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Abstract 

Background: Chromosome is one of the most fundamental part of cell biology 
where DNA holds the hierarchical information. DNA compacts its size by forming loops, 
and these regions house various protein particles, including CTCF, SMC3, H3 histone. 
Numerous sequencing methods, such as Hi-C, ChIP-seq, and Micro-C, have been 
developed to investigate these properties. Utilizing these data, scientists have devel-
oped a variety of loop prediction techniques that have greatly improved their methods 
for characterizing loop prediction and related aspects.

Results: In this study, we categorized 22 loop calling methods and conducted 
a comprehensive study of 11 of them. Additionally, we have provided detailed insights 
into the methodologies underlying these algorithms for loop detection, categorizing 
them into five distinct groups based on their fundamental approaches. Furthermore, 
we have included critical information such as resolution, input and output formats, 
and parameters. For this analysis, we utilized the GM12878 Hi-C datasets at 5 KB, 10 KB, 
100 KB and 250 KB resolutions. Our evaluation criteria encompassed various factors, 
including memory usages, running time, sequencing depth, and recovery of protein-
specific sites such as CTCF, H3K27ac, and RNAPII.

Conclusion: This analysis offers insights into the loop detection processes of each 
method, along with the strengths and weaknesses of each, enabling readers to effec-
tively choose suitable methods for their datasets. We evaluate the capabilities of these 
tools and introduce a novel Biological, Consistency, and Computational robustness 
score ( BCCscore ) to measure their overall robustness ensuring a comprehensive evalua-
tion of their performance.

Keywords: Chromosome, Chromatin, Loop, DNA, Hi-C, Machine learning, Computer 
vision, Clustering, Probability, Classification

Background
DNA and chromosomes hold the most important information about a species. Scientists 
have been working to reveal the internal structure of chromosomes and DNA to answer 
questions about intra-chromosomal interaction, hierarchical properties, and DNA seg-
ments [1, 2]. Regulatory information is also important to solve real-life problems such 
as disease prediction and analysis [3]. Studies have revealed that each chromosome is 
positioned in a specific region known as a chromosome territory [4], characterized by 
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a specific pattern. In the nucleus (Fig.  1), a ring-shaped cohesin protein pulls DNA 
through its center to create a loop and is bounded by CTCF (called extrusion barrier) [5, 
6]. This loop results in the 3D structure of DNA in a small region inside the chromatin. 
Peaks are areas enriched in aligned reads due to protein binding from ChIP-sequencing 
or MDIP-sequencing [7, 8]. These loops and peaks are important regions from which 
we can answer questions about chromatin interaction and conformation [6, 9]. Various 
proteins have been found in these regions, such as cohesin, CTCF, and some H3 protein 
markers like H3K27ac and H3K27me3 [5, 10]. Scientists have also observed that Topo-
logically Associating Domains (TADs) around these loop regions are crucial for chromo-
some interaction [2, 11].

The evolution in C-technology was initiated by Dekker et al. when they expanded 
the Chromatin Conformation Capture (3C) method [1]. Subsequently, other 3C-based 
methods (Hi-C [12], ChIA-PET [13–15], Hi-TrAC [16]) were developed sharing some 
common methodology briefly presented in Fig.  2. Hi-C, a combination of 3C and 
next-generation sequencing techniques, represents a significant advance in genome 

Fig. 1 A brief overview of chromatin loops. The green-colored ring-shaped protein first pulls DNA through 
it creating a loop. CTCF as a binder or lock for this ring and widely known as CCCTC binding or transcription 
factor. TADs [11] are formed by the folding of chromatin, which is a complex of DNA, RNA, and proteins. The 
ring-shaped protein, which tightens the loops is called the cohesin [65]
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analysis. One of its main advantages is that it is not subject to a set of any primers 
[17–19]. It is an unbiased and unsupervised method [2, 12] for genome analysis, 
generating genome-wide contact maps [17]. It is widely used for analyzing genomic 
organizational principles, chromosome structure at the mitotic stage, and anatomi-
cal changes in human disease [2, 20–22]. The advent of 3C technology [17] and Hi-C 
technology [18] has propelled gene analysis in various directions and has influenced 
the development of numerous loop and peak calling techniques [23–42]. Although 
their primary aim is to identify loops and peaks, these methods offer a second-
ary advantage by providing information about gene regulation, such as interaction, 
structure, and protein reactions [16, 30, 42]. The development of machine learning 

Fig. 2 A brief overview of sequencing techniques. Chromosome conformation capture technologies: 
a Chromosome spatial organization analysis in 3C technology starts with cell population crosslinking 
and fragmentation with a restriction enzyme. Next, it goes through intramolecular ligation and 
reverse-crosslinking and performs semi-quantitative or quantitative PCR. b Chromosome spatial organization 
analysis in 4C technology starts with cell population crosslinking and fragmentation with restriction enzyme. 
Next, it goes through intramolecular ligation and reverse crosslinking. Next, it goes through digestion with a 
restriction enzyme and ligation, and finally, applies inverse PCR. c Chromosome spatial organization analysis 
in 5C technology starts with cell population crosslinking and fragmentation with a restriction enzyme. Next, it 
goes through intramolecular ligation and reverse-crosslinking and performs synthetic ligation and multiplex 
PCR. d Chromosome spatial organization analysis in ChIA-PET technology starts with cell population 
crosslinking and fragmentation with a restriction enzyme. Then, DNA linker ligation attracts nucleotides and 
performs reverse crosslinking and PCR. e Chromosome spatial organization analysis in Hi-C technology starts 
with cell population crosslinking and fragmentation with restriction enzyme. Then, it attaches biotin-labeled 
nucleotide, and goes through blunt ligation and PCR [1, 2, 10, 13, 17, 66, 67]. f First, HiC-TrAC creates a bridge 
on chromatin loops and splices DNA with restriction enzymes. Then, the process is fertilized with streptavidin 
beads. Finally, DNA fragments having a biotin label attach with a multiplexing adapter and go through a PCR 
amplification [9]
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algorithms has propelled 3D genome spatial architecture analyses into a new dimen-
sion [43–47]. Specifically in the loop detection domain, Scientists have developed 
different tools to predict loop regions, employing various machine learning-based 
approaches such as computer vision and classification based methods. Mustache [40], 
Chromosight [42], SIP & SIPMeta [41] have demonstrated the application of com-
puter vision algorithms to predict loop regions, marking a new era in genomic analy-
sis with many other tools.

In this manuscript, we present a comprehensive analysis of eleven loop detection 
tools based on Hi-C datasets. We evaluate how these tools perform in predicting loops, 
their recovery of biological features such as H3K27ac, RNAPII, and CTCF, the impact of 
sequencing depth, and discuss their strengths and weaknesses. Our analysis goes beyond 
theory, giving practical insights into how these tools can be used, including the necessary 
technical details and parameters. By merging these aspects, we identify overlaps, uncov-
ering connections, computational efficiency, similarities and results consistency in the 
studied techniques. To quantitatively measure the capabilities of these tools across these 
analysis categories, we created a novel aggregated score called the BCCscore to measure 
their overall robustness ensuring a comprehensive evaluation of their performance.

