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Abstract 

Background: High-performance computing plays a pivotal role in computer-aided 
drug design, a field that holds significant promise in pharmaceutical research. The 
prediction of drug–target affinity (DTA) is a crucial stage in this process, potentially 
accelerating drug development through rapid and extensive preliminary compound 
screening, while also minimizing resource utilization and costs. Recently, the incorpora-
tion of deep learning into DTA prediction and the enhancement of its accuracy have 
emerged as key areas of interest in the research community. Drugs and targets can be 
characterized through various methods, including structure-based, sequence-based, 
and graph-based representations. Despite the progress in structure and sequence-
based techniques, they tend to provide limited feature information. Conversely, 
graph-based approaches have risen to prominence, attracting considerable attention 
for their comprehensive data representation capabilities. Recent studies have focused 
on constructing protein and drug molecular graphs using sequences and SMILES, 
subsequently deriving representations through graph neural networks. However, these 
graph-based approaches are limited by the use of a fixed adjacent matrix of protein 
and drug molecular graphs for graph convolution. This limitation restricts the learning 
of comprehensive feature representations from intricate compound and protein struc-
tures, consequently impeding the full potential of graph-based feature representation 
in DTA prediction. This, in turn, significantly impacts the models’ generalization capabili-
ties in the complex realm of drug discovery.

Results: To tackle these challenges, we introduce GLCN-DTA, a model specifically 
designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learn-
ing module into the existing graph architecture. This module is designed to learn a soft 
adjacent matrix, which effectively and efficiently refines the contextual structure of pro-
tein and drug molecular graphs. This advancement allows for learning richer structural 
information from protein and drug molecular graphs via graph convolution, specifically 
tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. 
A series of experiments have been conducted to validate the efficacy of the proposed 
GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA 
possesses advantages in terms of robustness and high accuracy.
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Conclusions: The proposed GLCN-DTA model enhances DTA prediction perfor-
mance by introducing a novel framework that synergizes graph learning operations 
with graph convolution operations, thereby achieving richer representations. GLCN-
DTA does not distinguish between different protein classifications, including structur-
ally ordered and intrinsically disordered proteins, focusing instead on improving feature 
representation. Therefore, its applicability scope may be more effective in scenarios 
involving structurally ordered proteins, while potentially being limited in contexts 
with intrinsically disordered proteins.

Keywords: Drug–target affinity prediction, Deep learning, Drug discovery, Graph 
learning-convolutional networks

Background
With the U.S. Food and Drug Administration (FDA) approval taking up to 17 years and 
costing $2.6 billion [1–5], drug development faces challenges, particularly under strict 
market scrutiny [6]. Drug repurposing and repositioning have emerged as key strategies 
to expedite and economize drug development [7], prompting a research focus on accu-
rate prediction of drug–target affinity (DTA) [8–12]. The ability to predict binding inter-
actions between small molecules and targets can significantly streamline the process of 
identifying lead compounds, thus expediting drug research and development.

Traditional methods based on biological experiments, e.g., high-throughput screen-
ing experiments, can be effective at predicting DTA, but they are too cumbersome and 
demand substantial amounts of money and time [13]. Meanwhile, the vast array of drug-
like compounds, estimated in the millions [14], along with numerous potential targets, 
poses a significant challenge to the practical application of this technology. The expan-
sion of bioinformatics databases in recent years has resulted in a substantial collection of 
biological experimental data, paving the way for the advent of computational approaches 
[5].

Existing computational approaches are roughly categorized into two types: ligand-
based and structure-based approaches, as shown in Fig.  1. Ligand-based methods 
[15] are based on the concept that ligands with similar chemical properties are likely 
to have similar biological functions and bind to similar target proteins [16–19]. This 
approach focuses on the information about the ligand rather than the target protein’s 
structure. However, when the number of available ligands is low, the accuracy of pre-
dictions decreases. Structure-based methods, like docking simulations [20], use the 3D 
structures of drugs and target proteins to predict how well they bind. This is done using 
molecular docking and dynamics simulations [21–24]. While this method is accurate, it 
tends to be time-consuming. For proteins with available structural and site information, 
detailed simulations using molecular simulation and docking can yield highly precise 
results. However, many proteins lack such structural data, leading to molecular dock-
ing and dynamics simulations inapplicable. Sequence-based methods are an alternative 
method to predict their drug molecule binding affinity when there is lacking structural 
information on proteins. But the complexity of protein and small molecule structures 
makes accurately describing and extracting the features of targets and drugs a challeng-
ing aspect of affinity prediction. This challenge has become a focal point in computer-
aided medicine research, particularly with the surge in deep learning applications over 
the last decade.
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Currently, sequence-based techniques are leading the way in computational biol-
ogy. The development of deep learning has inspired a wave of early studies to employ 
neural network architectures for the extraction of features from protein sequences 
and drug molecules SMILES (simplified molecular input line entry specification) [25], 
thereby more effectively learning about the potential characteristics of target proteins 
and drugs. Depending on the objectives, sequence-based methodologies are classified 
into two groups: drug–target interaction (DTI) prediction and DTA prediction. Specif-
ically, within any given drug–target pair, deep learning algorithms are used to extract 
distinct representations of the drug and target. These are then concatenated into one 
comprehensive vector that is used for the final predictive analysis. DTI is a binary clas-
sification task used for determining whether the drug can bind to the target or not. For 
instance, TransformerCPI [26] employs a transformer-based neural network [27] to ana-
lyze sequence data for predicting drug–target interaction. NeoDTI [28] combines data 
from various heterogeneous networks, utilizing representations of drugs and targets that 
preserve their topological features for predicting interactions. Hu et al. [29] introduced 
a CNN-based technique for drug–target interaction prediction, incorporating both 1D 
and 2D structural descriptors of the drug and the protein’s sequence as inputs to the net-
work. Ezzat et al. [30] further refine the prediction accuracy by using decision tree meth-
ods and kernel ridge regression for feature dimension reduction and ensemble learning.

