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Abstract 

Background: Cancer, a disease with high morbidity and mortality rates, poses a sig-
nificant threat to human health. Driver genes, which harbor mutations accountable 
for the initiation and progression of tumors, play a crucial role in cancer development. 
Identifying driver genes stands as a paramount objective in cancer research and preci-
sion medicine.

Results: In the present work, we propose a method for identifying driver genes 
using a Generalized Linear Regression Model (GLM) with Shrinkage and double-
Weighted strategies based on Functional Impact, which is named GSW-FI. Firstly, 
an estimating model is proposed for assessing the background functional impacts 
of genes based on GLM, utilizing gene features as predictors. Secondly, the shrinkage 
and double-weighted strategies as two revising approaches are integrated to ensure 
the rationality of the identified driver genes. Lastly, a statistical method of hypoth-
esis testing is designed to identify driver genes by leveraging the estimated back-
ground function impacts. Experimental results conducted on 31 The Cancer Genome 
Altas datasets demonstrate that GSW-FI outperforms ten other prediction methods 
in terms of the overlap fraction with well-known databases and consensus predictions 
among different methods.

Conclusions: GSW-FI presents a novel approach that efficiently identifies driver genes 
with functional impact mutations using computational methods, thereby advancing 
the development of precision medicine for cancer.

Keywords: Cancer research, Driver gene, Mutation functional impact, Generalized 
linear regression model, Statistical method

Background
Cancer is a fatal disease caused by the accumulation of mutations throughout an indi-
vidual’s life [1]. Driver mutations are essential for the manifestation of cancer charac-
teristics, whereas passenger mutations, which are random mutations occurring in the 
background, do not contribute to tumor development and arise during DNA replication 
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[2]. Next-generation sequencing (NGS) technology has revolutionized cancer research 
by providing a new perspective. Genomic sequencing data encompassing major cancer 
types are readily accessible through various cancer sequencing projects, including The 
Cancer Genome Atlas (TCGA) [3] and the International Cancer Genome Consortium 
(ICGC) [4]. Distinguishing cancer-associated genes with driver mutations, which confer 
a selective advantage during tumor development, remains an immense challenge despite 
the availability of reliable and valuable sequencing data. The unequivocal identification 
of driver genes not only enhances the understanding of tumor progression and also 
guarantees the effectiveness of gene-targeted cancer therapy [5].

Numerous methods have been developed to identify cancer driver genes by leverag-
ing multi-omics data. In general, these methods can be categorized into three groups. 
The first category consists of traditional frequency-based methods, which identify genes 
exhibiting a significantly higher mutation frequency than expected across multiple 
tumor samples [6–8]. MuSiC [6] and MutSigCV [7] are two frequency-based methods 
that have been used widely [9–11].MuSiC utilizes various statistical methods to dis-
tinguish significant events from passenger mutations, offering a comprehensive, data-
driven statistical analysis of NGS datasets. MutSigCV constructs a mathematical model 
to calculate the gene-specific background mutation rate based on mutational heteroge-
neity, effectively reducing the inclusion of implausible genes. However, frequency-based 
methods are limited by their inability to identify driver genes with low population muta-
tion frequencies [12–15].

The second category is comprised of function-based methods that assess the func-
tional impact of mutations by leveraging evolutionary information [16–20]. These meth-
ods identify genes that exhibit a significant bias towards accumulating high-impact 
mutations. For instance, e-Driver identifies potential cancer driver genes by analyzing 
the internal distribution of somatic missense mutations within functional regions of 
proteins [16]. MSEA, implemented through MSEA-clust and MSEA-domain, predicts 
cancer genes based on the presence of mutation hotspots in their functional domains 
or active sites [17]. iPAC utilizes protein tertiary structure to detect non-random 
somatic mutation clusters, enhancing the identification of oncogenic driver mutations 
[18]. OncodriveFML identifies drivers (genomic regions of interest) by comparing the 
observed average impact score on each region with the expected score resulting from 
sampling [19]. These methods have the advantage of identifying driver genes that 
undergo positive selection at the protein level rather than just the mutation level. The 
third category encompasses network-based methods, which aim to identify a set of 
interacting genes based on prior knowledge [21–26]. Network-based methods can iden-
tify driver genes that may not have a high mutation frequency but play regulatory roles 
in protein networks. However, a critical challenge for these methods lies in the com-
pleteness and accurate utilization of prior knowledge databases.

Similar to mutational heterogeneity, the functional impacts of mutations also exhibit 
heterogeneity (functional heterogeneity) due to various evolutionary conservation pat-
terns [27, 28]. Specifically, mutations located in the same gene could have different 
functional impacts on the tumor. Several algorithms have been developed to evaluate 
functional impacts, e.g., MutationAssessor [28], SIFT [29], GERP [30], PolyPhen [31], 
and CADD [32]. Besides, many bioinformatics methods that are based on functional 
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impact have also been deployed to prioritize candidate genes. However, these methods 
still face some limitations. Firstly, several of these methods cannot yield stable results 
regarding the number of identified drivers across different tumor types. For instance, 
e-Driver, MSEA, OncodriveFML, and iPAC recognize anywhere from no driver genes 
to hundreds of driver genes across 31 studied tumor types. Secondly, the lists of driver 
genes that these methods predict lack consistency [33, 34]. Moreover, there is a short-
age of established models to evaluate the background functional impact for genes, which 
reflect the expected functional impact based on average values in a similar manner to 
background mutation frequency. Random sampling is a typical approach for obtaining a 
null hypothesis in function-based methods [16, 17, 19, 35].

