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Abstract 

Background: With the increase of the dimensionality in flow cytometry data 
over the past years, there is a growing need to replace or complement traditional 
manual analysis (i.e. iterative 2D gating) with automated data analysis pipelines. 
A crucial part of these pipelines consists of pre-processing and applying quality control 
filtering to the raw data, in order to use high quality events in the downstream analy-
ses. This part can in turn be split into a number of elementary steps: signal compensa-
tion or unmixing, scale transformation, debris, doublets and dead cells removal, batch 
effect correction, etc. However, assembling and assessing the pre-processing part 
can be challenging for a number of reasons. First, each of the involved elementary 
steps can be implemented using various methods and R packages. Second, the order 
of the steps can have an impact on the downstream analysis results. Finally, each 
method typically comes with its specific, non standardized diagnostic and visualiza-
tions, making objective comparison difficult for the end user.

Results: Here, we present CytoPipeline and CytoPipelineGUI, two R packages to build, 
compare and assess pre-processing pipelines for flow cytometry data. To exemplify 
these new tools, we present the steps involved in designing a pre-processing pipeline 
on a real life dataset and demonstrate different visual assessment use cases. We also set 
up a benchmarking comparing two pre-processing pipelines differing by their quality 
control methods, and show how the package visualization utilities can provide crucial 
user insight into the obtained benchmark metrics.

Conclusion: CytoPipeline and CytoPipelineGUI are two Bioconductor R packages 
that help building, visualizing and assessing pre-processing pipelines for flow cytom-
etry data. They increase productivity during pipeline development and testing, 
and complement benchmarking tools, by providing user intuitive insight into bench-
marking results.
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Background
With recent advances in flow cytometry technologies, it has become possible to measure 
up to 50 markers simultaneously for the same single cells [1]. As an immediate benefit, 
scientists now have access to richer flow cytometry experimental data. However, these 
advances also come at a cost, i.e. a more complex data analysis task. Indeed, traditional 
’manual gating’ data analysis procedures, which proceed by iterative hierarchical 2D rep-
resentations of the data guided by biological knowledge, are unable to thoroughly extract 
the signal of interest from such high-dimensional data [2]. There is therefore a need to 
complement such manual, expert-based approaches with computational flow cytometry, 
i.e. a set of computational algorithms and methods for automated, reproducible and 
data-driven flow cytometry data analysis [2].

Those computational flow cytometry approaches translate into so-called data analysis 
pipelines. Examples of such automated pipelines have been published in the recent lit-
terature (e.g. [3–7]). These consist of a series of data processing steps that are executed, 
one after the other, with the output of one step becoming the input of the next step. 
Schematically, for a typical flow cytometry data analysis, these numerous steps can usu-
ally be grouped into three big parts, coming after initial data sample acquisition:

• data pre-processing and quality control, which consists in both filtering undesirable 
and low quality events, and increasing the signal to noise ratio of the raw data, in 
order to feed the downstream steps with data of the highest possible quality;

• population identification, which aims at labelling the events with names of cell popu-
lations of interest;

• downstream statistical analysis, which can range from the simplest descriptive 
count/frequencies per population, to building complex prediction models for an out-
come of interest, possibly for a high number of samples.

In what follows, we will mainly focus on the data pre-processing part, which can itself 
be split into several sub-tasks, or steps [8]: compensation, scale transformation, control 
(and possibly removal) of batch effects, control of signal stability in time (QC in time), 
filtering of undesirable events like debris, doublets and dead cells. All these steps are 
crucial to avoid that the subsequent analysis gets perturbed with erroneous signal (see 
e.g. [9] for compensation, [10] for scale transformation, [11] for signal stability in time, 
and [12] for other steps).

However, building good, automated pre-processing pipelines, suitable for the particu-
lar type of biological samples and biological question, can be challenging for a number 
of reasons. First, for each elementary step, there might exist a number of different com-
putational methods, each of those having numerous parameters available to the user. For 
example, looking only into methods available on the Bioconductor project [13] for con-
trolling the signal stability (QC in time), one finds at least four different methods avail-
able: flowAI [14], flowClean [15], PeacoQC [11], flowCut [16], and each of these methods 
comes with 7 to 11 different parameters. Second, the order of steps is not always set 
in stone, and applying different orders can lead to different outcomes, an effect coined 
steps interaction. These two facts lead to what we refer to as the combinatorial prob-
lem of designing pipelines, which means that, as the number of necessary elementary 
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steps increases, the number of possible pipeline designs grows exponentially. As a con-
sequence, for the user, it becomes time consuming to build and assess even only a few 
of the possible step combinations, let alone testing a representative sample of them in a 
systematic manner.