Results
We used GM12878 [48] (Human Lymphoblastoid) primary full genome Hi-C dataset at 
5 KB, 10 KB, 100 KB and 250 KB, and for specific case study, chromosome 1 and 6 repli-
cate and Knight–Ruiz (KR) normalized Hi-C dataset at 5 KB and 10 KB for our analysis. 
We prepared input data using HiCExplorer (cool), and sam and bam (bed and bedpe) 
tools. All methods were analyzed with their input and output details, and we presented 
their loop count across different resolutions. For assessments, we evaluated their over-
lap, peak and Aggregate Peak Analysis (APA) score, biological feature recovery (CTCF, 
H3K27ac, and RNAPII), the recovery performance and efficiency across sequencing 
depths, tools running time and memory usages dividing them into two subsections: 
Computational Analysis and Biological Validation in the following sections.

Computational analysis

This section is dedicated to analyzing results directly generated from the execution of 
loop detection algorithms. These analyses include the comparative analysis of the tools’ 
results across different resolutions, normalization algorithm, their overlap and repro-
ducibility, the peak and APA analysis, running time and memory consumption. The con-
ducted analysis aims to assess the comparative performance of these tools in terms of 
loop predictions and computational consistency. It is important to note that the primary 
objective of this section is to present, evaluate and compare the computational aspects 
of each tool and not to demonstrate biological accuracy or validity.

Loop detection within different resolutions and normalization

We successfully executed 11 out of 22 methods in our analysis, presenting their loop 
prediction capabilities (Fig. 3). The remaining 11 methods couldn’t be executed due 
to computational issues, with some failing to produce results or encountering errors 
during execution: ZipHiC [34] does not provide a clear instruction to run their script, 
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Fig. 3 A Illustration of chromatin loop size in terms of number of mean bins. Regression plots of chromatin 
loop caller tools calculating the slope of resolution and loop size (KB) versus loop size (# bins) and resolution 
where B overall regression and C categorical regression plot. HiCCUPS* and HiCExplorer** didn’t produce 
results at low resolutions and cLoops*** and cLoops2*** do not have resolution parameter



Page 6 of 33Chowdhury et al. BMC Bioinformatics          (2024) 25:123 

HMRF Bayesian caller [36] has no public source code repository, LOOPBit [23], Cool-
pup.py [39], DeepLoop [49] and FIREcaller [37] errored out during analysis with no 
results, HiC-ACT [28] and GOTHiC [32] did not produce any output upon execu-
tion, and we couldn’t access a R library for HiC-DC [33] or access its installation 
instruction.

In Table 1, our analysis shows that FitHiC2 predicts a higher loop count, suggesting 
probable chromosomal contacts, while cLoops predicts the fewest loops. Addition-
ally, FitHiChIP, Mustache, and LASCA predict a significant number of loops. Most 
tools tend to predict more loops at 5 KB and 10 KB (high) resolutions compared to 
100  KB and 250  KB (low) resolutions. Notably, cLoops2, HiCCUPS, and Mustache 
predict a higher loop count at 10 KB resolution, whereas other tools show more loops 
at 5 KB resolution. Interestingly, the loop count detected by Chromosight, LASCA, 
Mustache, Peakachu, and SIP significantly decreases at lower resolutions. HiCEx-
plorer and HiCCUPS do not generate results at lower resolutions; their minimum 
resolutions are 10 KB and 25 KB, respectively [27, 48]. Though cLoops and cLoops2 
does not provide any resolution parameter, we changed the eps, and cLoops produced 
same number of loop counts at different eps and cLoops2 produced different results.

We compared loop sizes (Fig. 3A) at 5 KB, 10 KB, 100 KB and 250 KB resolution 
using GM12878 primary dataset, revealing a trend across different sequencing depth. 
For most loop callers, the average number of bins in the loop decreases with resolu-
tion decrease (from high to low resolution). Conversely, the average loop sizes dem-
onstrated an opposite trend, increased with the resolution increase. Only cLoops2 
and SIP exhibited an increase in size (# of bins) with the resolution decrease. A linear 
regression plot (Fig.  3B) demonstrated that most of them fell within the regression 
boundary except cLoops2, LASCA, HiCExplorer and Mustache. The regression cat-
egory-wise plot further elucidated individual category information (Fig.  3C). Addi-
tional file 1: Figs. S1 and S2 shows the chromatin loop size and regression plots  for 
GM12878 primary, replicate and KR normalized dataset for chromosome 1 and 6. 
Further individual analyses of each tool are presented in the subsequent paragraphs, 
comparing results related to loop counts and input parameter robustness.

Table 1 Loop count of primary GM12878 at 5 KB, 10 KB, 100 KB and 250 KB resolution

HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** do not have a 
resolution parameter

Tools 5 KB 10 KB 100 KB 250 KB Average

Chromosight 15402 10542 562 85 6648

cLoops*** 763 763 763 763 763

cLoops2*** 18634 23986 282 2 10726

FitHiC2 463587 448482 378871 332268 405802

FitHiChIP 8554 39239 62101 21139 32758

HiCCUPS* 33196 41471 0 0 37334

HiCExplorer** 26895 23212 0 0 25054

LASCA 64975 33580 4876 1886 26329

Mustache 20113 68703 18277 266 26840

Peakachu 49668 28985 137 12 19701

SIP 8765 4114 167 383 3357
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LASCA [24] implements Weibull distribution mechanism for loop detection and 
enhancer-promoter interaction using Hi-C data across different types of organisms. 
Though they do not provide any command line facility to run, we used LASCA to 
identify loops at high and low resolution importing LASCA as a Python library. While 
analyzing LASCA, we counted 26329 average loop count at 5 KB, 10 KB 100 KB and 
250 KB resolution using primary GM12878 cell line. LASCA predicts more loops at 
5  KB resolution compared to other resolutions. We used replicate and normalized 
data (chromosome 1 and 6 at 5 KB and 10 KB) and found more loops at 5 KB resolu-
tion compared to 10 KB (Additional file 1: Tables S7 and S8).

HiCExplorer provides a robust toolset (such as normalization, data conversion, loop 
prediction) for chromosomal data analysis and performs well with high-resolution 
data. HiCExplorer provides an option to set user-specific p value and threads, threads 
per chromosome. We used default setting and got 25053 (average) loop count at 5 KB 
and 10 KB resolution, we also recorded the result obtained from the normalized and 
replicate data in Additional file 1: Tables S7 and S8. HiCExplorer does not produce 
results at low resolution (100 KB and 250 KB), and mentioned in their work that their 
algorithm accepts only 5 KB and 10 KB resolution data [27]. HiCExplorer also detects 
protein binding sites that correlate with detected loops and they used different types 
of dataset for their analysis such as ChIA-PET, HiChIP along with Hi-C.

FitHiC mainly identifies mid-range intra-chromosomal contacts considering the 
looping effect and biases and finds high-confidence contacts in insulator and hetero-
chromatin regions. FitHiC2 is an updated version of FitHiC where they minimized 
the mid-range intra-chromosomal contact analysis limitation. They introduced 
genome-wide contacts analysis in high resolution without sacrificing significant 
loops. FitHiC2 can analyze data at a specific resolution and has an option to spec-
ify the intra-chromosome or inter-chromosome analysis. It requires input files from 
other analysis tools such as HiCPro and they provided all the scripts for getting these 
inputs. FitHiC2 produces outputs of significant interaction contact and indirectly we 
can infer loops at that region. Here we used FitHiC2 in our analysis and it produces 
405802 contacts for GM12878 primary data at 5 KB, 10 KB, 100 KB and 250 KB reso-
lution filtering out with FRD = 1

total count as they suggested in their manuscript. While 
running their repository, we encountered a Python error which is also fixed in our 
fork repository and we uploaded a docker image for further analysis.

