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Abstract 

Background: Genetic ancestry, inferred from genomic data, is a quantifiable biologi-
cal parameter. While much of the human genome is identical across populations, 
it is estimated that as much as 0.4% of the genome can differ due to ancestry. This 
variation is primarily characterized by single nucleotide variants (SNVs), which are often 
unique to specific genetic populations. Knowledge of a patient’s genetic ancestry can 
inform clinical decisions, from genetic testing and health screenings to medication 
dosages, based on ancestral disease predispositions. Nevertheless, the current reliance 
on self-reported ancestry can introduce subjectivity and exacerbate health disparities. 
While genomic sequencing data enables objective determination of a patient’s genetic 
ancestry, existing approaches are limited to ancestry inference at the continental level.

Results: To address this challenge, and create an objective, measurable metric 
of genetic ancestry we present SNVstory, a method built upon three independ-
ent machine learning models for accurately inferring the sub-continental ancestry 
of individuals. We also introduce a novel method for simulating individual samples 
from aggregate allele frequencies from known populations. SNVstory includes 
a feature-importance scheme, unique among open-source ancestral tools, which 
allows the user to track the ancestral signal broadcast by a given gene or locus. We 
successfully evaluated SNVstory using a clinical exome sequencing dataset, compar-
ing self-reported ethnicity and race to our inferred genetic ancestry, and demonstrate 
the capability of the algorithm to estimate ancestry from 36 different populations 
with high accuracy.

Conclusions: SNVstory represents a significant advance in methods to assign genetic 
ancestry, opening the door to ancestry-informed care. SNVstory, an open-source 
model, is packaged as a Docker container for enhanced reliability and interoperability. 
It can be accessed from https:// github. com/ nch- igm/ snvst ory.

Keywords: Genetic ancestry prediction, Machine learning, Genetic variation, Model 
interpretation, Personalized medicine

Introduction
Ancestry derived from genomic data, referred to as genetic ancestry, is a measurable 
and biologically defined parameter. Although much of the human genome is identi-
cal across all populations, it is estimated that depending on an individual’s ancestry, 
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0.1–0.4% may differ from the human reference genome. While this genetic variation 
includes structural variants (SVs), copy number variants (CNVs), and small insertions 
or deletions (indels), by far the largest and easiest to detect category occurs in the 
form of single nucleotide variants (SNVs), many of which are unique to genetically 
distinct populations [1].

Knowledge of a patient’s genetic ancestry has clinical implications, ranging from 
genetic testing to health screening based on ancestral disease-predisposition rates, and 
in some cases, may inform what medicine dosage to prescribe a patient [2–4]. However, 
self-reported race is frequently used in the research and clinical setting and is often 
inconsistent with genetic ancestry, potentially driving health disparities [5–8]. Genome 
sequencing-based diagnostic testing in patients suspected of having a rare genetic dis-
order requires accurate data filtering to remove variants common to a given population. 
Precise identification of the patient’s ancestry improves the identification of rare disease-
causal variants. Therefore, developing methods to report ancestry accurately and con-
sistently is essential.

In addition to clinical importance, knowing the ancestral composition of an individual 
or a population is essential in the genetic research setting. For example, signals from 
genome-wide association studies (GWAS) or whole genome sequencing cohorts can be 
reassessed based on population stratification, whereby loci associated with disease may 
be more accurately identified by discarding rare variants associated with an individual’s 
ancestry rather than with the disease in question [9, 10].

Given the importance of ancestry, several ancestry inference algorithms that oper-
ate on genomic data have been developed that can be divided into two broad types: 
parametric and non-parametric. Parametric learning algorithms estimate a finite set 
of parameters from the data to establish a relationship between the independent and 
dependent variables. Two widely used parametric tools are STRU CTU RE [11] and 
ADMIXTURE [12], which estimate the proportions of different ancestries (or ances-
tral populations) for each individual, known as admixture. Recently, Archetypal analysis 
was shown to be more computationally efficient and provide more interpretable results 
than ADMIXTURE [13]. In contrast, non-parametric methods do not have a finite set 
of parameters and instead rely on the intrinsic structure of the data to determine which 
data points best resemble each other.