We aimed to identify cancer-associated genes by introducing a generalized linear 
regression model (GLM) with shrinkage and double-weighted strategies for identifying 
cancer driver genes with functional impact (GSW-FI). Specifically, our model employs 
a GLM to predict the background functional impact score (BFIS) of each gene, utilizing 
twelve genomic features that are relevant to somatic mutations and protein functional 
impact as explanatory factors. Furthermore, we implemented a shrinkage strategy on 
estimated BFIS to smooth out estimations and reduce deviation issues. Our shrinkage 
strategy takes advantage of neighboring gene information to improve estimation stabil-
ity. Additionally, we used a double-weighted strategy composed of two separate weight 
tactics to assign moderate levels of importance to genes. With these strategies, GSW-
FI can provide clear evaluations of BFIS and rational observed functional impact scores 
(FIS) for genes. Finally, we conducted a comparison between the observed FIS and the 
distribution of BFIS to pinpoint genes exhibiting significant bias, thereby identifying 
them as potential cancer driver genes. Our comprehensive evaluation, utilizing unbiased 
benchmarks proposed by prior research [36, 37], consistently demonstrated the superior 
performance of GSW-FI compared to ten other driver gene prediction methods on 31 
TCGA datasets.

Methods
The workflow of GSW‑FI

The proposed GSW-FI model is composed of four procedures: data gathering and pre-
processing, calculating the observed functional impact score, estimating the background 
functional impact score, and identifying driver genes using ratiometric functional 
impact score, as shown in Fig. 1. The data preprocessing and analysis process primarily 
employed several R packages, namely plyr, stringr, MASS, and gamlss. Furthermore, the 
source code for GSW-FI can be freely accessed at https:// github. com/ bioin forma tics- xu/ 
GSW- FI.

Data gathering and preprocessing

Mutation datasets from TCGA 

We used the Mutation Annotation Format (MAF) files retrieved from TCGA (https:// 
tcga- data. nci. nih. gov/ tcga/) to conduct the driver gene analysis. For each mutation in 
the MAF file, we extracted information, including the patient with the mutation, chro-
mosome start and end sites, the affected gene, reference and alternate nucleotide sites, 
and the type of variation. Besides, our method’s performance was evaluated using 

https://github.com/bioinformatics-xu/GSW-FI
https://github.com/bioinformatics-xu/GSW-FI
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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datasets from 31 TCGA projects, with detailed information available in Additional file 2: 
Table S1.

Functional impact data of mutations

To assess the functional impact of mutations, we utilized the Functional Impact Scores 
(FISs) obtained from MutationAssessor [28]. MutationAssessor evaluates the impact 
of mutations by considering the evolutionary conservation of the affected amino acid 
in protein homologs. The “MA scores rel3 hg19 full” file, which contains the mutation 
impacts for the hg19 reference genome (chromosomes 1 to 22, M, X, and Y), was used 
in this study and obtained from the MutationAssessor website (http:// mutat ionas sessor. 
org/ r3/). In addition to MutationAssessor, other methods such as SIFT [29], PolyPhen 

Fig. 1 Workflow of GSW-FI

http://mutationassessor.org/r3/
http://mutationassessor.org/r3/
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[31], and CADD [32] can be used to calculate the FISs and are compatible with our 
research.

Genome feature

Genomic features, such as expression level, DNA replication time, and 3D chro-
matin interaction capture (HiC) features, have been shown to be relevant to muta-
tion frequency [7]. We hypothesized that the FISs of genes are also related to certain 
genomic features, which may contribute to their ability to trigger cancer. To build our 
GLM model, we designed a comprehensive set of twelve predictive genomic features, 
described in Table 1.

To validate the features with missing values, we employed a neighboring strategy [42, 
43] for imputing the missing data as described below: 

1 Let v∗k ,g denote the missing value for gene g in feature k. The Euclidean distance 
between gene i and j in feature space (excluding feature k) is calculated as: 

 where vl,i(vl,i) represents the value of feature l for gene i(j). Let Ngk denote the set of 
adjacent genes to gene g in feature k. The genes in Ngk must satisfy two criteria: 

 where K is the size of Ngk , which has been set to 100 in this study.