DTA prediction, distinct from DTI prediction, aims to accurately predict the precise 
binding affinity between a drug and a target. This challenge, commonly seen as a regres-
sion task, has become increasingly interesting in recent years [31–33]. At present, vari-
ous approaches have yielded impressive results in the realm of affinity prediction. For 
example, DeepDTA [34] utilizes a pair of convolutional neural networks (CNNs) to sepa-
rately extract features from the drug and protein, later combining these features for pre-
dicting affinity. Additionally, DeepDTA has gathered previous research data to develop 

Fig. 1 Summary of representative methods relevant to DTI and DTA prediction. Our methods apply to the 
scope of graph-based deep learning methods for DTA prediction
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two benchmark datasets, where drugs are denoted in SMILES format and proteins by 
their sequences. This approach, involving two tailored convolution networks for mol-
ecule and protein representation, has shown effective results in the benchmarks. Wid-
eDTA [35], an advancement of DeepDTA, integrated Live Max Common Substructure 
(LMCS) and Protein Motifs and Domains (PDM) into its structure. It uses four separate 
convolutional neural networks (CNNs) to encode these components into four unique 
representations. Huang et  al. [36] introduced an innovative fingerprint feature vector 
for molecules, and utilized a Pseudo Substitution Matrix Representation (Pseudo-SMR) 
to depict protein sequences, aimed at enhancing drug–target interaction predictions. 
DeepPurpose [37] uses two specialized encoders for SMILES and sequence represen-
tation, combining the functionalities of CNN, RNN (recurrent neural network), and 
Transformer structures. For molecule representation, molecular fingerprints serve as a 
common technique, where the structural details of a molecule are encoded into strings 
or binary digits. Techniques such as extended connectivity fingerprints [38], atom envi-
ronment descriptors (MOLPRINT2D) [39], and molecular access system keys (MACCS) 
[40] are examples of this approach. Altae-Tran et al. [41] detailed methods for learning 
significant small-molecule representations in scenarios where data is limited. Although 
sequence-based approaches have seen successes, they overlook the topological aspects 
of drug and protein molecules. Relying solely on CNN technology falls short in fully 
capturing the sequence details of drugs and proteins. Acknowledging the interactions 
between atoms and assigning varying weights and attention to them automatically is 
crucial.

Recently, graph neural networks (GNNs) [42] have gained recent prominence in bioin-
formatics for their ability to efficiently process non-Euclidean spatial data [5]. Utilizing 
the intrinsic qualities of nodes and their relational dynamics, GNNs effectively extract 
key feature information, essential for accurately identifying and predicting vertices or 
edges. Given the intricate correlation and diversity in biological data, molecular graphs 
aptly represent biological details, especially in terms of molecular structure and inter-
molecular functional relations. GNN models stand out in pinpointing molecular fea-
tures by assimilating information from neighboring nodes to understand both local and 
overarching network details. The Graph Convolutional Network (GCN) [43] and Graph 
Attention Network (GAT) [44] are commonly used models within the GNN frame-
work, and their application in computer-aided drug design is progressively growing, e.g., 
graph-based DTA. GraphDTA [45] integrated GNN into DTA prediction by creating 
molecule graphs where atoms serve as nodes and bonds as edges, effectively represent-
ing drug molecules. In this model, CNNs are employed to extract high-level representa-
tions from protein sequences, while GNN models are applied to the molecular graphs, 
enhancing the performance of DTA predictions. MCN-CPI [46] and PADME [47] simi-
larly construct graphs for molecule depiction and utilize GNNs for feature extraction in 
DTA prediction. The success of these methods underscores the effectiveness of GNNs in 
accurately characterizing small molecules.

Although these methods are adept at forming graphs to represent molecules and 
explore their structural properties, they tend to neglect the structural informa-
tion embedded within protein sequences. In recent developments, various graph-
based works have focused on predicting drug–target interactions by employing 
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both molecule graphs and protein graphs, as opposed to using proteins’ primary 
sequences. For example, DGraphDTA [48] converts protein sequences into contact 
maps for graph construction. Concurrently, drug molecules are transformed from 
SMILES to molecular graphs using RDKit [49]. Both sets of graphs are then fed into a 
GNN to aid in richer feature extraction. DGraphDTA’s reliance on extensive database 
searches, especially during sequence alignment, results in lengthy processing times 
and reduced prediction accuracy. To combat this, WGNN-DTA [50] integrates evolu-
tionary scale modeling (ESM) [51] for generating protein graphs, thereby streamlin-
ing the prediction process and yielding superior results. Additionally, DGraphDTA’s 
limitation in capturing target representation alterations due to DTIs, a result of its 
training on a limited protein dataset, is addressed by the newly proposed Graph Early 
Fusion Affinity (GEFA) [52]. GEFA transforms drug molecule graphs into protein 
graphs, utilizing an attention mechanism for more effective learning and prediction. 
To broaden the range of features derived from drug and protein graphs, STAMP-DPI 
[53] adopts Mol2vec [54] to analyze inter-drug relationships. Concurrently, it uses 
a pre-trained BERT [55] model to extract embedded representations from the large 
pool of unlabeled protein sequences provided by TAPE [56].