The emergence of population-scale genome sequencing datasets with a form of self-
reported ancestry allows models to be built with prior knowledge of represented ances-
tries. In place of individualized genetic data, large databases house genomic summary 
results, such as aggregate variant allele frequencies stratified by population. For example, 
the Single Nucleotide Polymorphism database (dbSNP) is the largest genomic aggregate 
database with 11 different populations from over one million samples [14]. However, the 
11 distinct populations contain a high degree of overlap and primarily represent conti-
nental groupings [15]. The Genome Aggregation Database (gnomAD) is another aggre-
gate database with allele frequencies from 140,000 subjects from 26 populations [16]. 
In addition to these large-scale repositories of aggregate allele frequencies, there exist 
a few datasets at the level of the individual, such as the 1000 Genomes Project (1kGP) 
[1] and the Simons Genome Diversity Project (SGDP) [17], which are much smaller in 
sample size, with 2504 and 279 samples, respectively. Nevertheless, the 1kGP and SGDP 
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have been critical in characterizing ancestry and human history as they contain the most 
granular population labels.

Taken together, these curated variant datasets enable an alternative class of models 
to be used to predict ancestry based on samples labeled with known ancestry [18–28]. 
However, many methods suffer shortcomings, including not having discrete ancestry 
labels beyond the main continental groups or, for those methods using the 1kGP, not 
considering that many subjects are within the same families and, therefore, fail to satisfy 
the principle of independent and identically distributed data. As such, there is a criti-
cal need for methods to accurately predict an individual’s genetic ancestry from genome 
sequencing data by implementing supervised models.

Here, we address some limitations surrounding supervised learning of ancestry by 
developing three independent models from gnomAD, 1kGP, and SGDP. Our models 
estimate ancestry from 36 different populations with high accuracy. Furthermore, we 
provide software that enables users to run our models on their data, taking the widely 
accepted variant call format (VCF) files as input and outputting predictions and a graph-
ical representation of the likelihood of a given genetic ancestry. Additionally, we provide 
feature importance by cytolocation, to help understand model prediction results. As a 
form of validation, we apply these models to our in-house clinical research dataset and 
correlate the estimates with those of self-reported ancestry.

Methods
Training datasets

Genomic datasets from gnomAD, 1kGP, and SGDP were processed separately (Fig. 1), as 
described below. The gnomAD variants are provided on reference genome GRCh37, and 
the 1kGP and SGDP were called on reference genome GRCh38. We performed a liftover 
between genome versions GRCh37 and GRCh38 for all variants in the training datasets. 
SNVstory uses this to convert the genome coordinates of the input variants to the corre-
sponding genome version (GRCh37 for gnomAD, GRCh38 for SGDP and 1kGP) so that 
variants from either reference can be used.

The genome aggregation database (gnomAD)

The gnomAD v2.1 exome and genome sequencing variant dataset provides aggregated 
data from 17 populations, meaning allele frequencies of each population for 17 million 
exome variants. We reduced the number of input features for machine learning by fol-
lowing a similar protocol to the one described by the MacArthur lab by filtering for high 
call rates, biallelic-only sites, and a frequency greater than 0.1% (https:// macar thurl ab. 
org/ 2018/ 10/ 17/ gnomad- v2-1/). After this filtering, 81,398 SNVs remained, formatted 
as a matrix of ancestries and corresponding SNV frequencies. A comparison between 
a model based on all genomic regions vs. one based only on exomes indicated that 
restriction to exonic regions resulted in no measurable loss of accuracy. This result is 
in line with biological and statistical intuition, which suggests that exonic variants with 
MAFs > 1% are unlikely to contribute to fitness, and the vastness of the genome allows 
us to build a saturated model even with the limited set of exonic variants. Therefore, we 
chose to continue using the exon filter to reduce computational resources and time for 
model training.

https://macarthurlab.org/2018/10/17/gnomad-v2-1/
https://macarthurlab.org/2018/10/17/gnomad-v2-1/
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To obtain SNV calls for individuals, as is provided in standard VCF format, we 
simulated individuals from each ancestry by generating heterozygous and homozy-
gous SNV calls with probability weighted by their allele distributions (Fig.  1). We 
determined the number of samples to simulate and which SNVs to keep as features 
using cross-validation (see the gnomAD section in model training and cross-valida-
tion). This resulted in a matrix of simulated samples spanning the ancestry classifica-
tions in gnomAD v2.1 with SNVs, coded as reference, heterozygous, or homozygous 
for each SNV position. Although this approach does not capture haplotypes, the 
simulated samples are genetically typical examples of the chosen ancestry to a first 
approximation.

