processing pipelines for the end user. It is not
meant to be:

• A novel pre-processing pipeline in itself, as it does not provide new methods for
the various pre-processing steps (although it includes some functions calling some
widely used methods), nor an innovative way to combine some of these.

• A tool facilitating benchmarking automation, like pipeComp. For example, unlike
pipeComp [21], CytoPipeline does not provide any optimization solution to reduce
the amount of CPU time and memory to run a potentially huge amount of (combi-

Fig. 14 Plots showing the proportion of retained events at each pre-processing step, for each sample. On
the left, the PeacoQC-based pipeline shows, for sample D91_C07, a sharp drop in the last remove_dead_cells
step. On the right, the flowAI-based pipeline does not show the same phenomenon

Page 20 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

nations of) possible pipelines. However, as mentioned before, CytoPipeline is used
to facilitate the interpretation of results produced with benchmarking tools.

Regarding scalability, one should distinguish CPU and memory from hard drive stor-
age requirements. CPU- and memory-wise, CytoPipeline has no particular issues when
dealing with large number of samples, as long as each single fcs file can fully reside in
memory. Indeed, as described in the Methods section, the engine that executes pre-pro-
cessing pipelines supports both sequential and parallel file processing, and benefits from
all multi-tasking scheduling options provided by the BiocParallel [26] package. How-
ever, storage-wise, caching data at each step leads to large storage needs when process-
ing many files. Typically, when analysing datasets including hundreds of fcs files, with
several millions of events, compared across several pipelines and many processing steps,
storage needs can require several terabytes. In those cases, users of CytoPipeline will
typically need to call on high capacity storage facilities.

Another limitation of our work is the following: while CytoPipelineGUI is a powerful
visualization tool for exploring specific pipeline steps for one or two samples, it does not
provide an overall quality control of all samples at once. In that sense, it would be use-
ful, especially for large datasets, to provide a global view of how samples differ at each
pre-processing step. As mentioned above, one such diagnostic view can be obtained, by
plotting the fraction of retained events at each pre-processing step (Fig. 14). Another
promising approach focuses on the visualisation of all samples at once to identify spe-
cific outliers [33].

Finally, another possible extension would be to further develop CytoPipeline, as to not
only include the building and assessment of pre-processing steps, but also include sup-
port for subsequent steps of the data analysis: batch correction, population identifica-
tion, etc.

Conclusion
In this work, we have introduced a suite of R packages, CytoPipeline and CytoPipeli-
neGUI, that helps building, visualizing and assessing pre-processing pipelines for flow
cytometry data. We have demonstrated several use cases on a real life dataset, and high-
lighted several concrete benefits of these tools. For the new user, the packages come with
ample documentation and tutorial videos, accessible through the package vignettes. We
trust that using CytoPipeline will favour productivity in testing and assessing alterna-
tive data pre-processing pipelines, with the aim of designing good pre-processing and
QC solutions for each particular context. The latter can be the specific type of biological
sample, technology used (conventional flow cytometry, cytof, spectral flow cytometry),
panel composition, experimental design etc., which in turn highly depend on the bio-
logical question at hand.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05691-z.

Additional file 1. Supplementary tables, figures and pipeline configuration files.

https://doi.org/10.1186/s12859-024-05691-z

Page 21 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

Author contributions
Conceptualization: PH, LG; Methodology: PH, LG, DL, SD; Software: PH, LG; Data collection: BB, MH; Writing - original draft:
PH, BB; Writing - review & editing: LG, DL, ST, SD, MH, MT; Supervision: LG, DL, ST, MT.

Funding
This work was funded by GlaxoSmithKline Biologicals S.A., under a cooperative research and development agreement
between GlaxoSmithKline Biologicals S.A. and de Duve Institute (UCLouvain).

Availability of data and materials
Raw flow cytometry data files, as well as the manual gating information considered as the ground truth for the bench-
marking, are available on Zenodo (DOI:10.5281/zenodo.8425840).