Utilizing graph-based methodologies, which focus on the topology and functional-
ity of graphs, allows for the exploration of complex protein structure features, thereby 
increasing the accuracy and reliability of predictions. However, these graph-based 
approaches are limited by the use of a fixed adjacent matrix of protein and drug 
molecular graphs for graph convolution. This limitation restricts the learning of com-
prehensive feature representations from intricate compound and protein structures, 
consequently impeding the full potential of graph-based feature representation in 
DTA prediction. This, in turn, significantly impacts the models’ generalization capa-
bilities in the complex realm of drug discovery.

To tackle these challenges, we introduce GLCN-DTA, a model specifically designed 
for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learn-
ing module into the existing graph architecture. This module is designed to learn a 
soft adjacent matrix, which effectively and efficiently refines the contextual structure 
of protein and drug molecular graphs. This advancement allows for learning richer 
structural information from protein and drug molecular graphs via graph convolu-
tion, specifically tailored for DTA tasks, compared to the conventional fixed adja-
cent matrix approach. A series of experiments have been conducted to validate the 
efficacy of the proposed GLCN-DTA method across diverse scenarios. The results 
demonstrate that GLCN-DTA possesses advantages in terms of robustness and high 
accuracy. The proposed GLCN-DTA model enhances DTA prediction performance 
by introducing a novel framework that synergizes graph learning operations with 
graph convolution operations, thereby achieving richer representations. Note that 
our method, similar to other graph-based deep learning approaches [48, 50, 52, 53], 
primarily focuses on better expressing and extracting the characteristics of drugs and 
targets, fusing these features, and then predicting affinity. It does not consider the 
classification of proteins, nor does it differentiate between structurally ordered pro-
teins and intrinsically disordered proteins. The focus is more on how to better repre-
sent features. Consequently, the applicability of our method might be limited, where 
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it may perform better in scenarios involving structurally ordered proteins but could 
be limited when dealing with intrinsically disordered proteins.

Methods
GLCN-DTA, a deep learning framework designed for graph-based DTA prediction, is 
depicted in Fig. 2 and consists of three key steps. (1) Generating drug molecule graph 
representation: GLCN-DTA inputs drug compounds in SMILES format and converts 
them into a drug graph that includes atoms and edges, on behalf of the drug’s natural 
properties. Inspired by existing graph network literature [57, 58], GLCN-DTA inte-
grates an extended graph learning mechanism to existing graph convolutional archi-
tectures, formatting graph learning-convolutional networks (GLCN). The GLCN is 
designed to learn a soft adjacency matrix which refines the graph’s context, highlight-
ing node relationships for DTA tasks and improving feature extraction through graph 
convolution. This graph convolution process efficiently uses the relationships from the 
graph learning module, spreading information between nodes in the graph. By default, 
GLCN-DTA uses a two-layer graph learning-convolutional network for extracting drug 
graph features. (2) Obtaining protein graph features: GLCN-DTA processes the protein 
sequence input and converts it into a contact map [48], using established methods such 
as Pconsc4. From this contact map, a protein graph is formed, applying a 0.5 threshold 
to create the initial adjacency matrix, as inspired by [48]. This contact map effectively 
represents the protein’s high-dimensional structure and is key to identifying interactions 
among protein residues. Typically, residues are deemed to be in contact if the Euclidean 
distance between any two atoms is below a certain threshold [59]. To extract detailed 
information from these protein graphs, a two-layer graph learning-convolutional net-
work is also employed in this step by default, taking into account their contextual rela-
tionships. (3) Performing DTA prediction: GLCN-DTA utilizes the representations from 
both the molecule graph and the protein graph, combining them into a single, unified 
vector. This vector is then processed through a two-layer feed-forward network (FFN), 
enabling the method to arrive at the final binding prediction.

Significantly, GLCN-DTA sets itself apart from other graph-based methods such as 
DGraphDTA [48], WGNN-DTA [50], GEFA [52], and STAMP-DPI [53]. These methods 
typically require predefining specific edge types and node connectivities in the graph, or 

Fig. 2 The architecture of GLCN-DTA. For protein sequences, protein graphs are built upon contact maps 
derived from their sequences. In the case of molecules, their SMILES representations are utilized as the 
foundation for graph construction. Once these two graph representations are established, they are processed 
through two separate graph learning-convolutional networks (GLCN) to extract their respective graph-level 
features. These representations are then concatenated to predict the affinity via fully connected layers. Vl 
donates node embedding in the l-th graph convolution layer. Hl represents hidden features in the l-th graph 
convolution layer. A is soft adjacent matrix. ⊕ denotes concatenated operation
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they implement thresholds on contact maps to establish a fixed adjacency matrix, which 
might introduce noise or inaccuracies in graph topology leading to aggregate useless and 
redundancy information between nodes. In contrast, GLCN-DTA leverages its graph 
learning module to automatically learn hidden node relationships, efficiently refining 
the graph’s structure and filtering useless nodes and being robust to complex structures. 
This process uncovers a soft adjacency matrix, revealing latent node relations and ena-
bling richer node representation through an extended graph learning-convolutional 
technique.

Molecule graph representation

It can be seen from the Fig.  3 that the molecule graph constructed for extracting the 
small-molecule representation is the same as that of GraphDTA [45] and DGraphDTA 
[48]. But for the feature extraction, we use graph learning-convolutional networks, 
instead of conventional GCN or GAT, to get a richer representation.