(1)Di,j =

l �=k

(vl,i − vl,j)
2,

(2)∀(m ∈ Ngk , n �∈ Ngk )(Dg ,m ≤ Dg ,n),

(3)
∣

∣Ngk

∣

∣ = K ,

Table 1 Description of 12 predictive genome features

Genome features Explaination and note Source

Expression level Average expression level across 91 cell lines 
in the CCLE [38]

MutSigCV[7]

DNA replication time Scale of 100 (early) to 1500 (late) MutSigCV [7]

HiC-derived metric The chromosomal compartment localization 
of the gene

MutSigCV [7]

Length of genomic regions Combined coding regions WITER [39]

Constraint score for non-synonymous muta-
tions

Normalized student residues Samocha et al. [40]

Expression hubs Hubness in a gene expression network MERGE [41]

Known regulators Gene’s known regulatory role based on
gene annotation databases

MERGE [41]

Genomic CNV Genomic CNV status MERGE [41]

Methylation Methylation status MERGE [41]

Total mutation number among patients Calculation based on local MAF –

Harmful mutation number among patients
(null and nonsilent effects)

Calculation based on local MAF –

Standard deviation of FISs across patients Calculation based on local MAF –
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2 Validation of v∗k ,g is performed using feature k of genes in the set Ngk as follows: 

3 Each value of gene g in feature k is standardized by subtracting the mean and divid-
ing by the standard deviation across genes.

Calculating the observed functional impact score

In this research, we utilize MutationAssessor to assign the Functional Impact Scores 
(FISs) for mutations. The assignment of FISs consists of three steps: 

(1) Obtaining the FISs from MutationAssessor. Each mutation in the MAF file was 
matched to the mutations in “MA scores rel3 hg19 full” files using information such 
as chromosome, mutation site, reference base, and alteration base.

(2) Filling in the missing FISs of mutations. The variation classification (such as silent, 
synonymous, nonsense, nonstop, in frame deletion) in the MAF file were mapped 
to the corresponding mutation effect (silent, nonsilent, noncoding, and null) based 
on the mutation type dictionary file [7].

The missing FISs of mutations can be filled by the average FIS of the corresponding 
mutation effect. Specifically, the FIS of mutation i with effect j is filled by

where nj is the number of mutations with effect j, and sjk represents the FIS of mutation 
k with effect j.

Due to the potential presence of missing values in MutationAssessor, it may not 
always be feasible to calculate the average FIS for mutations with effect j. Hence, 
imputing missing values with Eq. (5) is not universally applicable. In such cases, we 
propose the following approach to fill the FIS for each specific mutation i with effect 
j:

 

(3) Calculating the total FIS for each gene. The total FIS for gene g is calculated by 

where mg is the number of mutations in gene g, and f gi  is the FIS of mutation i in gene g.

(4)v∗k ,g =
1

K

∑

t∈Ngk

vk ,t .

(5)f miss
i,j =

1

nj

nj
∑

k=1

s
j
k ,

(6)f miss
i,j =











0 mutation effect j is silent,
1 mutation effect j is noncoding,
2 mutation effect j is nonsilent,
3 mutation effect j is null.

(7)yg =

mg
∑

i=1

f
g
i ,
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Estimating the background functional impact score

Estimating the background functional impact score based on generalized linear regression 

model

Generalized linear regression model We have developed a GLM model to estimate the 
background functional impact of genes. The model uses FIS as the dependent variable 
and incorporates 12 genomic features as independent variables, as listed in Table 1. 
Let {yg |g = 1, 2, . . . ,N } denote the observed FIS values, where N is the total number of 
genes under study. Considering that FIS values are real continuous, a normal distribu-
tion generalized linear model to identify each gene is proposed

where xg = {1, xg1, xg2, . . . , xgp}
T is a (p+ 1)× 1 gene feature vector, and 

β = {β0,β1, . . . ,βp}
T is a (p+ 1)× 1 regression coefficient vector that captures the 

effects of gene features. µg represents a linear function of p+ 1 features, and it is associ-
ated with yg through an identity link function g(.). Therefore, the GLM model is

The distribution of yg depends on xTg β and an unknown variance parameter ǫg . The cor-
responding linear regression model is

Here, {ǫg |g = 1, 2, . . . ,N } are independent and identically distributed from a normal dis-
tribution with zero-mean and a standard deviation of σ0 , i.e., ǫg ∼ N (0, σ 2

0 ) . Based on 
the above model assumptions,

The background functional impact score The regression coefficients β and standard devi-
ation σ0 were estimated using the maximum likelihood method. For a detailed proce-
dure, please refer to the Additional file 1. After obtaining the parameter β , the BFIS of 
gene g can be expressed by

Shrinkage of the estimated background functional impact score

Shrinkage estimation, a useful method for correcting outliers, has been widely applied 
in genome research [44, 45]. Building on the assumption that FISs are associated with 
gene features, a shrinkage strategy was employed to refine the estimated BFIS.

Building the functional impact score circle In detail, the selection of neighbors in the 
FIS circle for gene g ( Cg ) should satisfy the following three criteria:

First, the closest neighboring genes in the feature space are chosen to be part of the 
circle:

(8)g(µg ) = x
T
g β ,

(9)µg = x
T
g β .