Fig. 1 Schematic of ancestry inference model strategy. The workflow visualizes each dataset separately with 
colored boxes and arrows: gnomAD (blue), 1kGP (yellow), and SGDP (red). For the gnomAD synthetic-based 
matrix, allele frequencies for each variant for each population given in gnomAD are used to create a 
distribution of reference, heterozygous and homozygous alleles for each population. A matrix format is 
created by converting the distributions into 0s, 1s, and 2s for each locus for samples in each population. 
For 1kGP and SGDP, a matrix format is built directly from variants in the VCF. For the model architecture, 
continental model labels are shown in white boxes, and the number of labels in the corresponding 
subcontinental models is below in brackets
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The 1000 Genomes Project (1kGP)

The New York Genome Center performed genome sequencing (GS) on 3202 samples, 
including 602 trios, from the 1kGP cohort at 30× coverage, released in 2020 [29]. 
The data were aligned to GRCh38 using BWA-MEM [30], and variants were called 
by GATK HaplotypeCaller (GATK version 3.5.0) using default settings. The dataset 
contains 126,659,422 SNVs from 26 populations spanning East and South Asia, North 
and South America, Africa, and Europe. Sample sizes were not uniformly represented 
across the different populations, i.e., the dataset was imbalanced. Due to the high 
genetic similarity between individuals from Utah and the United Kingdom, the Utah 
population was removed from the analysis.

The Simons Genome Diversity Project (SGDP)

The SGDP consists of GS of 300 individuals from seven major population groups, 
75 countries, and 142 diverse populations. GS FASTQ files from 279 samples were 
downloaded from the European Nucleotide Archive (PRJEB9586). Sequencing reads 
were aligned to genome assembly GRCh38 using BWA-MEM. SNV and INDEL call-
ing was performed with GATK version 4.1.9, described below. GATK Haplotype-
Caller was run on each sample using the GVCF workflow to generate a per-sample 
intermediate GVCF. The GATK GenotypeGVCFs function was used to perform base 
calling across all samples jointly to obtain genotypes for each sample in VCF format. 
We then performed variant recalibration and filtering in the two-stage process using 
the GATK functions VariantRecalibration and ApplyVQSR. The final combined data 
set contained a total of 48,815,712 SNVs.

Quality control

Quality control of the gnomAD (https:// macar thurl ab. org/ 2018/ 10/ 17/ gnomad- v2-1/) 
and 1kGP [29] were as previously described. For the SGDP dataset, we ran several 
quality-control tools to detect any issues with sequencing quality and sample con-
tamination. We ran Picard CollectMultipleMetrics on the aligned bam files to collect 
alignment summary, quality score, and GC bias metrics (Additional file 1: Table S1). 
Sequencing read allocation was calculated using samtools. Coverage information was 
collected using mosdepth [31]. The average coverage for all realigned samples was 
40× (ranging from 31 to 77×). Sample contamination level was determined by the 
percentage of reads inconsistent with the allele frequencies in dbSNP [14] sites, using 
VerifyBamID [32]. One sample was flagged for possible sample contamination due to 
an estimated level between 0.1 and 2%. (Additional file 1: Methods).

Removal of related samples

Related samples of the third-degree (e.g., first cousins, great-grandparents, or great-
grandchildren) or closer were identified by the relationship inference tool, KING [33]. 
Data from the 1kGP and SDGP were preprocessed using PLINK2 with the following 
parameters: “–new-id-max-allele-len 10,000 –max-alleles 2” [34]. KING recommends 
performing as little filtering as possible. However, an additional filtering step was 
performed to prevent the computation from running out of memory. Therefore, the 

https://macarthurlab.org/2018/10/17/gnomad-v2-1/
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analysis was restricted to variants shared by at least two individuals: “–maf 0.0007” in 
the case of the 1kGP and “–maf 0.007” for SDGP. After removing the variants present 
in only one sample, KING was executed on the resulting bed file, with the “–kinship” 
option set to report pairwise relatedness inference. Samples from the analysis were 
flagged that had a third-degree kinship coefficient cutoff ≥ 0.0442, a value previously 
established by the authors of KING [33]. Four samples were removed from further 
analysis in the SGDP dataset based on the KING relatedness results (Additional file 1: 
Methods).