Specifically, molecules are commonly depicted using SMILES [25] string, transforming 
atoms and covalent bonds into sequences of ASCII characters. Conveniently, this format 
can be reverted to molecular structures using prevalent molecular processing software 
like RDKit [49]. Subsequently, a molecular graph is formed, representing atoms as nodes 
and chemical bonds as edges. To elaborate, in the creation of the molecular graph, each 
atom within the molecule is designated as a node in the graph. An edge is then intro-
duced between two atom nodes if they share a bond. This construction method is illus-
trated in Fig. 3. Besides, a self-loop is incorporated into the molecular graph, connecting 
each atom node to itself for better aggregating information of the drug molecule.

Beyond just nodes and edges, it’s crucial to define the features of each atom node to 
ensure they are distinguishable. This is because atoms, the smallest units in chemical 
reactions, exhibit varied chemical properties due to differences in size and charge. The 
selected molecular atom node features are the same as those in GraphDTA [45] and 
WGNN-DTA [50], which is illustrated in Table  1. By detailing the specific features of 
different atom nodes, the chemical and binding characteristics of small molecules can 
be more thoroughly represented. Incorporating these factors that influence molecular 
binding is key to enhancing prediction performance.

Following the molecular graph’s construction, GLCN-DTA utilizes a two-layer graph 
learning-convolutional network for extracting drug graph features. Graph learning-
convolutional networks will be elaborated in the subsequent section. A global pooling 
process also is employed for the extracted representation. Molecules with different sizes 

Fig. 3 The procedure of constructing a drug molecule graph. The SMILES representations are utilized for 
molecule graph construction. Due to the complexity of the drug graph, we have depicted only a portion of 
the full graph for clarity and ease of demonstration
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are extracted into latent vectors with the same size for the following performing DTA 
prediction.

Protein graph representation

Similarly, for the process of the protein graph, the contact map is first predicted from the 
protein sequence, and a protein graph is then constructed based on it, basically the same 
as that of DGraphDTA [48]. But for feature extraction and learning, we are also different 
from existing graph-based methods in that GLCN-DTA can learn robust features with 
graph learning operation instead of using a fixed threshold-based adjacent matrix.

Specifically, in a manner akin to drug molecule processing, the first step in extracting 
protein representation is generating the protein graph. This is followed by feature extrac-
tion using a GLCN on this graph, a process illustrated in Fig. 4.

Protein structure prediction aims to analyze and assemble the three-dimensional 
structure of a protein based on its sequence. This structural data encompasses the angles 
and distances between various residue pairs. A contact map, often an output of structure 
prediction techniques, typically takes the form of a matrix. This contact map effectively 
represents the protein’s high-dimensional structure and is key to identifying interactions 
among protein residues. Typically, residues are deemed to be in contact if the Euclidean 
distance between any two atoms is below a certain threshold [59]. In practice, Pconsc4 
is used to predict the contact map, which is a fast, simple, open-source, and efficient 
method. Pconsc4 outputs the likelihood of contact between residue pairs, and applying a 
0.5 threshold yields a contact map shaped (N, N), where N represents the count of nodes 
(residues). This result effectively serves as the protein’s adjacency matrix. However, using 
the hard threshold to get a fixed adjacent matrix may be existing noises. So we apply the 
extended graph learning-convolutional network to learn a soft adjacent matrix that will 
be introduced in the following section.

Table 1 Atom node feature for molecule graph

Feature name Feature description Dimension

Atom type One-hot encoding of the atom 44

Atom neighbors One-hot encoding of the degree of the atom in the molecule, 
which is the number of directly-bonded neighbors

11

Number of hydrogens One-hot encoding of the total number of H bound to the atom 11

Number of implicit hydrogens One-hot encoding of the number of implicit H bound to the atom 11

Aromatic flag Whether the atom is aromatic 1

All All features of the atom 78

Fig. 4 The procedure of constructing a protein graph. The protein sequence are utilized for protein graph 
construction
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In the protein graph that’s been built, residues serve as nodes, and thus it’s essential 
to define the attributes of these residue nodes. The features selected for the residues are 
listed in Table 2, consistent with the features identified in DGraphDTA [48]. The features 
of each residue node are defined by the distinct R functional groups they possess. These 
node features are represented by attributes such as hydrophobicity, polarity, charge, aro-
maticity, and so on. Furthermore, Position-Specific Scoring Matrix (PSSM) is a prevalent 
protein representation in proteomics. In PSSM, scores are assigned to each residue posi-
tion based on sequence alignment outcomes, serving to characterize the residue node’s 
features. Consequently, this paper utilizes 54-bit features to describe each residue node, 
with the specifics of these features presented in Table  2. The dimensions of the node 
features are thus (N, 54). Both the adjacency matrix and the node features are then pro-
cessed via a graph learning-convolutional network to derive the vector representation of 
the corresponding protein.

Since the development of the protein graph and its feature set is reliant on sequence 
alignment outcomes, preparatory procedures including sequence alignment and screen-
ing are vital. These preliminary steps are the same as used in DGraphDTA [48]. Specifi-
cally, in the operation of Pconsc4 and the computation of PSSM, the protein sequence 
alignment results serve as the initial input. Therefore, in the pre-processing phase, it’s 
essential to first align all protein sequences in the benchmark datasets. To enhance com-
putation speed, HHblits [60] is employed for the protein sequence alignment. Following 
this, the alignment results are processed using HHfilter [60] and CCMPred [61] scripts 
to obtain alignments formatted in the PSICOV [62] style.