On top of that combinatorial problem, the user is also faced with a lack of generic, 
standardized and user-friendly tools to evaluate and compare data pre-processing pipe-
lines. On the one hand, each single pre-processing step method might come with its own 
approach for diagnostic and visualization (e.g. ad hoc plots, html or pdf reports), which 
allows the user neither to standardize the comparison process, nor to easily investigate 
the links and interactions between the different steps. On the other hand, there are a 
number of benchmarking studies comparing computational methods for flow cytometry 
data [17–20], but they tend to focus on only one part of the pipeline, which is usually the 
downstream analysis. Finally, there also exist some generic tools and frameworks to sys-
tematize the benchmarking process, including the interactions between different steps, 
such as for example pipeComp [21] and CellBench [22], and as well as some attempts 
to formally model the pipeline optimization problem in mathematical terms [23]. How-
ever, what is lacking for the end user is the ability to intuitively interpret the results of 
such benchmarkings. In other words, could one translate that a pipeline A outperforms 
a pipeline B, with respect to a specific performance metric, in terms of the obtained 
data characteristics, or number of filtered events. Therefore, there is still a need for flow 
cytometry practitioner-focused standardized tools for visual comparison of pre-process-
ing pipelines.

Here, we present CytoPipeline and CytoPipelineGUI, two R packages aimed at facili-
tating the design and visual comparison of pre-processing pipelines for flow cytometry 
data. We describe the concepts underlying the software, provide some illustrative exam-
ples and demonstrate the use of the accompanying visualization utilities. We show that 
these new tools can help increasing the productivity during pipeline development and 
testing, and that they can complement benchmarking tools and studies, by providing 
the user with intuitive insight into benchmarking results. The CytoPipeline and Cyto-
PipelineGUI packages are available on Bioconductor [13], as of version 3.17 and 3.18, 
respectively.

Methods
Implementation

In what follows, we assume that we have a dataset, provided as a set of files in Flow 
Cytometry Standard (fcs) format [24], on which we would like to apply a data pre-pro-
cessing pipeline.

The CytoPipeline suite is composed of two main R packages, CytoPipeline and Cyto-
PipelineGUI. While CytoPipeline is the main package, providing support for pipeline 
definition, running, monitoring and basic plotting functions, CytoPipelineGUI provides 
two interactive GUI applications enabling users to interactively explore and visualize the 
pipeline results. The CytoPipeline framework is based on two main concepts, namely 
CytoPipeline and CytoProcessingStep. A CytoPipeline object centralizes the pipeline defi-
nition, and specifies the run order of the different pipeline steps. These steps materialize 
as CytoProcessingStep objects, which store pipeline step names and the corresponding 
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R functions that will be called at execution time. These functions are either provided 
within the CytoPipeline package itself, exported from third party packages, or coded by 
the user themself. Together with the function name to be called, a CytoProcessingStep 
object also contains the list of parameters that are used as arguments to the function.

When creating a CytoPipeline object, the user can provide the description of the 
pipeline as a text file in json format [25]. Figure 1 shows the typical structure of such a 
json file. Note that, in practice, two different sets of processing steps, or pipelines, are 
described:

• A scaleTransformProcessingSteps pipeline, which describes the set of successive steps 
needed to generate the scale transformations that will be applied to the different 
channels of each of the fcs files that are included in the dataset. The CytoPipeline 
engine will run this pipeline first, and only once, prior to running the pre-processing 
on each fcs file.

• A flowFramesPreProcessingSteps pipeline, which describes the set of pre-processing 
steps that will be applied on each of the different fcs file independently.

Steps in both pipelines are described in the exact same way, i.e. by providing a user-
chosen name for the step, the corresponding function that needs to be called by the 
engine upon running, and the set of arguments (i.e. the list of parameter names and cor-
responding values) that need to be provided to the function. Note that, on top of these 
explicitely defined arguments, the running engine will also take the output of each step 
as an implicit additional argument to the function called by the subsequent step.

The standard process for using CytoPipeline to build, run and inspect pre-processing 
pipelines is the following:

• define the pipeline by specifying the different steps using a descriptive text file, in 
json format;1

• run the pipeline, possibly for several data files in parallel, which involves writing and 
executing a short R script (see following sections);

• monitor the execution process thanks to a CytoPipeline provided workflow visualiza-
tion utility;

• visualize and compare the results at different stages, using the CytoPipelineGUI inter-
active GUI applications.

In terms of technical infrastructure, the CytoPipeline package suite makes itself internal 
use of several technical R packages:

• BiocParallel [26] enabling parallel pre-processing of fcs sample files;
• BiocFileCache [27] enabling storage (i.e. caching) of all intermediary results for fur-

ther inspection;
• shiny [28] for interactive visualizations.

1 Note that CytoPipeline also provides methods to define a pipeline and its steps programmatically in R, without provid-
ing a text file as an input.
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Illustrative dataset

In order to demonstrate CytoPipeline functionalities, we make use of an illustrative 
dataset, the HBV chronic mouse dataset. This dataset was collected during a preclini-
cal study aimed at assessing the effect of different therapeutic vaccine regimens on 
the immune response of Hepatitis B Virus transduced mice.