(10)yg = x
T
g β + ǫg ,

(11)yg ∼ N (xTg β , σ
2
0 ).

(12)ybg = x
T
g β .
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Here, all gene features are utilized to define the circle and are scaled as described in the 
“Genome feature” section. The Euclidean distance between gene i and j is calculated 
using Eq. (1).

Second, all genes within the FIS circle should exhibit similarity to the gene under study 
in terms of functional impact scores. To determine this, the FISs of gene g ( yg ) and its 
neighbors within the FIS circle ( yi ) must pass a hypothesis test

where NC(x, 0, 1) represents the cumulative standard normal distribution.
Third, the number of neighbors in the FIS circle is limited by

where 
∣

∣Cg

∣

∣ denotes the number of neighbors in the FIS circle of gene g, and nmax
C  repre-

sents the maximum allowable number of neighbors. To strike a balance between com-
putation complexity and obtaining sufficient information from neighbors, we have set 
nmax
C = 100 for this research. It is worth noting that users can adjust the value of nmax

C  
according to their specific dataset characteristics and requirements.

Shrinking background functional impact scores through neighbor genes Next, the BFIS of 
gene g was refined through a shrinkage strategy that incorporates the FISs of its neighbor-
ing genes. The influence of the neighbor genes on the BFIS is determined by their proxim-
ity to the gene under study in the feature space. The neighbor FIS for gene g is calculated by

The resulting BFIS for gene g after applying shrinkage, is determined by:

Here, � ∈ (0, 1) represents the weight coefficient that balance the impact of ybg (original 
BFIS) and yneighborg  (influenced by neighbor genes).

Identifying driver genes using ratiometric functional impact score

Determining two weight coefficients of observed functional impact score

The proportion of harmful mutations to total mutations for a gene is a crucial metric for 
evaluating its destructiveness. The ratiometric method that assesses the composition of 

(13)∀(i ∈ Cg , j �∈ Cg )(Dg ,i ≤ Dg ,j).

(14)
Q
left
i,g = NC(yg − yi, 0, 1),

Qi,g = 2min
(

Q
left
i,g , 1− Q

left
i,g

)

,

Qi,g ≤ 0.1.

(15)
∣

∣Cg

∣

∣ ≤ nmax
C ,

(16)y
neighbor
g =

∑

k∈Cg

(

yk

Dk ,g

)

∑

k∈Cg

(

1

Dk ,g

) .

(17)y
fb
g =

{

ybg
∣

∣Cg

∣

∣ = 0,

�ybg + (1− �)y
neighbor
g 0 <

∣

∣Cg

∣

∣ ≤ nmax
C .
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mutations in a gene to identify driver genes have been studied extensively [46–48]. We 
have further introduced the ratiometric method to calculate observed FIS and proposed 
the double-weighted strategy.

The double-weighted strategy involves two weights. The first weight is the proportion 
of harmful mutations to total mutations in a gene, indicating the degree of harmfulness 
of mutations. This weight is calculated by

where mharm
g  is the number of mutations with harmful effects in gene g; mtotal

g  is the total 

number of mutations in gene g. For one gene, mharm
g ≤ mtotal

g  , thus wg
1 ∈ [0, 1].

The second weight, denoted as wg
2 , is calculated as the exponential proportion of harm-

ful mutations to the total number of samples, allowing for the effective integration of 
information regarding the number of harmful mutations. The calculation of this weight 
is

where M is the total number of samples, and mharm
g  is the number of samples with harm-

ful mutations in gene g. Normally, 0 ≤ mharm
g ≤ M , so wg

2 ∈ [1, e] . The weighted observed 
FIS of gene g is then given by

The first weight enhances the FIS for genes with a higher rate of harmful mutations, 
while the second weight amplifies the FIS for genes with a larger number of deleterious 
mutations.

Identifying driver genes

For genes that do not have any harmful mutations, a p-value of 1 is assigned. Conversely, 
for genes with harmful mutations, the weighted observed FIS is compared against the 
final BFIS. Essentially, the p-value for each gene represents the probability of obtaining 
a weighted observed FIS ( ywg  ) equal to or greater than its value by chance, assuming the 
null distribution. The null distribution is assumed to be normal, with the final BFIS ( yfbg  ) 
serves as the mean and the estimated variance σ0 as the covariance. Finally, the Benja-
mini-Hochberg false discovery rate algorithm is utilized to calculate the q-value for each 
gene. Genes with a q-value ≤ 0.05 are identified as significant driver genes.

Driver genes prediction methods and evaluation metrics

GSW-FI has been compared to ten other commonly used methods for identifying 
cancer-associated genes in 31 TCGA datasets. These methods include Dendrix[49], 
DriverNet[13], e-Driver[16], iPAC, MEMo[50], MSEA, MutSigCV, DriverML [37], 

(18)w
g
1 =

mharm
g

mtotal
g

,

(19)w
g
2 = exp

(

mharm
g

M

)

,

(20)ywg = w
g
1w

g
2yg .
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OncodriveFML [19], and rDriver [20]. The driver gene lists of these methods were 
obtained from DriverDBv2 [33] and DriverML, and GSW-FI was run on the same 
datasets.