FitHiChIP [31] is mainly focused on HiChIP/PLAC-seq data where they analyzed 
non-uniform coverage by scaling contact counts which ultimately produces loops 
even at 2.5 KB resolution. This tool is a versatile tool providing differential loop analy-
sis option. During our analysis, FitHiChIP produces 32758 contact loops from pri-
mary GM12878 at different (5 KB, 10 KB, 100 KB and 250 KB) resolution using 1e−6 
threshold of p value as they suggested. FitHiChIP accepts HiCPro valid pair files, bin 
interval and contact matrix, bed, cool, and hic formatted files. It requires a configura-
tion file where we can pass all the settings. In our analysis, we used chromosome-wise 
cool files and considered peak-to-all interaction analysis using coverage bias correc-
tion setting. Though it does not support chromosome-wise analysis, it has a param-
eter for passing the bin size where user can specify their intended resolution in full 
form.
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Peakachu [38] is a Random Forest classifier and provides pre-build models for different 
combinations of intra reads and high confidence for different types of datasets such as 
Hi-C, Micro-C, HiChIP, etc. They accept specific chromosome numbers and resolutions 
which facilitate the user to analyze as needed. Though it provides balancing parameter 
for using ICE or KR matrix, it did not accept any specific parameter. In our analysis, 
we used KR normalization data from HiCExplorer along with primary data. From our 
primary data analysis, we got 19700 interactions using q-value < 1e−5 on average for 
the whole genome. In addition to specific chromosome analysis, they have the option to 
analyze the whole genome. Peakachu can recover most of the loops from protein-cen-
tric datasets such as ChIP and ChIA-PET, and they also showed short-range interaction 
recovery in their analysis result.

Mustache [40] utilized the scale-space theory of computer vision to detect chroma-
tin loops at different sequencing depths of Hi-C and Micro-C data. Mustache provides 
normalization techniques for users for hic, cool and bias files for text-based contact map  
along with process, thread, threshold (p value), resolution, and chromosome-wise analy-
sis. Mustache detects 26840 loops on average at 5 KB, 10 KB, 100 KB and 250 KB resolu-
tions in our analysis. Mustache can analyze chromosomes at 1 KB resolution Micro-C 
and 5 KB resolution Hi-C data.

Chromosight [42] implemented pattern recognition technique to detect loops. From 
our analysis, Chromosight detects 6648 at 5 KB, 10 KB, 100 KB and 250 KB resolutions 
on average, and it predicts more loops at 5 KB resolution compared to 10 KB, 100 KB 
and 250 KB resolution, even using replicate and normalized dataset (Additional file 1: 
Tables S6, S7 and S8). It can identify borders, centromeres, etc and accepts thread 
parameter. Chromosight analyzes the whole genome and it does not have any parameter 
for specific resolution. We provided a specific chromosome contact map at a specific 
resolution in our analysis. It provides three normalizations (auto, raw, and forced) from 
the user and has inter chromosomal analysis option.

SIP [41] developed to identify missing loops from previous loop callers considering 
the noise and sequencing depth. SIP can detect more loops at 5 KB resolution compared 
to 10 KB, 100 KB and 250 KB resolution. Overall, SIP identified 3357 loops on average 
using GM12878 cell. SIP provides UI for users flexibility. It accepts resolution, CPUs, 
normalization (VC, VC_SQRT, and KR), FDR, and threshold value parameters. In our 
analysis, we used cool files, but it support hic and processed files as input. It can analyze 
deeply sequenced genomes even at 1 KB resolution.

cLoops [25] and cLoops2 [26] are DBSCAN based loop detection algorithm. cLoops 
calculates the distance between two neighbors describing the distance between two 
neighbors and analyzes pair-end tags without considering resolution to identify loops 
with O(Nlog(N)) running time in addition to parallel computation. They provides dif-
ferent analysis plot scripts (heatmap, data quality plots) and chromosome-wise analy-
sis. cLoops2 is the updated version of cLoops with an optimized DBSCAN clustering 
algorithm with running time O(N) and provides loop and peak calling algorithm in dif-
ferent ways along with differential loop and domain calling. cLoops2 was developed for 
detecting loops on Hi-TrAC/TrAC looping data. It can still be used for loop detection 
for ChIA-PET and HiChIP data like cLoops. cLoops2 provides chromosome-specific 
analysis but we cannot provide specific resolution to it. Though their loop detection is 
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comparably close to other methods, cLoops2 (10726) predicts more loops compared 
to cLoops (768) in our analysis (Additional file  1: Tables S6, S7 and S8). Like cLoops, 
cLoops2 provides chromosome-wise genomic analysis regardless of any resolu-
tion. cLoops2 has analysis scripts such as aggregated peaks, domains, etc. cLoops and 
cLoops2 do not provide any normalization parameter in their command line. Users can 
specify the number of CPUs to be used in cLoops2 and it has a data conversion tool to 
other formats.

HiCCUPS [48] provides different versions to run on CPU and GPU. They provide in-
tool normalization techniques along with a specific chromosome and resolution. Users 
can specify thread, threshold value (FDR), and merging distance. During our analysis, we 
used default parameters, and on average, it predicts 37333 loops at 5 KB and 10 KB and 
predicts the maximum number of loops at 10 KB resolution rather than 5 KB resolution 
even using replicate and normalized dataset (Additional file  1: Tables S7 and S8). We 
limited the highest resolution for HiCCUPS to 25 KB resolution as we could not gener-
ate a result beyond this resolution.

Overlap and reproducibility

In this study, we recognize the significance of comparing Raw and Normalized experi-
ments, in addition to Replicate datasets, for a comprehensive evaluation of the effects 
of normalization and replication on loop detection tools. Our primary goal is to assess 
the computational consistency or compromise of loop identification under normali-
zation and to discern differences observed with replicate data sourced from the same 
dataset. For empirical analysis, we executed all the methods using the GM12878 data-
set to observe the overlap (Fig. 4-left). For ease of comparison, we divided our dataset 
into various combinations, involving chromosomes 1 and 6 at 5 KB and 10 KB resolu-
tion. Notably, cLoops and cLoops2 accept bedpe files and do not allow any normaliza-
tion parameter, leading our analysis without normalization data. For the 5 KB data on 
chromosome 6, FitHiC2 exhibited a 95% overlap among primary, replicate, and KR nor-
malized data, indicating high reproducibility. In contrast, cLoops, cLoops2, and FitHi-
ChIP displayed the lowest overlap, nearly 0%. On average, Chromosight, HiCCUPS, and 
SIP exhibited 25% - 46% overlap. Chromosight showed more reproducibility between 
primary and replicate datasets, while SIP displayed more reproducibility between nor-
malized and replicate data. Chromosight, FitHiC2, and HiCCUPS demonstrated higher 
reproducibility rates across our dataset combinations.