Graph learning‑convolutional network

We incorporate extended graph learning-convolutional network (GLCN) inspired by [57, 
58] into existing graph architecture to learn a soft adjacent matrix A to model the graph 
context for DTA tasks, The detailed GLCN is illustrated in Fig. 2.

Table 2 Residue node feature for protein graph

Number Feature description Dimension

1 One-hot encoding of the residue symbol 21

2 Position-specific scoring matrix (PSSM) 21

3 Whether the residue is aliphatic 1

4 Whether the residue is aromatic 1

5 Whether the residue is polar neutral 1

6 Whether the residue is acidic charged 1

7 Whether the residue is basic charged 1

8 Residue weight 1

9 The negative of the logarithm of the dissociation constant for the -COOH group [64] 1

10  The negative of the logarithm of the dissociation constant for the −NH3 group [64] 1

11 The negative of the logarithm of the dissociation constant for any other group in the 
molecule [64]

1

12 The pH at the isoelectric point  [64] 1

13 Hydrophobicity of residue (pH = 2) [65] 1

14 Hydrophobicity of residue (pH = 7) [66] 1

15 All features of the residue 54
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Mathematically, a graph D is defined as G = (V ,E) , where V = {v1, . . . , vN } represents a 
set of N nodes. The edge set E ⊂ V × V  comprises edges eij = (vi, vj) ∈ E , each indicating 
the existence of relation αij ∈ R from node vi to node vj.

Graph learning

Given a set of graph nodes input V = [v1, . . . , vN ]
T
∈ R

N×dmodel , where N represents the 
total number of nodes, and each vi ∈ R

dmodel denotes the feature of the i-th node in the 
graph. The initial state of V0 corresponds to either the atom node features in the molecule 
graph or the residue node features in the protein graph. GLCN-DTA initially creates a soft 
adjacency matrix A via a graph learning operation, which illustrates the weight of pairwise 
relationships between nodes. It then employs a multi-layer perceptron (MLP) network, 
akin to the method in [57], to extract features H for each node vi from the input V . Follow-
ing this, a graph convolution operation is applied to the features H , enabling the propa-
gation and aggregation of information between nodes, ultimately leading to a new feature 
representation V′.

Mathematically, a soft adjacency matrix A is learned using a single-layer neural network, 
which can be represented as follows:

where wi ∈ R
dmodel represents a learnable weight vector. To address the issue of vanishing 

gradients during the training phase, the LeakyRelu activation function is utilized instead 
of the traditional Relu function. The softmax(·) operation is applied to each row of A , 
ensuring that the learned soft adjacency matrix A adheres the following property:

The optimization of the learnable weight vector wi is conducted using a modified loss 
function, adapted from [58], which can be expressed as follows:

where � · �F denotes the Frobenius norm. Intuitively, the first term implies that when 
nodes vi and vj are spatially distant in higher-dimensional space, it encourages a smaller 
weight value Aij , with the exponential function amplifying this effect. Conversely, nodes 
closer in the higher-dimensional space are likely to have stronger connection weights. 
This approach helps in minimizing the influence of noise nodes during graph convolu-
tion. η serves as a balancing parameter, determining the significance of nodes within the 
graph. Additionally, averaging the loss is crucial due to the variable number of nodes 
across different graphs. The second term focuses on maintaining the sparsity of the soft 
adjacency matrix A , with γ as the trade-off parameter. A larger γ results in a sparser soft 
adjacency matrix A . The loss function LGL is incorporated as a regularization term in 
the final loss equation [Eq. (6)], as suggested in [58], to avoid trivial solutions like wi = 0.

(1)
Ai = softmax(ei), i = 1, . . . , N, j = 1, . . . , N,

eij = LeakyRelu(wT
i |vi − vj|)),

(2)
∑N

j=1
Aij = 1,Aij ≥ 0.

(3)LGL =
1

N 2

∑N

i,j=1
exp(Aij + η�vi − vj�

2
2)+ γ �A�

2
F ,
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Graph convolution

Graph convolutional network (GCN) is utilized to capture global information and the 
features of nodes from the graph. We perform graph convolution on the node features 
vi.

Firstly, with V0
∈ R

N×dmodel serving as the initial input layer of the graph, hidden fea-
tures hlij between nodes vi and vj are extracted from the graph. This extraction process 
utilizes the node-node pairs (vi, vj) data in the l-th convolution layer, and the computa-
tion is performed as follows:

where Wl
vih

 and Wl
vjh

∈ R
dmodel×dmodel are the learnable weight matrices specific to the l-

th convolution layer, while bl ∈ R
dmodel serves as a bias parameter. The terms vli and vlj  

represent the features of the i-th and j-th nodes in the l-th convolution layer, respec-
tively. The function σ(·) = max(0, ·) is a non-linear activation function. The hidden fea-
tures hlij ∈ R

dmodel represent the combination of graph features and the relational 
embedding between nodes vi and vj , which is vital for compiling a more comprehensive 
representation for the DTA prediction task.

Next, the node embedding vl+1
i  aggregates information from the hidden features hlij 

through graph convolution, thereby updating the node representation. Since the graph 
learning layer is capable of generating an optimal adaptive graph soft adjacency matrix 
A , the graph convolution layers can acquire task-specific node embeddings by applying a 
layer-wise propagation rule. For node vi , the process can be described as follows:

where Wl
∈ R

dmodel×dmodel represents a layer-specific learnable weight matrix in the l-th 
convolution layer. The term v(l+1)

i ∈ R
dmodel signifies the node embedding for node vi in 

the (l + 1)-th convolution layer. After progressing through L layers, the contextual infor-
mation vLi  is obtained, encompassing global information for every node vi . This infor-
mation, vLi  , is then carried forward to subsequent steps for the execution of the DTA 
prediction task.