Code availability
All code needed to reproduce the results presented in the current article is available on the following GitHub reposi-
tory: https:// github. com/ UCLou vain- CBIO/ 2023- CytoP ipeli ne- code, of which a release has been archived on Zenodo
(DOI:10.5281/zenodo.8425840).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
P.H. is a student at the de Duve Institute (UCLouvain) and participates in a post graduate studentship program at GSK;
B.B. is employee of the GSK group of companies, reports ownership of GSK shares and is listed as inventor on patent(s)
owned by the GSK group of companies; S.D. is employee of the GSK group of companies and reports ownership of
GSK shares; M.H. is employee of the GSK group of companies; M.T. is employee of the GSK group of companies, reports
ownership of GSK shares and is listed as inventor on patent(s) owned by the GSK group of companies; S.T. is employee
of the GSK group of companies, reports ownership of GSK shares and is listed as inventor on patent(s) owned by the GSK
group of companies; D.L. is employee of the GSK group of companies and reports ownership of GSK shares; L.G. reports
no competing interest.

Received: 10 November 2023 Accepted: 2 February 2024

References
 1. McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol. 2018;120:511–5111.
 2. Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional

immunology data. Nat Rev Immunol. 2016;16(7):449–62.
 3. Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S. Analyzing high-dimensional cytometry data

using FlowSOM. Nat Protoc. 2021;16(8):3775–801.
 4. Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ, Guglietta S, et al. CyTOF workflow: differential discovery in

high-throughput high-dimensional cytometry datasets. F1000Res. 2017;6:748.
 5. Rybakowska P, Van Gassen S, Quintelier K, Saeys Y, Alarcón-Riquelme ME, Marañón C. Data processing workflow for

large-scale immune monitoring studies by mass cytometry. Comput Struct Biotechnol J. 2021;19:3160–75.
 6. Ashhurst TM, Marsh-Wakefield F, Putri GH, Spiteri AG, Shinko D, Read MN, et al. Integration, exploration, and analysis

of high-dimensional single-cell cytometry data using Spectre. Cytometry A. 2022;101(3):237–53.
 7. Rybakowska P, Van Gassen S, Martorell Marugán J, Quintelier K, Saeys Y, Alarcón-Riquelme ME, et al. Protocol for

large scale whole blood immune monitoring by mass cytometry and Cyto Quality Pipeline. STAR Protoc. 2022;3(4):
101697.

 8. Liechti T, Weber LM, Ashhurst TM, Stanley N, Prlic M, Van Gassen S, et al. An updated guide for the perplexed: cytom-
etry in the high-dimensional era. Nat Immunol. 2021;22(10):1190–7.

 9. Mazza EMC, Brummelman J, Alvisi G, Roberto A, De Paoli F, Zanon V, et al. Background fluorescence and spreading
error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed
stochastic neighboring embedding. Cytometry A. 2018;93(8):785–92.

 10. Finak G, Perez JM, Weng A, Gottardo R. Optimizing transformations for automated, high throughput analysis of flow
cytometry data. BMC Bioinform. 2010;11:546.

 11. Emmaneel A, Quintelier K, Sichien D, Rybakowska P, Marañón C, Alarcón-Riquelme ME, et al. PeacoQC: peak-based
selection of high quality cytometry data. Cytometry A. 2022;101(4):325–38.

 12. den Braanker H, Bongenaar M, Lubberts E. How to prepare spectral flow cytometry datasets for high dimensional
data analysis: a practical workflow. Front Immunol. 2021;12: 768113.

 13. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic
analysis with Bioconductor. Nat Methods. 2015;12(2):115–21.

 14. Monaco G, Chen H, Poidinger M, Chen J, de Magalhães JP, Larbi A. flowAI: automatic and interactive anomaly
discerning tools for flow cytometry data. Bioinformatics. 2016;32(16):2473–80.

https://github.com/UCLouvain-CBIO/2023-CytoPipeline-code

Page 22 of 22Hauchamps et al. BMC Bioinformatics (2024) 25:80

 15. Fletez-Brant K, Špidlen J, Brinkman RR, Roederer M, Chattopadhyay PK. flowClean: automated identification and
removal of fluorescence anomalies in flow cytometry data. Cytometry A. 2016;89(5):461–71.

 16. Meskas J, Yokosawa D, Wang S, Segat GC, Brinkman RR. flowCut: an R package for automated removal of outlier
events and flagging of files based on time versus fluorescence analysis. Cytometry A. 2023;103(1):71–81.

 17. Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison framework and guideline of clustering methods
for mass cytometry data. Genome Biol. 2019;20(1):297.

 18. Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytom-
etry data. Cytometry A. 2016;89(12):1084–96.

 19. Cheung M, Campbell JJ, Thomas RJ, Braybrook J, Petzing J. Assessment of automated flow cytometry data analysis
tools within cell and gene therapy manufacturing. Int J Mol Sci. 2022;23(6):3224.