Evaluating the performance of these methods is challenging due to the absence 
of a universally accepted standard. However, several evaluation metrics have been 
employed to measure driver gene prediction performance, which serve as valuable 
indicators [36, 37, 39]. The high percentages of overlap with well-established data-
bases indicate excellent performance in identifying driver genes [13, 51]. Therefore, 
one of the evaluation metrics used in this study is the overlap with three well-estab-
lished databases, CGC [52], Mut-driver [53], and HiConf [54]. CGC is a widely recog-
nized database that identifies genes implicated in oncogenesis, providing information 
on sequence alterations, cancer types, and protein domains associated with cancer 
genes. The CGC database currently includes 738 genes (as of October 7, 2023) and 
can be accessed at https:// cancer. sanger. ac. uk/ census# cl_ search. Mut-Driver aims to 
identify driver mutations and genomic alterations in human cancer, encompassing 
125 genes. HiConf is a panel of statistical tests that effectively detects oncogenes and 
tumor suppressor genes in cancer based on patient bias and truncation event rate, 
covering 99 genes (https:// github. com/ Bose- Lab/ Impro ved- Detec tion- of- Cancer- 
Genes). The overlap fraction (OF) with these three databases is defined as the propor-
tion of genes in the database to all the identified genes. It is calculated as:

Here, OFj represents the overlap fraction of cancer type j. The set Oj contains genes that 
are identified by the evaluated method in cancer type j and are also present in the data-
base. The set Aj includes all genes identified by the evaluated method in cancer type j. 
The notation | · | denotes the cardinality of a gene set.

Another metric used is the ability to identify genes recognized as potential driv-
ers by multiple methods [55]. For each evaluated method, genes that are predicted 
by at least one, two, and three other methods are included. These sets are denoted as 
Dt
j (t = 1, 2, 3) for cancer type j, and they represent genes predicted by at least t other 

methods. The method consensus of the evaluated method, which represents the pro-
portion of identified genes predicted by at least t other methods, is denoted as MCt

j . It 
is calculated as follows:

The set Aj is defined as in equation (21).
In addition to precision, it is crucial for methods to yield robust and stable results 

across different tumor types. The expectation is for methods to identify a moderate 
number of genes across various tumor types, with minimal drastic changes in the 
number of identified drivers between different tumors. Therefore, the standard devia-
tion of the identified driver gene count across various tumor types is another metric 
used to assess the robustness of the methods in this research.

(21)OFj =
|Oj|

|Aj|
.

(22)MCt
j =

|Dt
j |

|Aj|

https://cancer.sanger.ac.uk/census#cl_search
https://github.com/Bose-Lab/Improved-Detection-of-Cancer-Genes
https://github.com/Bose-Lab/Improved-Detection-of-Cancer-Genes
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Results
Uncertainty analysis of GSW‑FI

The proposed GSW-FI model for identifying driver genes incorporates shrinkage and 
double-weighted strategies. The dual weights are calculated from mutation data using 
Eqs. (18) and (19), and they do not affect the model’s stability. Please refer to the Addi-
tional file 1 for an analysis of the impact of these weights on the model. Additionally, 
we will perform an uncertainty analysis of the model with respect to both the shrinkage 
parameter � and sample noise.

The impact of � on performance

Parameter � directly determines the strength of shrinkage and affects the performance 
of GSW-FI. As � increases, the influence of a gene’ estimated FIS on the final BFIS 
becomes more significant while the impact from neighboring genes decreases. Choosing 
an appropriate � value helps control potential false positive predictions. We examined 
the sensitivity of GSW-FI across 31 datasets by incrementally varying � from 0 to 1 with 
a step size of 0.1. The analysis included the number of predicted driver genes and their 
overlap fractions (Eq. (21)) with three driver gene databases, i.e., CGC, Mut-Driver, and 
HiConf as shown in Fig. 2.

In general, larger � values lead to a higher number of predicted driver genes. For 
instance, in the CHOL dataset, the number of identified driver genes for different � val-
ues (ranging from 0 to 1) are as follows: (6, 6, 10, 11, 11, 16, 20, 25, 25, 28, 30). Moreover, 
when considering the overlap with driver gene databases, the advantage lies within the � 
range between 0.3 and 0.6. Across 31 datasets, the highest average overlap fractions for 
the three databases were obtained at � values of 0.3, 0.6, and 0.6, resulting in the corre-
sponding average overlap fractions of 0.6675, 0.4281, and 0.5035, respectively. This anal-
ysis highlights the importance of selecting an appropriate � value that strikes a balance 
and integration between the estimated functional impact of a gene and its neighboring 
genes. Additionally, we conducted a comprehensive comparison utilizing an extensive 
range of � values (including 0, 0.5, and 1.0), compared to the outcomes obtained from 
other methods in the following sections.