In practice, the representations of both the molecule graph and the protein graph are 
input into the GLCN to separately generate drug features and protein features. Follow-
ing this, a global pooling process is applied to these extracted features. This step is cru-
cial as it standardizes the size of the resultant latent vectors, preparing them for use in 
subsequent DTA prediction tasks.

Performing DTA prediction

Following the feature extraction process by GLCN, latent vectors for both the protein 
and molecular graphs are derived. These two latent vectors are then concatenated and 
further processed through two fully connected layers to achieve the final binding predic-
tion. One LeakyRelu activation function is after the first fully connected layer. We also 
employ dropout to avoid overfitting. This process is visually detailed in the right part of 
Fig. 2.

(4)h
l
ij = σ(Wl

vih
v
l
i +W

l
vjh

v
l
j + b

l),

(5)v
(l+1)
i = σ(Aih

l
iW

l),
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Model optimization

The model parameters for the entire network are trained jointly by minimizing the loss 
function expressed as follows:

where LGL is as defined in Eq. 3, with � serving as a balancing parameter. In practical 
terms, Ldta is computed using the mean squared error (MSE) loss to minimize the dis-
crepancy between the predicted affinity values and the actual (ground truth) values.

Results and discussion
Datasets

We conducted experiments using four benchmark datasets, Davis [63], KIBA [64], Metz 
[65], and ToxCast [66], for training our model and evaluating its performance. Davis [63] 
and KIBA [64] datasets are widely recognized benchmarks for DTA prediction and have 
been previously used in DeepDTA [34]. They are also publicly available. To more thor-
oughly assess our model’s performance, we have incorporated the Metz [65] and Tox-
Cast [66] datasets into this study, which include a variety of different types of targets, 
encompassing both kinases and non-kinases. Distinct from the previously mentioned 
benchmark datasets, the Metz and ToxCast datasets measure the binding affinities of 
drug–target pairs using inhibition constant ( Ki ) and concentration for 50% of maximal 
effect ( EC50 ), respectively. Detailed information about these four datasets can be found 
in Table 3.

The Davis [63] dataset was compiled by choosing specific kinase proteins and their 
inhibitors, where the binding affinity is indicated by the dissociation constant Kd . This 
dataset encompasses 442 proteins, 68 drugs, and a total of 30,056 drug–target interac-
tions. The average length of the drug SMILES strings is 64, while the average length of 
the protein sequences is 788. The processing of affinity values in this dataset follows the 
same methodology as used in DeepDTA [34], employing the following equation:

The KIBA [64] dataset compiles kinase inhibitor biological activities from multiple 
sources, including the inhibition constant ( Ki ), dissociation constant ( Kd ), and the half-
maximal inhibitory concentration ( IC50 ). It utilizes the KIBA score to predict biological 
activity. This dataset features 229 proteins, 2111 drugs, and a total of 118,254 drug–tar-
get interactions. The average length of the drug SMILES strings in this dataset is 58, and 
the average protein sequence length is 728.

(6)Ltotal = Ldta + �LGL,

(7)pKd = − log10
Kd

109

Table 3 Summary of the benchmark datasets

Dataset Proteins Drugs Binding entries Train Test

Davis 442 68 30,056 25,046 5010

KIBA 229 2111 118,254 98,545 19,709

Metz 170 1423 35,259 28,207 7052

ToxCast 37 3098 114,626 80,251 34,375
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In the benchmark setup, each dataset is partitioned into various parts, with one part 
designated for testing and the remaining parts used for cross-training and validation. By 
conducting tests on these two datasets, the predictive capability of the method can be 
thoroughly assessed.

Evaluation metrics

DTA prediction is treated as a regression problem, and our model’s performance was 
evaluated using three metrics: mean squared error (MSE), concordance index (CI), and 
regression toward the mean (denoted as r2m index).

MSE measures the deviation between predicted and actual values using a squared loss 
function, which can be expressed as:

where ŷi represents the predicted value, yi is the actual (true) value, and n denotes the 
total number of drug–target pairs in the dataset.

CI is employed to assess whether the predicted DTA values for two randomly selected 
drug–target pairs maintain the same rank order as their actual values. This measure is 
important for evaluating the model’s ability to accurately rank the interactions in terms 
of their binding affinities, which can be expressed as:

where bx represents the predicted value corresponding to the larger affinity dx , and by 
denotes the predicted value for the smaller affinity dy . The function h(x) is a step func-
tion used in the calculation. The term Z serves as a normalization constant, signifying 
the total number of drug–target pairs involved in the analysis.
r2m metric is utilized to assess the external predictive capability of the model. This eval-

uation is conducted as follows:

where r2 represents the squared correlation coefficient between the true and predicted 
values with intercepts. Conversely, r20 denotes the squared correlation coefficient for the 
true and predicted values without intercepts.

The setting of the hyperparameters

Our methods were executed using PyTorch, with the model trained on mini-batches of 
size 128. We employed an initial learning rate of 0.0005, complemented by a warm set-
ting. Additionally, we utilized learning rate decay, reducing it by 20% every 40 epochs. 

(8)MSE =
1

n

n
∑

i=1

(

ŷi − yi
)2
,

(9)CI =
1

Z

∑

dx>dy

h
(

bx − by
)

,

(10)h(x) =







1, if x > 0
0.5, if x = 0
0, if x < 0

,

(11)r2m = r2 ×

(

1−

√

r2 − r20

)

,



Page 14 of 21Qi et al. BMC Bioinformatics           (2024) 25:75 

The Adam optimizer was the choice for optimization. The training spanned over 1000 
epochs. Detailed information on the training hyperparameters for our model is listed in 
Table 4.