Because some samples from the 1kGP are related to more than one other individual in 
the cohort, the following procedure was implemented to remove the fewest number of 
samples. Considering only the relationships with coefficients exceeding the third-degree 
cutoff, a graph-based method was implemented to recursively identify nodes (samples) 
with the largest number of edges (relationships) and remove those nodes until all sub-
graphs had, at most, a single connection. For subgraphs with a single connection, one 
sample was randomly selected from the pair, while all singletons were included in the 
list of samples to keep. From 167 samples with at least one close relationship, 117 were 
flagged for inclusion in downstream analysis. The remaining samples were removed with 
PLINK2.

Variant selection and preprocessing

Variants from 1kGP and SGDP underwent a final filtering step by taking the intersection 
of targeted exonic regions of the exome capture reagent used routinely in our clinical lab 
(IDT xGen Exome Hyb Panel v2 targets hg38 BED file) with the set of genetic variants 
from the unrelated individuals using BEDTools intersect (v2.30.0) [35]. A total of 281,092 
and 97,995 variants were used as features in the 1kGP and SGDP models, respectively. 
The resulting VCF was converted into a numerical encoding homozygous alternative = 2, 
heterozygous = 1, reference or missing = 0. The vectors of genotypes were combined to 
form a matrix of variants by genotypes. For variant selection from gnomAD, see the fol-
lowing gnomAD section in Model training and cross-validation below.

Model training and cross‑validation

The models were trained on each dataset separately, as required by their differing labe-
ling strategies (Fig. 1).

gnomAD

Because our gnomAD algorithm uses simulated data, we must consider two parameters: 
a population size that balances the model’s accuracy with training time and resources, 
and a p value from a Chi-Square test that removes uninformative SNVs. This was accom-
plished using a nested for loop to iterate over all combinations of population sizes and 
p values for SNV removal (Additional file 1: Fig. S1). For each combination, we gener-
ated a set of 80/20 training/validation splits of the data. A Chi-Square test was applied 
to each SNV (feature) in the training data to determine whether it was informative for 
distinguishing ancestry in the population. SNVs were removed that did not meet the p 
value threshold. We used a gradient-boosted decision tree from XGBoost to train the 
model on the training set and then test on the validation set [36]. Fold generation and 
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training were performed five times for each p value, and the accuracy was averaged to 
represent the accuracy for each p value. Once all the p values were tested, the p value 
with the highest accuracy was selected (Additional file 1: Fig. S2). Then, the model was 
retrained on all the data for that specific population size and tested on a simulated hold-
out set. The accuracy for the hold-out set is representative of that population. A conti-
nental model (population size of 4084 individuals; SNV p value threshold of 7.5e−49) 
was built to predict six groups: Africa, South Asia, Europe, East Asia, America, and Ash-
kenazi Jewish. Two sub-continental classifiers were built to predict ancestry within the 
East Asian (Additional file 1: Fig. S2A; population size of 13,593 individuals; SNV p value 
threshold of 1.78e−09) and European groups (Additional file 1: Fig. S2B; population size 
of 45,243 individuals; SNV p value threshold of 1.78e−24).

1kGP

For the 1kGP dataset, the support vector machine (SVM) library from scikit-learn [37] 
was used to train a classifier to predict the continental groups: Africa, Europe, South 
Asia, East Asia, and America. In addition, multiple classifiers were trained independently 
for each sub-continental group, i.e., Kenya or African Caribbean in Barbados. All SVMs 
were trained using the radial basis function (RBF) kernel and with the gamma parameter 
fixed as the default. Hyperparameter tuning of the C penalty term was accomplished 
by performing cross-validation using the scikit-learn stratified k-fold library. The default 
five splits were chosen, and the shuffle variable was set to true. The F1 macro average 
was selected to represent a model’s performance.

SGDP

The SVM library from scikit-learn was used to train the model for the SGDP dataset. 
Stratified k-fold cross-validation was performed using the standard scikit-learn library. 
Seven continental groups were predicted from this cohort (Africa, West Eurasia, East 
Asia, South Asia, Oceania, Central Asia Siberia, and America), as the subcontinental 
groups needed more samples per group to train an accurate model. The F1 macro aver-
age was chosen as a representation of a model’s performance to account for the imbal-
anced data.

Results
Model performance

We report the performance of the gnomAD, 1kGP, and SGDP continental models using 
external validation sets (Fig. 2A–F), and cross-validation results on the subcontinental 
models (Additional file 1: Figs. S2 and S3) were performed because additional datasets 
with the same subcontinental labels were not available.