Fig. 1 Structure of the user provided json file that describes a CytoPipeline object. The first pipeline (i.e. 
“scaleTransformProcessingSteps”) specifies how the preliminary calculation of the scale transformations is 
performed. Here only its first two steps are described. The first step, named “my_scale_transform_step1”, 
consists in calling the “scaleTransFormFunc1” function, with 3 parameters (“paramName1”, “paramName2” and 
“paramName3” provided as arguments, taking the specified “value1”, “value2” and “value3” value respectively. 
The second step, named “my_scale_transform_step2”, calls the “scaleTransFormFunc2”, with only one single 
parameter, i.e. “paramName4” taking “value4” as value. The second pipeline (i.e. “flowFramesPreProcessingSteps”) 
specifies the set of pre-processing steps performed on each data file independently. Here again, only the first 
two steps are described. The first one, named “my_fcsfile_preprocessing_step1” calls the “preprocessingFunc1” 
function with two parameters, while the second one, named “my_fcsfile_preprocessing_step2” calls the 
“preprocessingFunc2” function with no parameter (apart from the output of the previous step which is always 
used as an implicit additional argument)
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In this study, 56 male and female HLA.A2/DRB1 transgenic mice (transgenic for the 
human HLA-A2 and HLA-DRB1 molecules) were used. HLA.A2/DRB1 mice from 
groups 1, 2 and 4 were transduced at day 0 with adeno-associated virus serotype 2/8 
(AAV2/8-HBV) vector carrying a replication-competent HBV DNA genome and rand-
omized before immunization with 4 doses of vaccine candidate, based on level of HBs 
circulating antigen detected in the sera at day 21, age and gender proportions. Mice 
from group 3 were not transduced with AAV2/8-HBV viral vector and were immunized 
with four doses of vaccine candidate and finally, mice from group 5 were not transduced 
and received four doses of NaCl solution. Upon sacrifice, livers were collected, perfused 
with Phosphate Buffered Saline (PBS) to remove blood cells and after enzymatic treat-
ment, lymphocytes were isolated, and stained with different monoclonal antibodies. The 
stained cells were acquired by flow cytometry using a BD Symphony A5 flow cytometer 
- the same instrument for all biological samples - and analyzed using the FlowJo v10.8 
Software (BD Life Sciences).

Animal husbandry and experimental procedures were ethically reviewed and carried 
out in accordance with European Directive 2010/63/EU and the GlaxoSmithKline Bio-
logicals’ policy on the care, welfare and treatment of animals, in GSK animal facilities 
located in Rixensart, Belgium (AAALAC accredited). The ethical protocol of the GSK 
in vivo study was approved by the local GSK ethical committee.

This experiment resulted in the acquisition of 55 different fcs raw data file - one sample 
could not be acquired - with a flow cytometry panel of 12 different channels. The HBV 
chronic mouse dataset is available on Zenodo (DOI:10.5281/zenodo.8425840).

Applied pre‑processing pipelines

Pipeline set‑up

For the purpose of illustrating CytoPipeline functionalities, the 55 raw data files of the 
HBV chronic mouse dataset were used as input of two different pre-processing pipelines. 
Each pipeline was composed of the following steps:

• Reading of the raw fcs sample files, using the flowCore package [29].
• Margin events removal, which consists in identifying and removing the outliers using 

the PeacoQC package [11]. In short, manual boundaries per channel, corresponding 
to the instrument detection limits, are applied, and all events falling outside these 
boundaries are removed.

• Signal compensation, which consists in applying an existing compensation matrix. 
This matrix was generated by the flow cytometer at data acquisition time, and subse-
quently manually adjusted by the expert scientist.

• QC in time, which consists in eliminating parts of the signal that are not stable in 
time, using one of the corresponding QC algorithms (see below).

• Doublet removal, which consists in keeping the events that have a similar area vs. 
height ratio of the FSC channel signal pulse, and eliminating the doublets, which 
have a significantly higher ratio. This was performed using an ad hoc implementation 
in the CytoPipeline package.

• Debris removal, which consists in clustering the events in the (FSC-A, SSC-A) 2D 
representation, targetting a number of clusters provided by the user. After the clus-
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ters are obtained, the cluster of which the centroid lies nearest to the origin, i.e. with 
the smallest FSC-A (size) and smallest SSC-A (content, granularity), is considered as 
containing debris and removed. This was done using the flowClust package [30].

• Scale transformation, which consists in automatically estimating the parameters of 
a logicle transformation [31], using the flowCore package [29]. The obtained scale 
transformations were applied on all 55 sample files, and the parameters were esti-
mated on an aggregation of a subset of 4 randomly chosen sample fcs files, after mar-
gin events removal and signal compensation.

• Dead cells removal, which consists in automatically setting a threshold between live 
cells and dead cells in the corresponding fluorescent ’Live & Dead’ channel dimen-
sion, using the flowDensity package. The events having a ’Live & Dead’ intensity 
above the found threshold are eliminated as dead cells.

However, the two pre-processing pipelines essentially differed by the method used 
for the QC in time step, as one used the PeacoQC package [11], while the other used 
the flowAI package [14]. In addition, the step order was also different, as the PeacoQC 
method is based on a peak detection algorithm which needs to run on compensated, 
scaled transformed data [11], while the flowAI method is advised to be applied on raw 
data [14]. Figure 2 outlines the different steps applied in the pre-processing of each fcs 
files, for both the PeacoQC-based pipeline, and the flowAI-based pipeline.