The influence of sample noise on identifying driver genes

To investigate the influence of sample noise on the identification of driver genes using 
GSW-FI, ten independent subsampling trials were conducted on four datasets (CHOL 
and UCS with small sample sizes, BRCA and LUAD with large sample sizes). In each 
trial, we use GSW-FI to identify driver genes and compare them with the results 
obtained using the original dataset. The overlap between the driver genes identified 
using the subsampled datasets and the driver genes identified using the original dataset 
are presented in Fig. 3. Specifically, we measure the overlap using the Jaccard similar-
ity coefficient, which represents the ratio of the intersection of two sets to their union. 
The average Jaccard similarity coefficients for ten subsamples of these four datasets are 
0.8706, 0.9653, 0.9304, and 0.8922, respectively. Our analysis indicates that GSW-FI 
is highly resilient to sample noise, as evidenced by the significant overlap between the 
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driver genes identified from the subsampled datasets and the original dataset. Further-
more, the overlap tends to increase with larger dataset sizes, indicating that our pro-
posed model may benefit from larger sample sizes.

Biological pathway analysis for the identified driver genes by GSW‑FI

We conducted the biological pathway analysis on the identified driver genes by GSW-
FI ( � = 0.5 ) using DAVID [56]. The involved biological pathways of 31 driver gene 
set identified by GSW-FI have been summarized in Additional file 3: Table S2. With 
the exception of THYM (3 genes) and PRAD (5 genes), where a smaller number of 
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genes were identified, GSW-FI exhibited a notable enrichment of driver genes within 
significant signaling pathways across the majority of datasets. Besides, a higher num-
ber of driver genes identified from the 31 datasets consistently led to more significant 
enrichment in important signaling pathways, as indicated by the improved pathway 
annotation results and significant FDR values. As an example, the UCEC dataset 
yielded the identification of 41 driver genes, which exhibited significant enrichment 
across 64 signaling pathways (FDR<0.05). Table  2 displays the annotation results of 
signaling pathways using LAML, BRCA, and LUAD datasets as examples. Specifi-
cally, in the LAML dataset, 11 genes including CEBPA, DNMT3A, FLT3, IDH1, IDH2, 
NPM1, RUNX1, TET2, U2AF1, NRAS, TP53 were identified. These genes were found 
to be involved in critical pathways such as central carbon metabolism in cancer, acute 
myeloid leukemia, transcriptional misregulation in cancer, pathways in cancer, and 
chronic myeloid leukemia pathways, which are well-known to be associated with 
acute myeloid leukemia (LAML) cancer.
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Fig. 3 The overlap between the identified driver genes using original and subsampled datasets. The red 
color indicates that the genes on the x-axis were identified by GSW-FI when applied to the dataset on the 
y-axis, while the gray color represents that the genes on the x-axis were not identified using the dataset on 
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Table 2 Functional annotation results for identified driver genes by GSW-FI

Dataset Terms Genes FDR

hsa05230:Central carbon metabolism in cancer NRAS, FLT3, IDH1, IDH2, TP53 3.1329E-05

hsa05221:Acute myeloid leukemia CEBPA, NRAS, FLT3, RUNX1 0.0014

LAML hsa05202:Transcriptional misregulation in cancer CEBPA, FLT3, TP53, RUNX1 0.0214

hsa05200:Pathways in cancer CEBPA, NRAS, FLT3, TP53, RUNX1 0.0234

hsa05220:Chronic myeloid leukemia NRAS, TP53, RUNX1 0.0460

hsa05213:Endometrial cancer PIK3CA, CDH1, TP53 0.0271

BRCA hsa05218:Melanoma PIK3CA, CDH1, TP53 0.0271

hsa04722:Neurotrophin signaling pathway MAP3K1, PIK3CA, TP53 0.0493

hsa05225:Hepatocellular carcinoma KEAP1, KRAS, TP53, EGFR 0.0385

LUAD hsa05223:Non-small cell lung cancer KRAS, TP53, EGFR 0.0385

hsa04151:PI3K-Akt signaling pathway STK11, KRAS, TP53, EGFR 0.0435
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Harmful mutation ratio analysis for the identified driver genes by GSW‑FI

As discussed in the section “Calculating the observed functional impact score”, muta-
tions can be categorized into four effects: silent, non-silent, non-coding, and null. 
Among these, silent mutations (synonymous mutations) in the gene coding sequence 
and non-coding mutations in the flanking untranslated regions (UTRs) and intronic 
sequences are considered background mutations with a weak selective growth advantage 
for tumors [7]. In contrast, non-silent and null mutations that affect the amino acids of 
a protein or even cause frameshifts in the sequence have a significant impact on tumo-
rigenesis. Previous studies have proposed various methods to quantify the selection in 
cancer genomes based on the ratio of non-synonymous to synonymous mutations. For 
example, Martincorena et al. [57] introduced the dN/dS index to evaluate selection in 
cancer genomes, where high dN/dS ratios indicate positive selection in tumor cells. Sim-
ilarly, Lawrence et al. [7] and Tokheim et al. [36] used ratiometric features, such as the 
ratio of protein-affecting mutations to other mutations, to identify driver genes.