Comparison with existing methods

To thoroughly assess our method’s efficacy in DTA prediction, we benchmarked it 
against existing methods such as DeepDTA [34], GraphDTA [45], DGraphDTA [48], and 
others. This comparison utilized the same benchmark datasets, Davis [63], KIBA [64], 
Metz [65], and ToxCast [66], and implemented identical training and test sets. Addition-
ally, uniform performance measures were employed for evaluation. The results from 
other methods were sourced from their respective publications. Performance compari-
sons are presented in Tables 5 and 6, where lower MSE, or higher CI and r2m scores, indi-
cate superior model performance.

Specifically, Table  5 displays the performance metrics (MSE, CI, and r2m ) of various 
models on the Davis dataset. Our method markedly outperformed others on this data-
set, achieving an MSE of 0.215, a CI of 0.903, and an r2m of 0.720. These results represent 
improvements of +  0.3%, +  0.3%, and +  0.1%, respectively, over the previously best-
performing method.

Additionally, we assessed our model on the KIBA dataset. As indicated in Table  6, 
GLCN-DTA excelled among existing methods, achieving an MSE of 0.127, which is 
+  0.2% higher than the prior best method. The CI performance matched that of the 
leading WGNN-DTA method. In terms of r2m , GLCN-DTA was very close to the top-
performing SUbMDTA, differing by only 0.001. These outcomes suggest that our pro-
posed method is effective for DTA prediction.

We also report the performance of GLCN-DTA on the Metz and ToxCast test sets to 
verify the effectiveness of GLCN-DTA on a vast majority of different types of targets, 
with MSE, CI, and r2m values of 0.236, 0.848, and 0.713 for Metz, and 0.152, 0.917, and 
0.492 for ToxCast, respectively, as detailed in Table 7. In terms of prediction accuracy, 
GLCN-DTA demonstrates a notable advantage over GraphDTA [45], MGraphDTA [74], 
and GPCNDTA [11] on both the Metz and ToxCast datasets, which reveals the strong 
effectiveness of GLCN-DTA.

Table 4 Hyperparameters used in our experiments

Hyperparameter Setting

Learning rate 0.0005

Epoch 1000

Batch size 128

Optimizer Adam

GLCN layers 2

Fully connected layers after concatenation 2

dropout rate 0.2

dmodel 128

� 1

η 1

γ 1
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Table 5 Prediction performance on the Davis dataset

MSE mean squared error, CI concordance index. The r2m index was used in DeepDTA [34], which can be used to evaluate the 
external predictive performance of quantitative structure‑activity relationship models
a The experimental results are acquired from [5]

Model MSE Cl r
2
m

KronRLS [67] 0.379 0.871 0.407

SimBoost [68] 0.282 0.872 0.644

DeepDTA [34] 0.261 0.878 0.630

WideDTA [35] 0.262 0.886 0.633

MATT_DTI [69] 0.229 0.890 0.682

DeepGS [70] 0.252 0.882 0.686

AttentionDTA [71] 0.245 0.887 0.657

GraphDTA [45] 0.229 0.893 0.649

DeepGLSTM [72] 0.232 0.895 0.680

SubMDTA [73] 0.218 0.894 0.719

DGraphDTAa [48] 0.240 0.890 0.659

GEFA] [52] 0.228 0.893 –

STAMP-DPI [53] 0.474 – –

WGNN-DTAa [50] 0.215 0.900 0.711

GLCN-DTA (ours) 0.215 0.903 0.720

Table 6 Prediction performance on the KIBA dataset

MSE mean squared error, CI concordance index. The r2m index was used in DeepDTA [34], which can be used to evaluate the 
external predictive performance of quantitative structure‑activity relationship models
a The experimental results are acquired from [5]

Model MSE Cl r
2
m

KronRLS [67] 0.411 0.782 0.342

SimBoost [68] 0.222 0.836 0.629

DeepDTA [34] 0.194 0.863 0.673

WideDTA [35] 0.179 0.875 0.675

MATT_DTI [69] 0.150 0.889 0.756

DeepGS [70] 0.193 0.860 0.684

AttentionDTA [71] 0.162 0.882 0.735

GraphDTA [45] 0.147 0.889 0.674

DeepGLSTM [72] 0.133 0.897 0.792

SubMDTA [73] 0.129 0.898 0.793

DGraphDTAa [48] 0.147 0.891 0.767

WGNN-DTAa [50] 0.140 0.899 0.749

GLCN-DTA (ours) 0.127 0.899 0.792

Table 7 Prediction performance on the Metz and ToxCast datasets

Model Metz ToxCast

MSE Cl r
2
m

MSE Cl r
2
m

GraphDTA [45] 0.282 0.816 0.681 0.215 0.843 0.330

MGraphDTA [74] 0.265 0.822 0.701 0.176 0.902 0.430

GPCNDTA [11] 0.248 0.834 0.686 0.165 0.904 0.474

GLCN-DTA (ours) 0.236 0.848 0.713 0.152 0.917 0.492
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The superiority of our model can be attributed to our used extended graph learning-
convolutional network. To derive more distinctive molecular and protein representa-
tions, we employed the soft adjacency matrix, which aggregates complex information 
from molecules and protein graphs via graph learning and graph convolution opera-
tions. Consequently, our model integrates the intrinsic information of complex com-
pounds and protein graphs into a more comprehensive representation, enhancing both 
the accuracy and robustness of the model.