More detailed information on packages, versions and methods underlying each step 
(Additional file 1: Tables S1, S2 and S3), as well as the json configuration files defining 
respectively the PeacoQC-based and flowAI-based pipelines are available in the Addi-
tional file 1.

Running the pipelines and visualizing the results

In order to create the CytoPipeline objects representing the pipelines, run them and 
visualizing the results - including monitoring of the pipeline execution - a short R 
script needs to be written and executed. An example of such R script is provided in 
Additional file 1: Fig. S1. Note that, as a result of the centralization of the pipeline 

Fig. 2 Workflow of the subsequent steps applied in the pre-processing of each fcs file, for both pipelines. 
These plots have been generated using the CytoPipeline package
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definition, the code is very simple and concise, as for example, creating and run-
ning the pipeline boils down to essentially two R statements. Also, note that it is the 
same R code that triggers the execution of both pre-processing pipelines described 
in the previous section (except for the selection of the appropriate input json file and 
the choice of the experiment name under which to store the results). The distinctive 
part of the pipeline is located in the input json file, which describes the pipelines 
steps and their execution order.

Example benchmarking

Aiming at illustrating the use of CytoPipeline to provide insights into benchmarking 
results, we designed a benchmarking, which consisted in comparing the outcome 
of the two competing PeacoQC-based and flowAI-based pipelines described in the 
previous section, using the HBV chronic mouse dataset, to a ground truth. The latter 
was obtained by submitting the 55 raw data fcs files to an expert scientist, who man-
ually pre-processed the files, gated the events using FlowJo. The obtained FlowJo 
workspace file was subsequently automatically processed using the CytoML pack-
age [32] version 2.12.0, and incorporated into a dedicated CytoPipeline ground truth 
pipeline for comparison with the two automated pipelines.

Regarding the benchmark evaluation metrics, for each single fcs file, the final 
output of each pipeline was compared to the ground truth, in terms of number of 
events, and the following metrics were calculated: sensitivity, specificity, precision 
and recall, which are defined as follows: let

• G (resp. B) be the set of events that are considered as Good (resp. Bad) in the 
manual gating i.e. in the ground truth;

• FG (resp FB ) be the set of events that are flagged as good (resp. flagged as bad) by 
the considered automated pipeline.

We can additionally define the following sets of events:

• FG, correct = FG ∩ G , the set of events that are correctly flagged as good;
• FB, correct = FB ∩ B , the set of events that are correctly flagged as bad.

The chosen evaluation metrics are then defined as:
sensitivity =

|FB, correct|

|B|
; specificity =

|FG, correct|

|G|
; precision =

|FB, correct|

|FB|
; recall =

|FG, correct|

|FG |
 , 

where |A| stands for the number of elements in the set A.
The benchmark was set up and performed using the pipeComp package [21], ver-

sion 1.10.0. Indeed, pipeComp is a convenient tool to efficiently automate multiple 
alternative pipelines to be compared in the benchmark, as well as to automate the 
calculation of the evaluation metrics for each dataset used as benchmark input.
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Results
Visual assessment and comparison of pipeline outputs

We used CytoPipeline to define both PeacoQC and flowAI-based pre-processing pipe-
lines, as described in the Methods section, on the HBV chronic mouse dataset. We 
obtained results in the form of sets of data matrices (or flowFrames) after each step 
for each pre-processing pipeline. In the following paragraphs, we present some Cyto-
Pipeline visual assessment plots, according to 6 different use cases (Table 1). Use case 
#1 consists in visualizing a run and monitoring the status of the different steps. Use 
cases #2 to #5 consist in either looking at ’what happened’ within a single pipeline for 
a single biological sample in isolation (use case #2), or comparing two different situ-
ations (flow frames) involving different pipelines (use cases #3 and #4), or involving 
different biological samples within the same pipeline (use case #5). Finally, use case 
#6 consists in assessing, and possibly modifying, the scale transformations obtained 
during a pipeline execution.

Table 1 Use cases of visual assessment and comparison of pipeline outputs. When the use case 
involves comparing two flowFrames obtained from different steps and/or different pipelines (i.e. 
use cases #2 to #4), or different samples (i.e. use case #5) the 3 columns ’sample’, ’pipeline’ and 
’output’ designate the initial flowFrame (referring to Fig. 2), while the 3 columns ’compared sample’, 
’compared pipeline’ and ’compared output’ designate the flowFrame that is compared to the initial 
flowFrame 

Use case Description Sample Pipeline Output (cf. 
Fig. 2)

Compared 
sample

Compared 
pipeline

Compared 
output (cf. 
Fig. 2)

#1 Monitoring 
a run

D91_G01 PeacoQC All Not appli-
cable

Not appli-
cable

Not applicable

#2 Visualizing 
the effect of 
a single pipe-
line step

D91_G01 PeacoQC Output 
2 (before 
’compensate’)

D91_G01 PeacoQC Output 3 (after 
’compensate’)

#3 Comparing 
the outcome 
of a pipeline 
step with dif-
ferent param-
eter values