For further analysis, we conducted the same assessment on chromosome 1 at 5 KB and 
10 KB, and chromosome 6 at 10 KB (Additional file 1: Figs. S3, S4 and S5). FitHiC2 con-
sistently showed overlaps above 90%, reaching almost 100% for chromosome 6 at 10 KB. 
In contrast, FitHiChIP exhibited no overlap, while cLoops and cLoops2 showed around 
1% overlap. Chromosight and Mustache displayed an opposite trend for chromosome 
1 and 6, increasing for chromosome 1 at 5  KB and decreasing for chromosome 6 at 
5 KB. HiCCUPS consistently demonstrated overlaps of over 45% on 10 KB resolution. 
Peakachu showed significant overlap on chromosome 6 at 10 KB, ranging from 4.61% to 
50.6%, and HiCExplorer, LASCA, and SIP consistently displayed overlaps ranging from 
8% to 40% throughout the analysis.
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Running time and memory consumption on different resolution within different methods

We compared the average running time and memory consumption (Fig.  12) of every 
individual tool to further assess their robustness. We ran all our tools on an Ubuntu 
Server operating on Intel Xeon E7-4870 @ 2.40GHz with 160 cores and 1038GB mem-
ory. Although each tool accepts different types of parameters, such as threads, chro-
mosomes, and resolution, we attempted to compare them on the same scale using their 
default settings. The average running time and memory consumption on our server is 
calculated and the detailed running times and memory consumption are provided 
in Additional file 1: Tables S1, S2, S3, S4 and S5. We observed that Chromosight took 
the least amount of time, while cLoops2 took the highest amount of time. In compari-
son, SIP, HiCCUPS, Peakachu, Chromosight, HiCExplorer and Mustache ran within a 
shorter period, while LASCA, FitHiC2, FitHiChIP and cLoops ran within comparable 
time range (Fig. 12A). While analyzing memory consumption, we observed that FitHiC2 

Fig. 4 Overlap, APA, and Peak plots (left to right) using primary GM12878 (chromosome 6 at 5 KB). FitHiC2 
overlaps 95.3% across the analysis. Apart from that, HiCCUPS has the highest amount (45.9%) of overlap 
across three different datasets and FitHiChIP does not overlap any loops. SIP (30.6%), Mustache (19.1%), and 
Chromosight (25.4%) have a significant amount of overlap. cLoops and cLoops2 produce results only for 
primary and replicate data and the overlap percentage is around 1. FitHiC2 shows enrichment in different 
regions and has the strong enrichment compared with other tools. cLoops, cLoops2, and FitHiChIP have 
enrichment in the middle vertical region and they are almost in the same shape. HiCCUPS, SIP, Peakachu, and 
HiCExplorer have enrichment in the middle region. Peakachu, LASCA, and Chromosight have enrichment in 
the left lower corner from the center and Mustache shows enrichment in the center pixel. Though FitHiC2 
creates a diagonal dark straight line marking peaks, Mustache and HiCExplorer mark the highest number of 
peaks. Chromosight, LASCA, and SIP mark peaks in the upper left and lower right corners near 20 M and 25 M 
region. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** 
do not have a resolution parameter
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consumed least amount of memory while Chromosight used the highest amount of 
memory. On average, cLoops2, FitHiChIP, Mustache and Peakachu used a satisfactory 
amount of memory compared to other tools (Fig. 12B).

Peak and APA analysis

Peaks represent regions with the highest observed interactions, contributing to the for-
mation of loops within chromatin. In our analysis, we focused on the 20–25 M region 
to visualize peaks using loop lists from various tools. Fig.  4-right displays peaks on 
chromosome 6 at 5 KB resolution for primary GM12878 data. FitHiC2, Mustache, and 
HiCExplorer exhibit the highest number of peaks in this specific region. Chromosight, 
LASCA, and SIP mark peaks in the upper left and lower right corners near the 20 M and 
25 M regions. FitHiC2 marks the highest number of peaks, forming a diagonal straight 
line for every dataset combination. We analyzed peak regions for chromosome 1 at 5 KB 
and 10 KB, and chromosome 6 at 10 KB resolution (Additional file 1: Figs. S6, S7, S8, S9, 
S10, S11, S12, S13, S14, S15 and S16). For chromosome 1 at 5 KB and 10 KB, all tools 
preserve almost the same peaks, except for Mustache. For primary and replicate data, 
Mustache marks more peaks at 5 KB compared to 10 KB, which is the opposite for KR 
normalized data.

To quantify the loop prediction, we conducted aggregated peak analysis (APA) across 
the results. APA measures the Hi-C signal enrichment over an entire peak list, provid-
ing insights into the quality of loop lists, especially at lower resolutions. Submatrices are 
calculated from the Hi-C contact map file, and the sum of these submatrices produces 
an APA matrix. An APA score greater than 1 indicates enrichment, with darker colors 
in the heatmap indicating higher enrichment. Figure  4-middle shows APA plots for 
chromosome 6 at 5 KB resolution using GM12878 primary data. FitHiC2 shows strong 
enrichment at different location with APA score 28.1 and cLoops (5.12), cLoops2 (3.98), 
FitHiChIP (4.89), and SIP (3.7) exhibit the highest enrichment in the center of the plots. 
Except LASCA ( < 1 ), all the tools show enrichment greater than one (Additional file 1: 
Table S19). Furthermore, we performed APA analysis for chromosome 1 (5 KB and 10 
KB) and chromosome 6 (10 KB) using primary, KR normalized, and replicated GM12878 
data (Additional file 1: Figs. S17, S18, S19, S20, S21, S22, S23, S24, S25, S26 and S27). For 
normalized data, using chromosome 6 at 5  KB, all tools scored greater than one and 
FitHiC2 (36.9) has the highest score (Additional file 1: Table S10). HiCCUPS (2.12), SIP 
(2.72), Mustache (1.52), Chromosight (1.19), and Peakachu (1.26) show gradual enrich-
ment around the center. For 10  KB data, SIP (2.77) produces a stronger central pixel 
color compared to 5 KB resolution data, whereas other tools produce prominent plots 
at 5 KB resolution. HiCExplorer produces almost identical visual plots for primary and 
replicate, KR normalized plots, and they are highly enriched at the central pixel of heat-
maps. Throughout the analysis, FitHiC2 (83.73) shows strong and void enrichment at 
different focal points with robust enrichment at various locations (Additional file  1: 
Tables S9, S10 and S11).

Biological validation

The analysis conducted in this section serves to validate the computational results 
produced by each of the loop prediction algorithms. The assessments performed here 
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include: evaluation of CTCF, RNAPII and H3k27ac recovery rate, recovery efficiency, 
and recovery performance across sequencing depth. These analyses aims to demonstrate 
both the biological validity of detected loops and the robustness of the tools’ results 
under varying depth of reads coverage in an Hi-C experiment.