Confusion matrices are shown in Fig. 2A–D, providing the ancestry prediction for each 
sample in the validation data. In the 1kGP and SGDP models, we see some discrepancies 
between the European and American groups. In the case of the 1kGP model (Fig. 2A), 
some SGDP samples labeled as European are predicted to be American. Similarly, in the 
SGDP model, some 1kGP samples labeled as American are predicted as European. This 
may be due to a higher similarity of the feature space between European and American 
samples than other groups (Additional file 1: Fig. S3). The gnomAD model is validated 
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with 1kGP (Fig. 2C) and SGDP (Fig. 2D) samples. Overall, all continental models have 
a high area under the curve (AUC) in both ROC (Fig. 2E) and precision–recall (Fig. 2F) 
curves, described in the figure legend.

The gnomAD East Asian and European subcontinental models have accuracies of 
99.90% and 80.92%, respectively (Additional file 1: Fig. S2A, B). The results for the 1kGP 
subcontinental model are obtained by averaging the probabilities for each sample across 
cross-validation folds and then computing the confusion matrix (Additional file 1: Fig. 

Fig. 2 Continental ancestry inference model performance. A–D Confusion matrices of the 1kGP model using 
SGDP as validation (A), SGDP model using 1kGP as validation (B), gnomAD model using 1kGP as validation 
(C), and gnomAD model using SGDP as validation (D). E Macro-averaged ROC curves. F Macro-averaged 
precision–recall curves
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S4). The accuracies for the 1kGP subcontinental models are as follows: Africa, 90.26%; 
America, 93.06%; East Asia, 87.23%; Europe, 94.29%; South Asia, 85.86%. The averaged 
probabilities were used to compute the AUC for the ROC and precision–recall curves.

We evaluate the performance of SNVstory compared to two other ancestry inference 
tools, ADMIXTURE [12] and RFMix [19]. The steps used to run and summarize results 
from ADMIXTURE and RFMix are briefly described (Additional file 1: Methods). Their 
performances are summarized using AUC of the ROC and precision–recall curves and 
averaged F1 scores from the model classifications (Table 1). The continental models are 
evaluated using a subset of samples from both the 1kGP and SGDP datasets, and the 
gnomAD model from SNVstory was used for the continental model comparison so that 
there is no overlap between samples used for training and validation. The RFMix and 
ADMIXTURE subcontinental results are evaluated using a two-thirds split of 1kGP 
samples for reference validation to provide comparable metrics to our cross-validation 
results.

RFMix and SNVstory perform comparably at the continental level, where both models 
have a slight tendency to predict some American and African samples to be European 
(Additional file 1: Fig. S5). ADMIXTURE has high true positive rates across all continen-
tal groups but also has an increased tendency to classify samples as American. ADMIX-
TURE shows an increase in model performance for the subcontinental results, while 
RFMix shows a decrease in subcontinental performance. SNVstory has more consist-
ently high results across both continental and subcontinental models.

Feature interpretation

Feature importance for the gnomAD continental model was calculated using SHAP [38] 
values to provide insight into which SNVs and their corresponding genes have the most 
impact on the model predictions. SHAP values for the 1kGP and SGDP models were not 
calculated because the memory requirement for the kernel explainer was too high due to 
the number of features in the models.

Global feature importance for the gnomAD continental model is reported by aggre-
gating SHAP values across each gene and taking the mean absolute value of each gene 
across 2800 of the training samples (Fig.  3). The ‘knownCanonical’ genes table was 

Table 1 Model performance comparison

A benchmarking analysis was performed using SNVstory and two alternative ancestry inference tools, ADMIXTURE and 
RFMix

Performance metric

ROC AUC P–R AUC F1 score

Continental

SNVstory 0.996 0.980 0.918

RFMix 0.997 0.981 0.922

ADMIXTURE 0.946 0.477 0.537

Subcontinental

SNVstory 0.986 0.965 0.885

RFMix 0.992 0.771 0.665

ADMIXTURE 0.977 0.937 0.783
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downloaded from the UCSC Table Browser using assembly GRCh37 to get the genomic 
interval for each gene. If a region contains multiple genes, we combine the genes to form 
a non-overlapping genomic interval (e.g., ANKRD45, TEX50). Of the 77,402 SNVs used 
to train the model, 3231 were not located in gene regions and were removed from fur-
ther analysis. The most significant gene impacting the model is KRTAP19-8 (Keratin 
Associated Protein 19-8). Samples with a variant in this gene are more likely to be pre-
dicted as American. However, some top-ranking genes on this list have a strong negative 
impact on model prediction, and variants in these locations reduce the probability of a 
given label. For example, ERP29 has a strong negative impact on predicting South Asian 

Fig. 3 Gene-level global feature importance in ancestry inference using SNVstory’s gnomAD continental 
model. This figure illustrates the mean absolute SHAP values aggregated for each gene, derived from 2800 
training samples. The analysis highlights the top 20 genes that significantly influence ancestry inference, 
emphasizing the role of specific alleles in determining ancestry labels
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ancestry. SNVstory provides the ability to detect variants in genes inherited from spe-
cific populations, and the highest ranking genes in terms of positive SHAP value across 
each continental group are provided in Additional file 1: Table S2.