Motivated by these studies, we developed a ratiometric feature based on the ratio 
of harmful mutations (non-silent and null mutations) to total mutations in each gene. 
We calculated the ratios of harmful mutations for driver genes identified by GSW-FI 
model ( � = 0.5 ), as summarized in Additional file 4: Table S3. We found that the average 
harmful mutation ratio for driver genes was 0.8971 across 31 datasets, indicating that 
non-silent and null mutations play a crucial role in tumorigenesis. Notably, among the 
identified 399 driver genes across 31 datasets, 114 genes had a harmful mutation ratio of 
1, indicating that all mutations in these genes were either non-silent or null mutations.

Number of identified driver genes by 11 methods

The average number of predicted driver genes across 31 datasets by 11 methods ranged 
from 1 (MEMo) to 2918 (iPAC). The analysis above reveals that GSW-FI demonstrates 
an increasing number of predicted driver genes as � values grow larger. Here, we have 
chosen to perform the analysis using an intermediate value of � = 0.5 . With this set-
ting, GSW-FI identified a total of 399 driver genes across the analyzed datasets (ranging 
from 3 to 57), with some degree of overlap observed among different datasets. These 
399 driver genes collectively involve 198 unique genes, indicating that certain genes are 
identified as drivers in multiple datasets. Specifically, GSW-FI detected fewer than ten 
genes in 13 datasets and identified more than 30 genes in two datasets. Other methods, 
such as Dendrix, e-Driver, rDriver, DriverNet, OncoDriveFML, and MutSigCV identi-
fied an average number of driver genes ranging from 10 to 50. To evaluate the range 
of the driver gene numbers, the standard deviation across the 31 datasets was calcu-
lated. A significant standard deviation suggests instability in the method’s results, which 
may potential concerns about the underlying algorithm. It is worth noting that MEMo, 
rDriver, and GSW-FI emerged as the top three methods with standard deviations of less 
than 15, indicating their relative robustness across the 31 datasets.

Overlap analysis of predicted driver genes with CGC, Mut‑Driver, and HiConf

The fractions of overlap between the identified genes and the CGC, Mut-driver, and 
HiConf databases for the 11 evaluated methods across 31 TCGA datasets are depicted 
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in Figs.  4, 5, 6, as well as detailed in Additional files 5, 6, 7. Reffering to [37], any 
method that predicted less than three genes in a dataset was assigned a value of zero. 
The methods in the figures are sorted from left to right based on their overall mean 
across the 31 datasets.

When compared to the CGC database (Fig. 4), GSW-FI showed the highest overlap, 
with average fractions of 61.06%, 65.13%, and 53.86% for lambda values of 0, 0.5, and 
1, respectively. The next three methods, DriverML, DriverNet, and rDriver, had aver-
age overlap fractions of 48.34%, 39.41%, and 38.18%, respectively. CoMDP and SCS, 
as their main focus is on identifying gene modules with high coverage and mutual 
exclusivity, exhibited less than 10% driver gene predictions on average in the CGC 
gene list. Regarding the Mut-driver (Fig. 5) and HiConf (Fig. 6) databases, which con-
tain fewer genes than CGC, the overall average fractions are comparatively lower. 
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GSW-FI also demonstrated the highest overlap in these databases, with average frac-
tions of 45.44%, 49.01%, and 41.41% for Mut-driver, and 36.14%, 41.10%, and 34.50% 
for HiConf, corresponding to lambda values of 0, 0.5, and 1, respectively. In the Mut-
driver database, the top three methods were DriverML, DriverNet, and MutSigCV, 
with percentages of 41.48%, 33.51%, and 31.73%, respectively. In the HiConf database, 
the top three methods were DriverML, DriverNet, and MutSigCV, with percentages 
of 34.00%, 32.37%, and 26.48%, respectively. iPAC and MSEA predicted less than 10% 
of driver genes on average in the Mut-driver and HiConf databases. Overall, GSW-FI 
achieved the highest average percentage of predicted driver genes among the CGC, 
Mut-driver, and HiConf databases.

Assessing the consensus among different methods in driver gene prediction

Referring to the works of [36, 58], we evaluated the level of consensus among differ-
ent methods by examining the fraction of driver genes that were also predicted by one, 
two, and three additional methods (using GSW-FI with �=0.5). The method consensus 
results, calculated using Eq. (22), are presented in Fig. 7. iPAC was excluded from the 
evaluation due to potential bias caused by the large number of predicted driver genes. 
Overall, GSW-FI, DriverML, MutSigCV, and e-Driver demonstrated the highest con-
sistency among the methods. When considering driver genes identified by at least one 
other method, MutSigCV, DriverML, and e-Driver achieved average method consensus 
rates of 83.82%, 80.02%, and 73.54%, respectively, across 31 datasets. Additionally, all 
genes identified by GSW-FI in 12 datasets, MutSigCV in 10 datasets, and DriverML in 
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7 datasets were predicted by at least one other method. On average, 58.78% and 49.33% 
of genes identified by GSW-FI across the 31 datasets were also identified by at least two 
or three other methods, respectively. Furthermore, the method consensus rates notice-
ably decreased when considering genes identified by at least two and three other meth-
ods. For DriverML, e-Driver, and MutSigCV, the average fractions of genes across the 
31 datasets identified by at least two and three other methods were (52.93%, 51.74%, 
51.57%) and (34.85%, 36.84%, 33.24%), respectively.