CTCF, H3K27ac and RNAPII recovery

To assess the robustness of each tool detecting relevant biological features, we cal-
culated the recovery of specific biological features namely CTCF [40, 42], H3K27ac 
[25], and RNAPII [29] within the loops and scrutinized the results (Eq. 3). CCCTC-
binding factor (CTCF) is a transcription factor that plays a crucial role in regulat-
ing the spatial organization of chromatin. It acts as an insulator protein, helping to 
define boundaries between different chromatin domains. Histone 3 Lysine 27 Acetyla-
tion (H3K27ac) are proteins around which DNA is wound to form nucleosomes and 
are often found near the promoters of actively transcribed genes. RNA Polymerase II 
(RNAPII) is an enzyme responsible for transcribing DNA into RNA during the pro-
cess of transcription. The presence of RNAPII is a key indicator of active transcrip-
tion. Each of these molecular components serves as distinctive markers or features for 
the nuanced analysis of chromatin loops. Evaluating the recovery of CTCF, H3K27ac, 
and RNAPII becomes paramount, signifying the proficiency of the analytical tools 
in precisely identifying or predicting these features within the intricate landscape 
of chromatin organization. We conducted comparisons in combination with CTCF, 

Fig. 5 CTCF recovery rate using primary GM12878 at 10 KB. HiCCUPS recovers most of the CTCF, and LASCA 
recovers the least fraction of CTCF. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and 
cLoops*** and cLoops2*** do not have a resolution parameter
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H3K27ac, and RNAPII using GM12878 primary full genome dataset at 5 KB, 10 KB, 
100 KB and 250 KB (Figs. 5, 6, 7 and Additional file 1: Figs. S28, S29, S30, S31, S32, 
S33, S34, S35 and S36).

At 10 KB resolution data (Figs. 5, 6, 7), FitHiC2 exhibits an enhancement in RNAPII, 
which is the highest among other tools for primary datasets (Fig. 7). HiCCUPS recov-
ers the highest CTCF and H3K27ac at 10 KB resolution (Figs. 5, 6). FitHiChIP, using 
GM12878 primary data, recovers more RNAPII at 10  KB resolution compared to 
HiCCUPS (Fig. 7). Mustache recovers a substantial amount across the three biologi-
cal features at 5  KB resolution compared to 10  KB, 100  KB and 250  KB resolution 
(Additional file  1: Figs. S28, S29, S30, S31, S32, S33, S34, S35 and S36). In the case 
of KR normalized data, HiCCUPS and Peakachu recover almost the same number 
of loops, except for RNAPII at 10 KB resolution where they exhibit similar recovery 
rates (Additional file 1: Figs. S44, S45, S46 and S47). FitHiC2 recovers the majority of 
RNAPII at 10 KB resolution from normalized data, displaying the highest number of 
outlier points at 10 KB resolution (Additional file 1: Figs. S45, S46 and S47). Mustache 
recovers a noteworthy number of loops, positioning itself between HiCCUPS and 
Peakachu in most cases (Additional file 1: Figs. S39, S40, S41, S42, S43, S44, S45, S46, 
S47, S48, S49, S50 and S51). cLoops recovers the majority of CTCF at 5 KB, and HiC-
CUPS and Mustache recover most of the H3K27ac from replicate data (Additional 
file 1: Figs. S40, S42, S44, S46, S48 and S50). SIP, Chromosight, and HiCExplorer con-
sistently exhibit competence in almost all cases. In summary, FitHiChIP, HiCCUPS 

Fig. 6 H3K27ac recovery recovery using primary GM12878 at 10 KB. HiCCUPS recovers most of the H3K27ac 
and LASCA recovers the least fraction of H3K27ac. HiCCUPS* and HiCExplorer** didn’t produce results at low 
resolutions and cLoops*** and cLoops2*** do not have a resolution parameter
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and FitHiC2 demonstrate the highest recovery of CTCF, H3K27ac, and RNAPII bio-
logical markers or features in the loops identified.

Overall across the four resolutions considered for primary GM12878 genome, FitH-
iChIP, HiCCUPS, and FitHiC2 and FitHiChIP exhibits the highest recovery for CTCF 
(0.25), H3K27ac (0.45) and RNAPII (0.18) respectively, while LASCA shows the lowest 
amount of recovery rate in all three cases. Notably, Mustache, Peakachu, and Chromo-
sight also demonstrate substantial recovery rate. These findings were further validated 
specifically for chromosome 1 and 6 at 5 KB and 10 KB resolution (Additional file 1: Figs. 
S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, 
S46, S47, S48, S49, S50 and S51).

To visualize the biological significance within the loop area, we generated a ChIP-seq 
signal arrangement plot (Fig. 8) for each individual category, including the contact map, 
gene annotation, CTCF motif orientation, ChIP-seq signals of CTCF, SMC3, RAD21, 
H3K27me3, and H3K27ac. At the bottom, we included loops from different individual 
categories. Additionally, we incorporated separate categorical ChIP-seq signal plots for 
four tools in Additional file 1: Figs. S52, S53, S54 and S55. We selected a random region 
(129.7–131.6M and 62.4–62.5M) for all these plots and marked their biologically sig-
nificant areas according to their loops. Figure 8 shows that SIP and Chromosight overlap 
in some areas, while Mustache and Chromosight exhibit a high signal of CTCF, SMC3, 
H3K27ac, H3K27me3, and RAD21 loops. HiCCUPS, cLoops, cLoops2, and LASCA 
overlap in some regions. HiCCUPS, LASCA, and cLoops show high signals for CTCF, 

Fig. 7 RNAPII recovery rate using primary GM12878 at 10 KB. FitHiC2 recovers most of the RNAPII and 
cLoops2 recovers the least fraction of RNAPII. HiCCUPS* and HiCExplorer** didn’t produce results at low 
resolutions and cLoops*** and cLoops2*** do not have a resolution parameter
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SMC3, RAD21, H3K27ac, and H3K27me3 in some regions within this randomly selected 
region, and Peakachu demonstrates signal enrichment. FitHiC2, predicting a large num-
ber of contacts across the analysis, shows a high ChIP-seq signal around the selected 
region. HiCExplorer and FitHiChIP display ChIP-seq signals in some regions, and ChIP-
seq signal enrichment from all these tools validates our recovery analysis with a visual 
representation.

Fig. 8 Enrichment signal representation in 129.7–131.6 M and 62.4–62.5 M for chromosome 6 (primary 
GM12878). This plot depictes gene annotation, CTCF motif orientation, and ChIP signals for CTCF, SMC3, 
RAD21, H3K27me3, and H3K27ac below the contact map (Plotted using HiGlass). Below this biological 
features enrichment data, we illustrated the loops identified by each of the algoritms across different 
categoiries and the vertical line marks the highest enrichment point for the signals identified
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Recovery efficiency analysis across loop callers