We also aggregated SHAP values across larger cytolocations to visualize which regions 
across the genome are most impactful in the model predictions (accessed using this file: 
(https:// hgdow nload. soe. ucsc. edu/ golde nPath/ hg19/ datab ase/ cytoB and. txt. gz). Addi-
tional file 1: Fig. S6 shows the feature importance for an individual from the training data 
labeled as African. Regions are colored by population label with the maximum absolute 
SHAP value. Regions that have the most impact on predicting the sample African are 
‘chromosome 1: 172,900,000–176,000,000’ and ‘chromosome 5: 63,200,000_66,700,000’.

Comparison of genetic versus self‑reported ancestry in clinical samples

SNVstory was implemented on an in-house dataset of clinical exome sequencing testing 
from 293 individuals generated by the Institute for Genomic Medicine Clinical Labora-
tory to demonstrate the application of our models. We compare the model predictions 
to the self-reported ancestry of the proband (Additional file 1: Table S3). Self-reported 
race is derived from the paternal/maternal ethnic background. Ethnicity is categorized 
into one of three groups: Non-Hispanic or Latino, Hispanic or Latino, and unknown/
not reported ethnicity. Race is classified into one of five groups: White, Asian, bi-racial/
multi-racial, Black or African American, and Unknown/Unspecified. Due to the broad-
ness of these categories, we report the comparison between predicted genetic ancestry 
for the continental models only (Table 2).

Most of the individuals share agreement between genetic ancestry and ethnic-
ity/race, e.g., for those predicted to be European, a match of White/Non-Hispanic or 
Latino for race/ethnicity occurs in 92.5%, 96.7%, and 89.1% of individuals by the gno-
mAD (Table 2A), 1kGP (Table 2B), and SGDP (Table 2C) models, respectively. However, 
several cases exist where individuals are self-reported as White while having a different 
genetic ancestry across multiple models, and vice versa. Additionally, 13 of our cases 
have either Unknown/Not Reported Ethnicity or Unknown/Unspecified Race. As dis-
cussed in the Introduction, the ability to refine or add genetic ancestry information in 
these cases is helpful for added diagnostic precision in variant filtering/prioritization.

Model interpretation for indeterminant samples

Most of our in-house dataset has agreement across all three continental models (81.9% 
of samples) and even more across at least two continental models (98.0%). A dispropor-
tionate number of individuals share disagreement across all three models between those 
that are self-reported as bi-racial or multi-racial versus those that are White, Asian, 
Black or African American (50% vs. 9% disagreement, respectively). Those individu-
als with unknown/unspecified race are not included in this calculation. These results 
suggest our models have worse performance on admixed samples, where two or more 
populations may be present. In reporting results, we use the label with the highest prob-
ability. Some discrepancies between model results may be mitigated by adding a mini-
mum threshold on the probability required to obtain a result.

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
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Table 2 Genetic ancestry versus self-reported ethnicity and race