D91_G01 PeacoQC Output 
6 (after 
’remove_
debris’), run 
with 3 
clusters

D91_G01 PeacoQC Output 6 (after 
’remove_
debris’), run 
with 2 clusters

#4 Comparing 
two different 
methods for 
one or several 
step(s)

D91_A01 PeacoQC Output 
7 (after 
’remove_
dead_cells’)

D91_A01 flowAI Output 7 (after 
’remove_
dead_cells’)

#5 Comparing 
two differ-
ent biological 
samples

D91_A01 PeacoQC Output 
7 (after 
’remove_
dead_cells’)

D93_B05 PeacoQC Output 7 (after 
’remove_
dead_cells’)

#6 Visu-
alization and 
update of 
generate 
scale transfor-
mations

D91_G01 PeacoQC Not appli-
cable

Not appli-
cable

Not appli-
cable

Not applicable
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Use case #1: monitoring a run

As all the intermediate results produced during pipeline execution are saved (see 
Methods/Implementation section), it is possible to generate a summary workflow 
view, consecutive to a run. Figure  3 shows an example of such a display, obtained 
after running the flowAI-based pipeline described above, where there was a spelling 
error in one of the parameter names of the “remove_debris” step. On top of show-
ing the sequence of steps, a colour code is used to highlight which of the steps have 
run to completion, and which of the steps need to be re-run. Here, for the selected 
sample, the pipeline ran correctly until the “remove_doublets” step (green nodes), but 
did not produce any output for the subsequent steps (orange nodes), which is due to 
the spelling error in the definition of the “remove_debris” step. Based on this summa-
rized visual information, the user can now dig into the flagged problematic step, and/
or track the particular characteristics of the sample which generated the error. More 
details on the colour code used in this plot can be found in Additional file 1: Fig. S2.

Use case #2: visualizing the effect of a single pipeline step

In Fig. 4, the user is visually assessing two consecutive states of the flowFrame of sam-
ple D91_G01, within the same run of the PeacoQC-based pipeline. To evaluate the 
effect of the compensation step, the “before compensation” (output 2, cf. Fig. 2) and 
the “after compensation” (output 3) states of the pipeline are visually compared. Note 
that this visualization can be done according to any pair of selected channels/markers 
(2D distribution representation), or according to a 1D marginal distribution represen-
tation for any selected channel/marker. Here, the (CD8, CD38) 2D view shows, on the 
left, that the fluorescence of the dye BB700 (CD38) spills into the CD8 channel. On 
the right, application of a pre-computed compensation matrix (see Methods section) 
has rectified the distribution of the two markers, revealing different ranges of CD38 
(an activation marker) between the CD8+ and CD8- populations. A corresponding 

Fig. 3 Use case #1: summary workflow view of the run - green nodes correspond to steps that ran to 
completion for the selected sample file, orange nodes correspond to steps that have not generated an 
output yet
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screenshot of the interactive GUI application, implemented in the CytoPipelineGUI 
package, can be found in Additional file 1: Fig. S3.

Use case #3: comparing the outcome of a pipeline step with different parameter values

This use case involves running the same pipeline, with the same steps but with amended 
values for one or several steps, in order to investigate which parameter combination 
performs better. An illustrating example is shown in Fig. 5, where the outcome of the 
debris removal step is compared when applying two different user input number of 
clusters (three on the left plot, vs. two on the middle plot). On the right plot, events 
coloured in red are the ones that are eliminated when applying the debris removal step 
when the number of clusters is two, but not eliminated when the number of clusters 

Fig. 4 Use case #2: effect of a single pipeline step - here, the compensation step of the PeacoQC-based 
pipeline for sample D91_G01. On the left, spillover of the BB700 (CD38) dye fluorescence into the CD8 
channel creates a visual artefact, with events wrongly flagged as double positive CD8+ CD38+. On the right, 
compensation has rectified the bivariate distribution of the two markers

Fig. 5 Use case #3: comparison of two different parameter settings for the debris removal step, on sample 
D91_G01. The setting with two clusters (in the middle) better eliminates undesirable events than the 
setting with three clusters (on the left). On the right, an explicit comparison between the two flowFrames is 
performed. Red dots correspond to events that are present on the left hand side plot, but not present on the 
middle plot, while blue dots correspond to events that are present on both plots
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is three. Let us recall that the debris elimination step consists in clustering the events 
in a fixed number of clusters, followed by the elimination of the cluster nearest to the 
origin - see Methods section. Here, specifically, the user can conclude that the debris 
removal algorithm (based on flowClust package) does a better job selecting the target 
events when the appropriate number of target clusters is used, i.e. two clusters, as on 
the middle plot. This is because the cell population of interest, here a population of lym-
phocytes extracted from mice liver tissues, naturally groups into one single cluster in the 
(FSC-A, SSC-A) 2D representation. As a consequence, in this case, two is the optimal 
number of clusters (one cluster of debris, one cluster of lymphocytes). Additional file 1: 
Fig. S4 illustrates the removal of events during the debris removal step, for the 2 clusters 
and the 3 clusters cases.