Overall performance

The efficiencies of 11 methods were evaluated by assessing their overlap fraction with 
three widely-confirmed driver databases, agreement with a consensus gene list of driver 
genes predicted by at least two other methods (including iPAC), and the standard devia-
tion of the identified driver gene number across cancer types. To better understand 
the overall performance of these methods, we have summarized the results across 31 
datasets in Table 3. Considering the overlap fraction with driver databases and method 
consensus, GSW-FI ranked first. The next three optimal methods were found to be 
DriverML, MutSigCV, and DriverNet. Additionally, robustness and stability are cru-
cial characteristics of these methods. MEMo, rDriver, and GSW-FI demonstrated high 
robustness with minimal variation in the number of identified driver genes. However, 
MEMo and rDriver showed lower performance in terms of overlap with known data-
bases and method consensus. In summary, GSW-FI outperformed the other methods by 
providing a comprehensive evaluation of accuracy and robustness.

Discussion
We have developed GSW-FI, a computational method for identifying cancer-associated 
genes that exhibit substantial functional impacts. GSW-FI was validated on 31 TCGA 
datasets, demonstrating robustness against data noise and accurate identification of 
driver genes. It exhibited a high level of overlap with established driver gene databases 
and showed excellent consistency with other methods. Furthermore, the biological path-
way analysis has provided insights into potential biomarkers and therapeutic targets. 
For instance, in the case of lung adenocarcinoma (LUAD), the identified genes KEAP1, 
KRAS, TP53, EGFR, and STK11 were found to be enriched in Hepatocellular carcinoma, 
Non-small cell lung cancer, and PI3K-Akt signaling pathway. These genes play crucial 
roles in the development of lung adenocarcinoma and have been validated as important 
biomarkers and therapeutic targets [59, 60].

Two benchmarks for evaluating new methods include the capability to accurately 
reproduce a significant number of extensively studied cancer genes documented in 
databases (such as CGC), as well as the ability to identify the core gene set predicted as 
driver genes by established methods. The methods that received the strongest support 
based on the criteria were GSW-FI, along with three other well-established methods: 
DriverML, MutSigCV, and DriverNet. The data presented in Table  3 clearly demon-
strates that our proposed GSW-FI outperforms other methods in terms of overlap 
with respect to the driver gene databases. It secures the top position in overlap for 
all three databases: CGC, Mut-driver, and HiConf. Moreover, the gaps between GSW-
FI and the second-ranked method are significant, with margins of 16.79%, 7.53%, and 
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7.1% respectively. Additionally, DriverML, GSW-FI, and MutSigCV are the top three 
methods that exhibit significantly greater overlap with other methods, with method 
consensus ranging from 66.72% to 73.99%. The advantage of GSW-FI, DriverML lies 
in their incorporation of the functional impact of gene mutations (i.e. functional het-
erogeneity), which enables a more comprehensive assessment of their significance as 
driver genes. On the other hand, DriverNet identifies likely driver mutations by ana-
lyzing their impact on mRNA expression networks. As for the renowned research 
method MutSigCV, it establishes the background mutation rate for each gene based on 
mutational heterogeneity.

In our framework, we faced some limitations. Firstly, we encountered missing val-
ues in MutationAssessor, which were essential for calculating functional impact scores. 
To ensure a more reliable and intelligent investigation of the functional impact of each 
gene in future research, it is critical to develop an informed approach. Additionally, we 
hypothesize that there might be a hidden correlation between the functional impacts 
of adjacent mutations that occur in neighboring chromosomal sites [61]. To effectively 
model the FISs of genomic regions of interest, we plan to employ methods such as the 
Hidden Markov Model in our forthcoming research efforts. These methods can deduce 
a series of states based on observed data. Addressing these issues will contribute to 
a more comprehensive understanding of the functional impacts of genes in cancer 
progression.

Conclusions
In conclusion, our computational method GSW-FI has demonstrated its effective-
ness in identifying cancer-associated genes with significant functional impacts. By 
incorporating gene features associated with functional impact scores (FIS) and utiliz-
ing advanced strategies such as double-weighted and shrinkage strategies, GSW-FI 
improves the precision and reliability of assessing gene functional impacts in relation to 
cancer. The validation of GSW-FI on TCGA datasets has shown its robustness against 
data noise and its accurate identification of driver genes. It exhibits a high level of over-
lap with established driver gene databases and demonstrates excellent consistency with 
other methods. The biological pathway analysis has provided valuable insights into 
potential biomarkers and therapeutic targets for specific cancer types, such as lung 
adenocarcinoma.
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