 20. Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S, Kursa M, et al. A benchmark for evaluation of
algorithms for identification of cellular correlates of clinical outcomes. Cytometry A. 2016;89(1):16–21.

 21. Germain PL, Sonrel A, Robinson MD. pipeComp, a general framework for the evaluation of computational pipelines,
reveals performant single cell RNA-seq preprocessing tools. Genome Biol. 2020;21(1):227.

 22. Su S, Tian L, Dong X, Hickey PF, Freytag S, Ritchie ME. Cell Bench: R/Bioconductor software for comparing single-cell
RNA-seq analysis methods. Bioinformatics. 2020;36(7):2288–90.

 23. Selega A, Campbell KR.: Multi-objective Bayesian optimization with heuristic objectives for biomedical and molecu-
lar data analysis workflows. Preprint at https:// www. biorx iv. org/ conte nt/ early/ 2022/ 06/ 12/ 2022. 06. 08. 495370.

 24. Spidlen J, Moore W, Parks D, Goldberg M, Bray C, Bierre P, et al. Data file standard for flow cytometry, version FCS 3.1.
Cytometry A. 2010;77(1):97–100.

 25. Pezoa F, Reutter JL, Suarez F, Ugarte M, Vrgoč D. Foundations of JSON schema. In: Proceedings of the 25th Interna-
tional Conference on World Wide Web. International World Wide Web Conferences Steering Committee; 2016. p.
263–273.

 26. Morgan M, Wang J, Obenchain V, Lang M, Thompson R, Turaga N.: BiocParallel: Bioconductor facilities for parallel
evaluation. R package version 1.34.0. Available from: https:// bioco nduct or. org/ packa ges/ BiocP arall el.

 27. Shepherd L, Morgan M.: BiocFileCache: Manage Files Across Sessions. R package version 2.8.0. Available from:
https:// bioco nduct or. org/ packa ges/ BiocF ileCa che.

 28. Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, et al.: shiny: Web Application Framework for R. Available
from: https:// shiny. posit. co/.

 29. Ellis B, Haaland P, Hahne F, Le Meur N, Gopalakrishnan N, Spidlen J, et al.: flowCore: Basic structures for flow cytom-
etry data. R package version 2.12.0. Available from: https:// bioco nduct or. org/ packa ges/ flowC ore.

 30. Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: a Bioconductor package for automated gating of flow cytometry
data. BMC Bioinform. 2009;10:145.

 31. Parks DR, Roederer M, Moore WA. A new “Logicle’’ display method avoids deceptive effects of logarithmic scaling for
low signals and compensated data. Cytometry A. 2006;69(6):541–51.

 32. Finak G, Jiang W, Gottardo R. CytoML for cross-platform cytometry data sharing. Cytometry A. 2018;93(12):1189–96.
 33. Hauchamps P, Gatto L.: CytoMDS: Low Dimensions projection of cytometry samples. R package version 0.99.8. Avail-

able from: https:// uclou vain- cbio. github. io/ CytoM DS.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.biorxiv.org/content/early/2022/06/12/2022.06.08.495370
https://bioconductor.org/packages/BiocParallel
https://bioconductor.org/packages/BiocFileCache
https://shiny.posit.co/
https://bioconductor.org/packages/flowCore
https://uclouvain-cbio.github.io/CytoMDS

	CytoPipeline and CytoPipelineGUI: a Bioconductor R package suite for building and visualizing automated pre-processing pipelines for flow cytometry data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Methods
	Implementation
	Illustrative dataset
	Applied pre-processing pipelines
	Pipeline set-up
	Running the pipelines and visualizing the results

	Example benchmarking

	Results
	Visual assessment and comparison of pipeline outputs
	Use case #1: monitoring a run
	Use case #2: visualizing the effect of a single pipeline step
	Use case #3: comparing the outcome of a pipeline step with different parameter values
	Use case #4: comparing two different methods for one or several steps
	Use case #5: comparing two different biological samples
	Use case #6: visualization and update of generated scale transformations

	Benchmarking results

	Discussion
	CytoPipeline, a flexible framework for building and running pre-processing pipelines
	CytoPipeline provides a standardized and user-friendly tool for visual investigations
	CytoPipeline allows user intuitive insight into benchmarking results
	Using the proportion of events kept at each step as a diagnostic tool
	Limitations and possible extensions of the work

	Conclusion
	References