Use case #4: comparing two different methods for one or several steps

This use case is a generalization of the preceeding one, where the user wants to compare 
the performance of two different methods for one or several steps of the pre-processing 
pipeline. For instance, Fig.  6 provides a comparison between the PeacoQC-based and 
the flowAI-based pipelines, applied on a particular biological sample of the HBV chronic 
mouse dataset. This comparison, obtained by plotting one specific channel (here the 
FSC-A) as a function of time, reveals that flowAI removes time chunks more aggressively 
than PeacoQC, for the current sample. Note that this comparison can also be done for 
any 2D combination of makers (not shown here).

Use case #5: comparing two different biological samples

It is also possible to compare two different biological samples of the same dataset, at any 
specific step of any pipeline. This allows e.g. to check that the methods used for the vari-
ous pre-processing steps perform consistently across the whole dataset. One example 
is shown in Fig. 7, where two different samples are displayed in a 2D plot with the FSC-
A and Live &Dead channels. In this case, the two samples show very similar bivariate 

Fig. 6 Use case #4: comparison of the final state results, for sample D91_A01, between the PeacoQC-based 
pipeline and the flowAI-based pipeline - here using a (FSC-A vs. Time) plot. On the left, the end state of the 
PeacoQC-based pipeline is shown, while the end state of the flowAI-based pipeline is shown on the middle 
plot. On the right, an explicit comparison between the two flowFrames is performed. Red dots correspond 
to events that are present on the left hand side plot, but not present on the middle plot, while blue dots 
correspond to events that are present on both plots. This figure reveals that, for this particular sample, flowAI 
tends to remove time chunks more aggressively than PeacoQC 
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distributions. Based on this 2D representation, one could conclude that the pre-pro-
cessing pipeline has correctly selected the target cell population in both cases. This 
would however need careful confirmation based on other 2D combinations of mark-
ers, e.g. FSC-H vs. FSC-A (for doublets elimination), and FSC-A vs. SSC-A (for debris 
elimination).

Use case #6: visualization and update of generated scale transformations

Besides the flowFrame comparison tool, CytoPipelineGUI also provides a second inter-
active GUI application, which is aimed at inspecting the scale transformations obtained 
from the corresponding scaleTransformProcessingSteps pipeline (see Methods/Imple-
mentation section). If the shape of the distribution after transformation needs adjust-
ment (for example for better separation of negative and positive populations for a 
specific marker), the user can manually adapt the scale transformation parameters, 
interactively assess the impact of their modifications, and apply these modifications to 
the scale transformations for further use in the pre-processing pipelines (Fig. 8). These 
manual adjustments can be very useful, for example when the automatic transformation 
parameter adjustment algorithm has not worked satisfactorily. Figure 9 shows an exam-
ple where the logicle transformation [31] applied on marker CD38 (left) shows spuri-
ous density oscillations in the negative domain. Manually adjusting the positive decimals 
parameter of the logicle transformation leads to a better looking density plot, where one 
can more easily distinguish CD38-, CD38+ and CD38++ populations.

Benchmarking results

As mentioned in the Methods section, we used pipeComp [21] to perform a benchmark-
ing exercise, comparing two different pre-processing pipelines, i.e. the PeacoQC-based 
and the flowAI-based pipelines, on the 55 sample files of the HBV chronic mouse dataset, 

Fig. 7 Use case #5: comparison of the final state results between two different biological samples (on the 
left: sample D91_A01 and on the right: sample D93_B05), within the same PeacoQC-based pipeline. For the 
particular channels chosen (Live &Dead vs. FSC-A), the two samples show very similar bivariate distributions. 
Based on this 2D representation, one could conclude that the pre-processing pipeline has correctly selected 
the target cell population in both cases
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Fig. 8 Use case #6: screenshot of the CytoPipelineGUI interactive GUI application enabling the inspection, 
manual adjustment and save of pipeline generated scale transformations. Here the user is visualizing the 
transformation applied on marker CD38, for sample D91_G01 

Fig. 9 Manual parameters adjustment of the logicle transformation applied on marker CD38, for sample 
D91_G01. On the left, the density plot shows spurious oscillations in the negative domain. On the right, 
manual adjustment on the positive decimals parameter of the logicle transformation leads to a better looking 
transformed density, where one can more easily identify CD38-, CD38+ and CD38++ populations



Page 15 of 22Hauchamps et al. BMC Bioinformatics           (2024) 25:80  

and calculating evaluation metrics in terms of how well the automated pipelines could 
match the manual pre-processing performed by an expert scientist (’ground truth’). A 
global assessment shows comparable results between the two competing pipelines, 
consistently across all metrics (Fig. 10). However, when directly contrasting sample by 
sample results (Fig. 11) one can identify that the pipeline performance is rather hetero-
geneous across the 55 biological samples.