Model labels Ethnicity Race Counts

(A) gnomAD

afr Non-Hispanic or Latino Black or African American 20

Bi-racial/multi-racial 10

Unknown/not reported ethnicity Bi-racial/multi-racial 3

Hispanic or Latino Bi-racial/multi-racial 2

White 1

Non-Hispanic or Latino White 1

amr Hispanic or Latino White 8

Unknown/unspecified 5

Black or African American 2

Non-Hispanic or Latino White 1

Hispanic or Latino Bi-racial/multi-racial 1

asj Non-Hispanic or Latino White 1

eas Non-Hispanic or Latino Asian 3

White 2

Hispanic or Latino Bi-racial/multi-racial 1

eur Non-Hispanic or Latino White 210

Bi-racial/multi-racial 5

Hispanic or Latino Bi-racial/multi-racial 5

White 3

Unknown/not reported ethnicity White 3

Bi-racial/multi-racial 1

Hispanic or Latino Unknown/unspecified 1

sas Non-Hispanic or Latino Asian 3

White 1

(b) 1kGP

afr Non-Hispanic or Latino Black or African American 19

Bi-racial/multi-racial 2

Hispanic or Latino Bi-racial/multi-racial 1

Unknown/not reported ethnicity Bi-racial/multi-racial 1

amr Hispanic or Latino White 12

Non-Hispanic or Latino Bi-racial/multi-racial 10

Hispanic or Latino Bi-racial/multi-racial 8

Non-Hispanic or Latino White 8

Hispanic or Latino Unknown/unspecified 6

Hispanic or Latino Black or African American 2

Unknown/not reported ethnicity Bi-racial/multi-racial 2

Non-Hispanic or Latino Black or African American 1

eas Non-Hispanic or Latino Asian 3

eur Non-Hispanic or Latino White 207

Unknown/Not Reported Ethnicity White 3

Non-Hispanic or Latino Bi-racial/multi-racial 3

Unknown/not reported ethnicity Bi-racial/multi-racial 1

sas Non-Hispanic or Latino Asian 3

White 1
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Individualized ancestry report

Here, we illustrate the ability of SNVstory to provide ancestry predictions in an easily 
visualized format for individual samples (Fig. 4). The probabilities for the gnomAD and 
the 1kGP continental models were 100% European, while the SGDP continental model 
was 95% West Eurasia. Because the subcontinental models are trained and executed 
separately, SNVstory uses a weighting scheme to rate subcontinental label probabilities 
according to their continental output. Subcontinental model probabilities are multiplied 
by their corresponding continental model probability, and this result is reported. The 
gnomAD subcontinental model has the highest probability (48%) for North-Western 
European (nfe_nwe), and the 1kGP subcontinental model has the highest probability 
(100%) for British from England and Scotland (eur_gbr). These predictions agree with 
the true sample ancestry taken from the 1kGP validation set.

Discussion
We have described a method to predict ancestry from genomic data that provides multi-
ple improvements over existing ancestry inference tools. Firstly, SNVstory incorporates 
samples/variants from three different curated datasets, expanding the number of labels 
and the granularity of the model classification beyond the main continental divisions. 
Secondly, drawing upon the gnomAD database produces a much larger number of vari-
ants on which our models were trained, providing the opportunity to classify ancestry on 

Table 2 (continued)

Model labels Ethnicity Race Counts

(C) SGDP

Africa Non-Hispanic or Latino Black or African American 20

Bi-racial/multi-racial 9

Hispanic or Latino Bi-racial/multi-racial 3

Unknown/not reported ethnicity Bi-racial/multi-racial 3

Hispanic or Latino Black or African American 2

Non-Hispanic or Latino White 1

CentralAsiaSiberia Hispanic or Latino Unknown/unspecified 3

White 1

EastAsia Non-Hispanic or Latino Asian 3

SouthAsia Hispanic or Latino White 4

Non-Hispanic or Latino Asian 3

White 3

WestEurasia Non-Hispanic or Latino White 212

Hispanic or Latino White 7

Non-Hispanic or Latino Bi-racial/multi-racial 6

Hispanic or Latino Bi-racial/multi-racial 6

Unknown/unspecified 3

Unknown/not reported ethnicity White 3

Bi-racial/multi-racial 1

Value counts of genetic ancestry model predictions trained using gnomad (A), 1kGP (B), and SGDP (C) compared to self-
reported ethnicity and race
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a wider (or more diverse) range of features. Thirdly, SNVstory excludes consanguineous 
samples from training, ensuring that the overrepresentation of closely related individuals 
does not bias the model. Finally, our novel implementation is optimized for individual-
ized results rather than clustering large cohorts of samples into shared ancestral groups.

We compared our model performance to two other popular ancestry inference 
tools, RFMix and ADMIXTURE. RFMix is predominately advertised as a local ances-
try interference tool, but it can also supply global ancestry results by aggregating their 
output into one label. RFMix performed comparably to SNVstory at the continental 
level. However, it performed worse at the subcontinental level. This decrease may 
potentially be due to its output which is geared toward local ancestry. With many 
more labels, it becomes harder to pull out the top global ancestry from the aggregated 
results. SNVstory overcomes the issue of a large label set by implementing a weight-
ing scheme to reduce the probability of picking a subcontinental label outside of the 
continental model results. The RFMix subcontinental results would likely improve if 
a similar weighting scheme was used when delivering results. ADMIXTURE showed 

Fig. 4 SNVstory ancestry report. The representative output of model results from SNVstory for a European 
sample taken from the 1kGP dataset
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an opposite trend of improved results when looking at subcontinental performance, 
which is perhaps due to the increased similarity between reference and input samples. 
Using either RFMix or ADMIXTURE, the user is tasked with an additional step of 
supplying an appropriate reference dataset to get the most accurate results. Overall, 
SNVstory performs accurately at both the continental and subcontinental levels and 
only requires a query VCF as input.