In assessing the efficacy of various loop detection methods, a notable observation arises 
when comparing their performance metrics. Some methods demonstrate a commend-
able ability to recover loops, achieving high rates of successful detection. However, a 
closer examination reveals that these methods often come hand-in-hand with a higher 
number of overall loop counts e.g. FitHiC2. On the other hand, there are alternative 
methods that exhibit comparable levels of recovery success while maintaining a nota-
bly lower count of detected loops e.g. HiCCUPS. This dichotomy in results prompts a 
crucial consideration in the evaluation process. Traditional metrics that solely empha-
size recovery rates or loop counts may not encapsulate the nuanced performance of 
these methods adequately. Therefore, in assessing the biological correctness of the loops 
detected across the different tools, especially considering their varied success rates stem-
ming from diverse counts of detected loops, it is essential to account for the potential 
impact of variations in the spread of loop detection counts. The inherent variability 
introduced by these diverse counts requires a careful consideration of the metrics used 
for assessment. To ensure a fair evaluation of correctness, we propose utilizing a recov-
ery efficiency metric (REM) (“Recovery efficiency metric” section). This metric quanti-
fies the recovery rate relative to the number of loops predicted. Consequently, regardless 
of the recovery rate for a biological feature, normalization is applied to prevent certain 
methods from disproportionately influencing the analysis by introducing excessive loops 
or mitigating the impact of approximations (Fig. 9 and Additional file 1: Figs. S37, S38 
and S39). In our comprehensive investigation of the REM values for CTCF, H3K27ac, 
and RNAPII recovery across various tools, cLoops emerged as the leader with the high-
est REM, while LASCA displayed the least efficiency. A notable distinction lies in the 
absence of a resolution parameter in both cLoops and its updated version, cLoops2. This 
becomes particularly salient as our analysis was conducted at a fixed 10  KB resolution. 
This feature distinguishes cLoops2, as it directly analyzes paired-end tags (PETs) to iden-
tify candidate peaks and loops, estimating statistical significance with a permuted local 
background [25, 26]. Consequently, our analysis revealed a consistent loop count with 
cLoops, in contrast to other tools that rely on resolution-dependent contact matrices 
for loop detection. It is imperative to interpret the results in the Fig. 9 and Additional 
file 1: Figs. S37, S38 and S39 cautiously, considering this critical divergence in methodol-
ogy, where cLoops operates independently of resolution-specific data for peak detection, 
while others do.

Evaluation of recovery performance across sequencing depth

To further validate the results of the tools and assess their performance under varying 
read coverages, specifically measuring sensitivity at high versus low depths of read cov-
erage, we conducted a sequencing depth analysis using the recovery efficiency metric 
outcomes from the preceding section. Our analysis focused on GM12878 primary data, 
where we determined the recovery efficiency rate at high-sequencing depths (5 KB and 
10 KB) in comparison to low-sequencing depths (100 KB and 250 KB).

We systematically calculated the REM value for key genomic features- CTCF, 
H3K27ac, and RNAPII at both high and low sequencing depths. This quantitative 
approach provides a comprehensive depiction of how consistently the tools make 
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predictions across different depths. By examining the recovery efficiency of specific 
genomic elements, we gain insights into the tools’ reliability and accuracy across a spec-
trum of sequencing depths, contributing to a thorough understanding of their perfor-
mance characteristics in diverse genomic scenarios (Fig. 10).

Fig. 9 Recovery efficiency rate using primary GM12878 at 10  KB. cLoops has the highest recovery 
efficiency rate (REM) and LASCA has the least REM across CTCF, H3K27ac and RNAPII recovery. HiCCUPS* 
and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** do not have a 
resolution parameter
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cLoops consistently exhibited robust recovery performance across diverse sequencing 
depths, encompassing both high and low resolutions. As previously elucidated, the utili-
zation of PETs by cLoops for loop detection underscores the stability of results observed 
across varying sequencing depths (Fig. 10). Across key genomic features, Chromosight 
shows the highest REM value at a low sequencing depth. Meanwhile, at high sequenc-
ing depths, SIP records a higher REM value compared to most methods for CTCF and 
H3K27ac. In the case of RNAPII, FitHiChIP records a higher REM compared to other 

Fig. 10 Recovery efficiency across sequencing depth (CTCF, H3K27ac, and RNAPII) using primary GM12878. 
cLoops showed the highest recovery consistency across high (5 KB, 10 KB) and low (100 KB, 250 KB) 
sequencing depths. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and 
cLoops2*** do not have a resolution parameter



Page 19 of 33Chowdhury et al. BMC Bioinformatics          (2024) 25:123  

tools at a high sequencing depth. It is worth noting that, HiCExplorer and HiCCUPS 
lack results at low sequencing depths, as they do not support this particular condition 
[27, 48]. This nuanced analysis provides valuable insights into the tools’ proficiency and 
limitations across diverse sequencing depths, offering a scientific understanding of their 
performance in recovering distinct genomic features. The difference between the REM 

Fig. 11 Recovery consistency across sequencing depth (5 KB, 10 KB, 100 KB, 250 KB) using primary GM12878. 
Here, higher REM difference value refers to lower consistency and vice versa. A lower score is considered 
better. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** 
do not have a resolution parameter
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values between the sequencing depth represents the consistency of each of the tools 
(“Consistency score” section) is provided in Fig. 11. Consequently, a lower value is indic-
ative of superior consistency performance by the tools across various sequencing depths 
(Fig. 11, Tables 2).

Discussion
Recent advancements in 3C-based sequence technology, as highlighted by Han et  al. 
[17], have significantly expanded genome analysis capabilities. Loop prediction stands 
out as a pivotal aspect due to its relevance to various biological factors, including his-
tone protein markers, intra and inter-chromosomal contacts, CTCF, and TAD regions. 
Over the past few years, a plethora of loop prediction tools has emerged, demonstrat-
ing proficiency across diverse biological aspects and datasets. In this study, we scruti-
nized 22 loop-calling tools, categorizing them into five distinct groups. Out of these, we 

Table 2 Consistency score using CTCF, H3K27ac and RNAPII recovery between high and low 
resolution

HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** do not have a 
resolution parameter

Tools CTCF (%) H3K27ac (%) RNAPII (%) Consistency score 
(%)

Chromosight 0.00 0.00 0.00 0.00

cLoops*** 100.00 100.00 100.00 100.00

cLoops2*** 99.70 95.35 98.20 97.75

FitHiC2 97.74 98.84 99.41 98.66

FitHiChIP 72.33 97.57 97.15 89.02

HiCCUPS* 81.07 85.19 91.95 86.07

HiCExplorer** 88.37 90.91 97.48 92.25

LASCA 90.06 94.55 94.63 93.08

Mustache 88.24 89.69 97.80 91.91

Peakachu 63.93 94.88 93.37 84.06

SIP 73.86 73.15 93.00 80.00

Table 3 Biological score averaging CTCF, H3K27ac and RNAPII recovery efficiency rate

HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** do not have a 
resolution parameter

Tools CTCF (%) H3K27ac (%) RNAPII (%) Biological score (%)

Chromosight 66.0440723 80.81 54.12 66.99

cLoops*** 100 100.00 100.00 100.00

cLoops2*** 8.311488926 1.88 0.00 3.40

FitHiC2 0 0.00 0.70 0.23

FitHiChIP 28.26098576 17.81 19.30 21.79

HiCCUPS* 18.46754736 16.26 7.33 14.02

HiCExplorer** 10.76000424 9.68 1.62 7.35

LASCA 4.244814356 3.00 2.48 3.24

Mustache 4.687381023 5.15 0.15 3.33

Peakachu 28.60921051 6.65 5.26 13.51

SIP 21.96560705 14.75 2.88 13.20
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successfully ran 11 tools using the same dataset and environment. Our benchmarking 
involved a comprehensive evaluation of biological features, encompassing the recov-
ery results of CTCF, H3K27ac, and RNAPII, as well as considerations of running time, 
memory usages, computational robustness, and consistency. Each tool’s default param-
eters were considered within the same dataset to ensure a fair alignment. Every tool has 
its unique capabilities; hence, we assigned a percentage score of every tool according 
to their performance during our analysis (Fig. 13). The assessment covers three distinct 
categories:

• Biological features This includes the recovery of CTCF, H3K27ac, and RNAPII. 
The tools were evaluated based on how well they captured these biological features 
(Recovery Efficiency Metric). Combining these recoveries provide an overall assess-
ment of the biological robustness of the tools. cLoops exhibited notable results in 
CTCF, H3K27ac and RNAPII recovery (Table 3). Chromosight and FitHiChIP also 
recorded significant results.