In order to better understand the behaviour of the two competing automated pipelines 
on different samples, we selected three different samples, corresponding to different 
locations into the specificity plot of Fig. 11. We then used CytoPipelineGUI to inspect 
the results at different steps, for the two automated pipelines as well as for the ’ground 
truth’:

• Sample D91_C07 was an outlier for which the PeacoQC-based pipeline obtained an 
almost zero specificity, while flowAI-based pipeline specificity was around an accept-
able level of above 0.8. However, as shown in Fig. 12, this was not due to the different 
QC in time algorithm (PeacoQC vs. flowAI), but to a lack of robustness of the dead 
cells removal algorithm, leading to an interaction phenomenon by which almost all 
events were removed in the dead cell removal step of the PeacoQC-based pipeline.

• Sample D93_A05 resulted in a very low specificity for both pipelines. Investigation 
using CytoPipelineGUI revealed that this sample was in fact one of the low quality 
samples wherein the interesting cell population was a small minority of the events, 
while there was a great abundance of debris and dead cells (Additional file 1: Fig. S5). 
As a consequence, both pipelines were unable to automatically select the correct cell 
population, regardless of the QC in time method used.

Fig. 10 Box plots of the distributions of calculated evaluation metrics per sample, for the two competing 
pipelines. Globally, both pipelines perform very similarly, for all four evaluation metrics, i.e. sensitivity, 
specificity, precision and recall
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• Sample D91_D03 was an example where both automatic pipelines performed ade-
quately without major issues. Here, the difference in metrics is effectively related 
to the choice of QC in time method. Looking at a specific visualization where time 
is displayed on the x axis (Additional file 1: Fig. S6), and based on both qualitative 
plot inspection and number of events comparison with the manual gating ground 
truth, CytoPipelineGUI reveals that flowAI method is too agressive in this case, 
while PeacoQC is too liberal.

Note that the conclusions of these visual inspections are particularly precious to 
the scientist in charge of building the data analysis pipelines, who is now able to get 
precise and accurate insight into why one pipeline performs better than the other, for 
specific samples. In particular, they are much better equipped to distinguish between 
an intrinsic performance difference between some competing methods, and surpris-
ing artefacts like a side effect of low sample quality or an interaction between two dif-
ferent steps.

Discussion
CytoPipeline, a flexible framework for building and running pre‑processing pipelines

In this work, we have demonstrated the use of the CytoPipeline suite by implementing 
pre-processing pipelines on the HBV chronic mouse dataset. The implementation of 

Fig. 11 Scatter plots comparing the two pre-processing pipelines, each dot representing one of the 
55 samples. Three specific samples are highlighted in red, corresponding to very different comparative 
behaviour of the two competing pipelines. Sample D91_C07 is a unique sample for which the flowAI-based 
pipeline has a high specificity, but the PeacoQC-based pipeline has very low specificity. Sample D93_A05 is 
one of the samples leading to low specificity for both pipelines, while sample D91_D03 is representative of 
the samples for which both pipelines provide good specificity
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CytoPipeline, with a centralized specification of the pipeline definition in a json file, 
leads to a better design of the pipeline code. As a result, we believe that the user pro-
ductivity, when coding and testing different pipelines, can be greatly improved.

In order to illustrate this, we implemented the two PeacoQC-based and flowAI-based 
competing pipelines, described in Methods, in two R scripts, without using CytoPipeline 
objects, and looked into the duplication effort as well as the future extensibility of the 
code. These pieces of code are provided in the 2023-CytoPipeline-code GitHub reposi-
tory (see Code Availability in Declarations section).

Fig. 12 Comparison between the dead cells removal step between the flowAI pipeline (A), and the 
PeacoQC-based pipeline (B), on sample D91_C07. While the input set of events look very similar (left plots of 
panels A and B), the dead cells removal step of the PeacoQC-based pipeline (right plot of panel B) wrongly 
removes most of the events. This reveals a lack of robustness of the algorithm, unrelated to the QC in time 
method used (flowAI vs. PeacoQC)
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Figure 13 provides a schematic comparison between these two pieces of code, as well 
as indicative number of code lines. Of course, these relates to one particular implemen-
tation, as there are countless ways to program the same pipelines. What is interesting to 
note, though, is that there is a high proportion of code duplication, but the differences 
are not only located in one single place, due to the subtle differences induced by the 
change of orders in the steps. This is likely to lead to a high code maintenance burden in 
the future, for instance when extending the program to many more pipeline instances, 
which can use different step methods, different method parameters etc. In constrast, let 
us recall that, when using CytoPipeline, the R code itself stays the same, as all differ-
ences are explicitly described in the input json file. This json file is easier to maintain and 
extend than the R scripts represented in Fig. 13.

CytoPipeline provides a standardized and user‑friendly tool for visual investigations

We have presented a series of use cases of CytoPipeline visualizations. In all these use 
cases, we took advantage of the same set of visualization tools, in a standardized way, 
but translated into different contexts, whatever the underlying methods used for the pre-
processing pipelines. Also during the investigation of the benchmarking results, visual 
comparisons could be made with a ground truth manual gating, again using the same 
tools. Besides, the interactive GUI applications, implemented in CytoPipelineGUI, pro-
vide user interactivity and facilitate the investigation process. As stated in the introduc-
tion, these visual assessments are extremely important for the scientists, as they provide 
a unique mean to:

• visually control for the quality of the data samples, and acquire insight on the corre-
sponding sample variability;

• visually check the robustness of the methods used in a given pre-processing pipeline, 
including the adequacy of the chosen user input parameters;

• visually compare different pre-processing pipeline settings. This can range from com-
paring different possible choices of method for a particular step, to assessing which 
one of two or more competing pipelines, possibly mixing different step methods in 
different orders, is performing better for the considered dataset.