In our gnomAD model, we introduce a method to simulate individual samples from 
aggregate allele frequencies of a known population. This is potentially useful for any 
study requiring access to reference variants from a population where data from individ-
ual samples is obfuscated. One limitation in our approach is that we did not account for 
linkage disequilibrium between variants when simulating individual samples. This could 
result in some samples with patterns of variants that do not exist in actual samples. An 
improvement in future models would be to remove variants with high levels of link-
age disequilibrium between them. If high recognizability to actual samples is required, 
established metrics of linkage disequilibrium, such as the correlation coefficient r2, could 
be used to measure the ‘realness’ of a simulated sample based on existing variant pat-
terns, and simulated VCFs could be validated based on this quality. However, in practice, 
the larger pool of variants provided by gnomAD more than compensates for the lost 
dependence among proximal groups of variants. We have demonstrated that the perfor-
mance of the gnomAD models with simulated individuals is comparable to that of mod-
els trained with actual samples.

With the growing number of reference datasets containing individuals from diverse 
ancestral backgrounds, it is possible to build ancestry prediction models that reflect 
these populations. However, there is room for improvement, as our most diverse dataset 
(SGDP) includes the fewest samples. We could not build subcontinental models as gran-
ular as the labels provided because there were as few as two samples per label for many 
instances. Additionally, our model cannot accurately predict ancestry proportions in 
samples with admixed ancestry. Most admixture prediction software depends on a priori 
knowledge of the number of non-admixed populations and requires representation from 
such populations. There is limited availability of reference samples from admixed indi-
viduals, so our training data lacked representation from any admixed samples. Efforts 
to expand the number of reference sequences for diverse and admixed populations will 
provide opportunities to fill this gap.

SNVstory’s feature-importance capacity is unique among ancestral tools and could 
have significant clinical utility. The clinical application of most ancestral prediction tools 
is limited to simply predicting the patient’s ancestry. However, SNVstory’s unique capa-
bility to describe a given locus as characteristic, or atypical, of a given ancestry could 
lead to improved prioritization of variants. For example, SNVstory finds the most ances-
trally informative gene on average to be KRTAP19-8, which is greatly enriched for SNVs 
predictive of Native American/Latino ancestry (Fig.  3). This gene is a known driver 
of thyroid lymphoma [39], a disorder that is the second-most-common type of can-
cer among Hispanic women [40] but not even among the top five cancer types among 
women worldwide [41]. The inferred distinctiveness of Latino copies of KRTAP19-8 sug-
gests that rare founder mutations in this gene may contribute to increased rates of thy-
roid cancer among women of Hispanic ancestry. The ability to target variants in genes 
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inherited from specific populations adds a new tool to the diagnostician’s toolkit and 
could lead to improved patient outcomes.

Finally, our approach allows users to reliably execute our models given a single-sample 
or multi-sample VCF, with results tailored toward ancestry assignment for an individual 
sample. This provides immediately useful ancestry information in the clinical setting, 
where ancestry can be used to inform diagnostic or therapeutic decisions. Specifically, a 
subject’s ancestry can be used to help prioritize variants that may be rare in one popula-
tion but not another. In the clinical setting, it may be essential to recognize the differ-
ence between ethnicity, race, and genetic ancestry in determining the optimal therapy or 
drug dosage.

Given the widespread availability of genome sequencing data and models like SNVs-
tory that can accurately predict ancestry, we advocate for genetic ancestry to become 
the standard classification reported for genetic studies and clinical applications, where 
appropriate. Genetic ancestry offers enormous advantages over other self-reported 
information, such as ethnicity or race, because it supplies biological characteris-
tics of a population and is consistently measurable. This advantage will only increase 
as more populations are sequenced and ancestry prediction becomes more reliable, 
and we improve our ability to contextualize the impact of genetic ancestry on clinical 
decision-making.
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