Ablation studies

We conducted a range of ablation studies to examine the effects of various hyper-param-
eters on the model’s DTA prediction performance. For these studies, all models were 
trained from scratch using the default standard settings.

Ablation study for the number of GLCN layers

We conducted an ablation study on the Davis dataset to evaluate how the number of 
GLCN layers affects DTA prediction performance. As indicated in Table 8, the optimal 
results were consistently achieved with a 2-layer model, rather than with models hav-
ing 1, 3, or 4 layers. This outcome highlights a known aspect of GCN [43] models: the 
deeper the model (i.e., the greater the number of layers), the higher the likelihood of 
overfitting. Therefore, in practical applications, it’s advisable to set a specific number of 
graph layers to optimize performance.

Ablation study for the graph learning module

As indicated in Table  9, the removal of the graph learning component from GLCN-
DTA results in a significant decrease in performance metrics on both Davis and KIBA 
datasets, particularly on the more complex, longer sequences of the KIBA dataset. This 
suggests that the graph learning element plays a crucial role in handling complex struc-
tures in datasets, enhancing generalization, and learning superior representations for 
improved DTA prediction tasks.

Table 8 Ablation study for the number of GLCN layers on the Davis dataset with GLCN-DTA 
methods

The number of GLCN layers MSE Cl r
2
m

1 0.232 0.885 0.700

2 0.215 0.903 0.720

3 0.226 0.893 0.713

4 0.248 0.876 0.692

Table 9 Ablation study for the graph learning module with GLCN-DTA methods

Model Davis KIBA

MSE Cl r
2
m

MSE Cl r
2
m

GLCN-DTA 0.215 0.903 0.720 0.127 0.899 0.792

w/o graph learning ↓0.03 ↓0.02 ↓0.05 ↓0.05 ↓0.04 ↓0.08
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Ablation study for the weight of graph learning loss

We conducted an ablation study focused on a key hyper-parameter: the trade-off ratio 
� , which is the weight of the graph learning loss in Eq. 6. Specifically, we carried out a 
series of experiments varying the � value to assess its impact on DTA prediction per-
formance. The results, reported in Table 10, explore � values within the range [0, 0.5, 1, 
2, 4]. It was observed that our method performed optimally at � = 1 , surpassing other 
configurations. Therefore, in practical applications, setting a task-specific value for � is 
crucial to ensure the best possible results.

Ablation study for various dropout probabilities

In the stage of performing DTA prediction, the latent vectors representing protein 
and drug features are concatenated and then passed through two fully connected lay-
ers to determine the final binding prediction. To mitigate overfitting, dropout is applied 
after each fully connected layer. During forward propagation, dropout randomly deac-
tivates neurons with a probability p, enhancing the model’s generalization and effec-
tively addressing overfitting. To assess the impact of varying dropout probabilities, we 
conducted tests on the Davis dataset with different values of p. The results, depicted in 
Fig. 5, indicate that the optimal dropout probability is 0.2, as evidenced by the lowest 
MSE value and the best CI and r2m performances at this setting. Excessively high drop-
out probabilities can cause underfitting and ineffective extraction of protein features, 
while overly low probabilities might not sufficiently prevent overfitting. Therefore, an 
appropriately balanced dropout probability is essential for achieving the best predictive 
performance.

Table 10 Ablation study for the weight of graph learning loss on the Davis dataset with GLCN-DTA 
methods

The weight of the graph learning � MSE Cl r
2
m

0 0.245 0.883 0.670

0.5 0.215 0.903 0.720

1 0.227 0.894 0.712

2 0.238 0.890 0.685

4 0.241 0.885 0.679

Fig. 5 Ablation study for various dropout probabilities on the Davis datasets with GLCN-DTA methods
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Conclusions
To enhance DTA prediction capabilities, this paper introduces the GLCN-DTA 
method, effectively characterizing small molecules and protein sequences through the 
construction of molecular graphs and protein graphs based on contact maps. Utiliz-
ing the expanded capabilities of GLCN for advanced feature extraction, the resulting 
latent vectors provide a more comprehensive representation of proteins and mol-
ecules. Extensive experimental results show that GLCN-DTA is not only applicable 
to DTA prediction but also excels in processing complex and longer datasets. This 
makes it a robust tool for virtual screening of target proteins and aiding in the discov-
ery of lead compounds.

However, our graph-based DTA prediction approach does not currently account 
for protein classification or distinguish between structurally ordered and intrinsi-
cally disordered proteins. Similar to other graph-based methods [48, 50, 52, 53], it 
just concentrates on enhancing the extraction of drug and target representations and 
feature fusion, and subsequent affinity prediction. This specificity might restrict its 
applicability scope in contexts involving intrinsically disordered proteins and be more 
suitable for scenarios with structurally ordered proteins. Moreover, our model solely 
provides predictions for binding affinity without considering the specific binding cav-
ities, lacking the intuitive interpretability of the model. In our future work, we aim 
to incorporate domain knowledge such as the classification of proteins into structur-
ally ordered protein and intrinsically disordered protein categories into the model, to 
improve DTA prediction. We also plan to incorporate binding sites as prior knowl-
edge during training to enhance the interpretability of the model. Efforts are under-
way to organize relevant datasets for these enhancements. Additionally, we intend 
to integrate additional drug characteristics, such as textual descriptions of proteins 
and drugs, into the model. This integration aims to further enhance the performance 
of drug–target binding prediction models by incorporating diverse aspects of drug 
information.
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