• Consistency This is evaluated using sequencing depth analysis. Tools are assessed 
for how consistently they perform across different sequencing depth datasets. We 
considered CTCF, H3K27ac and RNAPII recovery efficiency rate across high-
sequencing depths (5  KB and 10  KB) in comparison to low-sequencing depths 
(100  KB and 250  KB) data. cLoops showed highest consistency, and cLoops2, 
FitHiC2, HiCExplorer, LASCA and Mustache demonstrated comparable consist-
ency (Fig. 11 and Table 2).

• Computational efficiency This category involves two key metrics, the memory 
usages and running time. The running time analysis revealed that Chromosight, 
Mustache, Peakachu and SIP performed exceptionally well (Fig. 12A). The mem-
ory consumption analysis illustrated that FitHiC2, FitHiChIP and Peakachu per-
formed exceptionally well (Fig.  12B). Combining the memory usages and run-
ning time, we introduced a computational robustness metric, where Peakachu 
demonstrated prominence. Except cLoops, cLoops2, HiCCUPS and Chromosight 
(Table  4), all other tools yielded commendable results in the computational cat-
egory.

We used the BCCscore to measure the overall performance of the tools. The BCCscore 
calculates the weighted average among the categories and provides an overall perfor-
mance assessment covering biological, computational, and consistency metrics. Based 
on our analysis, cLoops, FitHiChIP and Peakachu stood out as the most significant tools 
(Fig. 13). Table 5 provides a summary of the top-performing tools across various catego-
ries. In our analytical framework, we employ a three-tiered scoring system to catego-
rize tools based on their performance, with three stars denoting excellence, two stars for 
good performance, and one star for fair performance. To arrive at this assignments in 
the context of this study, we meticulously organized the eleven methods from the high-
est performing to the least, subsequently assigning three stars to methods occupying 
positions 1–3, two stars to those in positions 4–7, and one star to methods in positions 
8–11. The table includes running time as a separate metric to highlight the most efficient 
tools. Additionally, we benchmarked the tools parameters based on their simplicity and 
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Fig. 12 A Average running time and B Memory usages taken by all loop caller tools. Chromosight took the 
least amount of time and highest amount of memory. cLoops2 took the highest amount of time and FitHiC2 
took the least amount of memory. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and 
cLoops*** and cLoops2*** do not have a resolution parameter

Fig. 13 Performance of all the algorithms across the Biological, Computational and Consistency score 
metrics. The BCCscore representation shows the weighted aggregated performance score for all the loop 
callers. Every score is calculated according to the description provided in the Methods section for BCCscore 
calculation, and scaled to 100 for percentage representation, since the scores are the range 0–1. The scores 
represent the domain performance and BCCscore represents the overall aggregated performance of every 
individual tool. HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and 
cLoops2*** do not have a resolution parameter



Page 23 of 33Chowdhury et al. BMC Bioinformatics          (2024) 25:123  

flexibility, noting variations in tool requirements. Some tools supports muilti-threads, 
normalization, multi-resolution and individual chromosome analysis. Tools that dem-
onstrated flexibility with a variety of parameters received higher star ratings. Memory 
usage was not recorded due to varying tool configurations.

Conclusion
Many algorithms for loop and peak analysis have been developed and proposed in recent 
decades; and each with its unique strength. These tools have been applied to various 
datasets, including ChIA-PET, Hi-TrAC, and Hi-C. Throughout our analysis, we suc-
cessfully executed 11 out of the 22 methods that we examined. We found that the num-
ber of loop counts differs between tools, even when the data and resolution are the same. 
They also differ in same chromosome at different resolution. Also, the biological feature 

Table 4 Computational score averaging running time and memory usages

HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions and cLoops*** and cLoops2*** do not have a 
resolution parameter

Tools Running time (%) Memory (%) Computational score (%)

Chromosight 100.00 0.00 50.00

cLoops*** 90.20 56.02 73.11

cLoops2*** 0.00 86.77 43.39

FitHiC2 87.43 100.00 93.72

FitHiChIP 84.23 93.93 89.08

HiCCUPS* 98.57 18.01 58.29

HiCExplorer** 96.72 55.06 75.89

LASCA 81.45 63.26 72.36

Mustache 98.78 86.35 92.57

Peakachu 98.95 89.95 94.45

SIP 98.74 81.97 90.36

Table 5 Representation of every tool performance in different categories

Star (*) symbol tells the performance category of every individual tools. Tools are categorized in terms of performance in 
three categories: Excellent (***), Good (**), and Fair (*). HiCCUPS* and HiCExplorer** didn’t produce results at low resolutions 
and cLoops*** and cLoops2*** do not have a resolution parameter

Tools Biological feature 
(CTCF, H3K27ac, 
RNAPII)

Consistency Robustness 
in 
parameters

Computational 
efficiency: running 
time

Computational 
efficiency: 
memory

LASCA * ** * * **

cLoops*** *** *** ** ** *

cLoops2*** * *** * * **

HiCExplorer** ** ** *** ** *

FitHiC2 * *** * * ***

FitHiChIP *** ** * * ***

Peakachu ** * ** *** ***

Mustache * ** *** *** **

Chromosight *** * * *** *

SIP ** * ** ** **

HiCCUPS* ** ** *** ** *
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extraction performance evaluation showed that different tools hold distinct biological 
features that are not symmetric (Figs. 5, 6, 7, 9). Hence, there are variability in the types 
of biological features emphasized or recognized by different tools. Furthermore, certain 
tools computationally exhibited a greater degree of loop detection overlap across pri-
mary, replicate, and normalized dataset for a specific chromosome at a particular reso-
lution compared to others (Fig. 4). While we have emphasized in this study that more 
loops do not necessarily indicate correctness, we proceeded with a biological evalua-
tion to assess the consistency across sequencing depths (Figs.  10, 11). Our evaluation 
revealed notable consistency for certain tools, underscoring their reliability in capturing 
structural features within genomic data. Tools such as cLoops, and FitHiC2 exhibited 
higher percentages in the consistency evaluation, suggesting stronger reproducibility in 
their predictions. This observation reinforces the notion that these tools possess a higher 
degree of reliability in consistently capturing genomic structural features, as evidenced 
by our biological assessment. To provide an overall understanding of the performance 
of the different algorithms, we introduced the BCCscore to serve as a quantitative meas-
ure covering the biological, computational, and consistency metrics. Using this metric, 
(a) we identified the top three algorithms, which exhibited a significant enrichment of 
biological features such as CTCF, H3K27ac, and RNAPII, showcasing their biological 
effectiveness. (b) Additionally, we determined the most consistent tool across sequenc-
ing depths, highlighting its reproducible performance in capturing biologically relevant 
information. (c) Furthermore, we pinpointed the most computationally effective method, 
considering factors like memory usage and running times.