CytoPipeline allows user intuitive insight into benchmarking results

As part of this work, we have implemented a benchmarking comparing two com-
peting pre-processing pipelines, with the main objective of showing the benefits of 
using CytoPipeline visualization tools, as a complement to the benchmarking itself. 

Fig. 13 Structure of the R script implementations of the PeacoQC-based and flowAI-based pipelines. The 
common parts are shown in white, PeacoQC-based pipeline specific parts in yellow, and flowAI-based 
pipeline specific parts in red. Between the two pipelines, 79% of the code is in common, and the pipeline 
specific parts are not fully gathered in one single location
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We showed that detailed comparison plots help the user investigating some specific 
benchmarking results, hence getting better intuition into the benchmarking outcome. 
We have indeed demonstrated that there can be numerous reasons why a pipeline 
instance performs better than another on specific samples, and it is key for the scien-
tist to get a clear view of these reasons, and their possible links with sample charac-
teristics. Therefore, we think that CytoPipeline is a powerful tool for interpreting the 
outcome of benchmarking studies.

Using the proportion of events kept at each step as a diagnostic tool

As was shown in various figures in the Results section (see e.g. Fig.  12), CytoPipe-
lineGUI computes the number of events that are retained at each step (shown as 
subtitles in the individual density plots). Tracking these changes throughout the pre-
processing steps of a pipeline for different samples is a useful quality control. This can 
be implemented using some of the CytoPipeline functions, and is shown on Fig. 14.

Limitations and possible extensions of the work

The CytoPipeline suite of R packages can be positioned as a tool to facilitate the 
design, testing and comparison of pre-processing pipelines for the end user. It is not 
meant to be:

• A novel pre-processing pipeline in itself, as it does not provide new methods for 
the various pre-processing steps (although it includes some functions calling some 
widely used methods), nor an innovative way to combine some of these.

• A tool facilitating benchmarking automation, like pipeComp. For example, unlike 
pipeComp [21], CytoPipeline does not provide any optimization solution to reduce 
the amount of CPU time and memory to run a potentially huge amount of (combi-

Fig. 14 Plots showing the proportion of retained events at each pre-processing step, for each sample. On 
the left, the PeacoQC-based pipeline shows, for sample D91_C07, a sharp drop in the last remove_dead_cells 
step. On the right, the flowAI-based pipeline does not show the same phenomenon
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nations of ) possible pipelines. However, as mentioned before, CytoPipeline is used 
to facilitate the interpretation of results produced with benchmarking tools.

Regarding scalability, one should distinguish CPU and memory from hard drive stor-
age requirements. CPU- and memory-wise, CytoPipeline has no particular issues when 
dealing with large number of samples, as long as each single fcs file can fully reside in 
memory. Indeed, as described in the Methods section, the engine that executes pre-pro-
cessing pipelines supports both sequential and parallel file processing, and benefits from 
all multi-tasking scheduling options provided by the BiocParallel [26] package. How-
ever, storage-wise, caching data at each step leads to large storage needs when process-
ing many files. Typically, when analysing datasets including hundreds of fcs files, with 
several millions of events, compared across several pipelines and many processing steps, 
storage needs can require several terabytes. In those cases, users of CytoPipeline will 
typically need to call on high capacity storage facilities.

Another limitation of our work is the following: while CytoPipelineGUI is a powerful 
visualization tool for exploring specific pipeline steps for one or two samples, it does not 
provide an overall quality control of all samples at once. In that sense, it would be use-
ful, especially for large datasets, to provide a global view of how samples differ at each 
pre-processing step. As mentioned above, one such diagnostic view can be obtained, by 
plotting the fraction of retained events at each pre-processing step (Fig.  14). Another 
promising approach focuses on the visualisation of all samples at once to identify spe-
cific outliers [33].

Finally, another possible extension would be to further develop CytoPipeline, as to not 
only include the building and assessment of pre-processing steps, but also include sup-
port for subsequent steps of the data analysis: batch correction, population identifica-
tion, etc.

Conclusion
In this work, we have introduced a suite of R packages, CytoPipeline and CytoPipeli-
neGUI, that helps building, visualizing and assessing pre-processing pipelines for flow 
cytometry data. We have demonstrated several use cases on a real life dataset, and high-
lighted several concrete benefits of these tools. For the new user, the packages come with 
ample documentation and tutorial videos, accessible through the package vignettes. We 
trust that using CytoPipeline will favour productivity in testing and assessing alterna-
tive data pre-processing pipelines, with the aim of designing good pre-processing and 
QC solutions for each particular context. The latter can be the specific type of biological 
sample, technology used (conventional flow cytometry, cytof, spectral flow cytometry), 
panel composition, experimental design etc., which in turn highly depend on the bio-
logical question at hand.
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