Overall, this study stands as a novel comprehensive examination of Hi-C loop call-
ing algorithms, offering a meticulous benchmarking assessment across various metrics. 
This analysis not only contributes valuable insights for the refinement of existing algo-
rithms but also serves as a practical guide for future algorithm development and a useful 
resource for prospective users. In the ongoing development of new Hi-C loop calling 
algorithms, it is imperative to prioritize addressing issues related to data format, repro-
ducibility, biological features, and bias. While acknowledging that performance is con-
tingent on implementation, specific goals, and various factors, placing emphasis on these 
critical aspects can significantly enhance the robustness and reliability of outcomes. 
The diverse set of metrics employed in our benchmarking process ensures a nuanced 
understanding of algorithmic performance under various conditions. Hence, providing a 
groundwork and valuable resource for future development in genomic research.

Methods
Many tools and techniques have been developed for loop and peak detection. These 
algorithms have used different methods and approaches in their implementations based 
on the underlying objectives and hypotheses. Here, we categorized the tools into five 
distinct categories (Table 6) according to their base algorithm and we briefly describe 
them. All the tools are described briefly following their category in the Additional file 1: 
Document.
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Clustering based

Clustering algorithms such as DBSCAN [50, 51], derived cDBSCAN and HDBSCAN 
[52] have been used as the central algorithm in the development of some loop and peak 
detection algorithms such as cLoops [25]. DBSCAN algorithm does not consider the 
spatial organization of input data nor biased with noise data. DBSCAN performs clus-
tering using α , a radius from where it will decide its core and border points, and � , a 
threshold value representing a minimum point in a cluster; otherwise, they would be 
considered noise. It starts scanning considering a point and expands the area consider-
ing a radius, α , and with this radius, all points are core points and considered to be in 
the same neighborhood, and if any points are not within this area, those are considered 
noise. This algorithm has a running time complexity of O(n log(n)) [50] that depends on 
the distance calculation algorithm and could go up to O(n3) [51]. We described all the 
clustering-based loop prediction tools in the Additional file 1: Document (Sect. 1.1).

Probability based

Another category that we have identified to which most of the loop and peak detec-
tion tools belong is the Probability-based category. Specifically, tools in this category 
apply the binomial distribution, Hidden Markov model (HMM), Cauchy distribution, 
and others to aid the loop and peak detection. HiCExplorer has many features with 
loop prediction and it uses binomial distribution, FitHiC uses statistical confidence 

Table 6 Tools categories by methodology

All the tools are divided into five distinct categories according to their implementation method

# Category Tool

A Clustering based i. LOOPbit [23]

ii. LASCA [24]

iii. cLoops [25]

iv. cLoops2 [26]

v. HiCCUPS [48]

B Probability-based i. HiCExplorer [27]

ii. HiC-ACT [28]

iii. FitHiC [29]

iv. FitHiC2 [30]

v. FitHiChIP [31]

vi. GOTHiC [32]

vii. HiC-DC [33]

viii. ZipHiC [34]

ix. NeoLoopFinder [35]

x. HMRF Bayesian caller [36]

C Classification based i. FIREcaller [37]

ii. Peakachu [38]

D Computer vision based i. Mustache [40]

ii. Chromosight [42]

iii. SIP & SIPMeta [41]

iv. DeepLoop [49]

E Pile-up procedure based i. Coolpup.py [39]
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estimation to calculate midrange intra-chromosomal contacts whereas FitHiC2 is the 
updated version of FitHiC. We briefly described all the tools in the Additional file 1: 
Document (Sect. 1.2) and in the following, we described different types of distribu-
tion algorithms.

Binomial distribution is a success or failure outcome function where the experiments 
iterate multiple times, and this is similar to the Bernoulli distribution. There are three 
preconditions for applying binomial distribution: i. observation or trials number is fixed, 
ii. observation or trials are independent and iii. success probability is the same for all the 
trials. Formally, we can state the binomial distribution as a function with a coefficient 
value and parameters, t = total number of independent trials, r = probability of success, 

m(1− r) = probability of failure, and t
z

= binomial coefficient

The HMM is a generalized statistical modeling formula for linear problems such 
as sequence, time series, and computational biology [53]. Mathematically, we 
can apply the HMM as there is a hidden process Hn/t , and emission probability 
P(Sn/t ∈ B|Hn = hnorHt ∈ fB where Hn is a Markov process, B is each Borel set, and fB 
is each family of Borel set. For discrete time stochastic processes, n ≥ 1 , and continuous-
time stochastic processes, t ≤ t0 . It starts from an initial state and continues until the 
end state generating a sequence of states based on state probabilities. This state sequence 
is a Markov chain where every next state depends on the current state, observing the 
symbol sequence hiding the state sequence.

Cauchy distribution is a continuous probability distribution closely related to the 
Poisson kernel. Cauchy distribution is useful in many domains such as mechanical, 
electronic fields, and financial analysis [54]. We can describe Cauchy distribution as

where χ0 = location parameter and α = scale parameter [54]. If χ0 = 0 and α = 1 , it is 
called standard Cauchy distribution.

Classification based

The third group of loop and peak detection algorithms that we have identified is the 
classification-based tools. Classification is a supervised machine learning approach 
that is based on training a classifier or model on labeled examples. This accurately 
labels unlabeled and unknown datasets introduced to this classifier. Several classifi-
cation algorithms have been introduced over the years such as Decision Tree, Naive 
Bayes, and K-Nearest Neighbor, and are used in various domains such as fraud detec-
tion and medical diagnostics [55, 56]. In bioinformatics, scientists are using classi-
fiers to solve their problems such as cancer cells, and loop and peak detection [57, 
58]. Peakchu is a random forest classification-based tool to predict loops which are 
described briefly along with other tools in Additional file 1: Document (Sect. 1.3).

(1)bdist(z, t, r) =

(

t
z

)

× rz × (1− r)z

(2)f (χ) =
1

πα(1+ (
χ−χ0
α

)2)
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Computer vision based

Computer vision (CV) offers access to information such as labels, object structure, 
shape, and much more meaningful information by analyzing images, video frames, and 
signals. Over the decades, computer vision algorithms have been used to make notable 
impacts in image classification, object detection, and recognition in robotics and auton-
omous vehicles. With the advent of high-resolution microscopes, we have access to bio-
logical images that can fit into computer vision algorithms for output. To support this, 
many CV algorithms have been proposed [40–42] and there are certain tools for loop 
calling from Hi-C datasets using CV techniques such as Mustache [40], DeepLoop [49]. 
We describe Mustache, SIP and SIPMeta, Chromosight, and DeepLoop in the Addi-
tional file 1: Document (Sect. 1.4).

Pile‑up procedure based

Pile-up is a generalized procedure that averages a certain number of data from a given 
dataset such as averaging 3D points in a specific region from a 3D matrix. It describes 
the tendency of relation within multiple points/regions. It can be considered to be simi-
lar to the normalization technique and quantifies the averaged value with the expected 
one. We briefly stated Coolpup.py, a pile-up procedure-based loop detection tool in the 
Additional file 1: Document (Sect. 1.5).

Data formats

Hi-C is a 3C-based sequence technique that facilitates high-resolution conforma-
tion capture for chromosome analysis [12, 59]. This data can be used to represent and 
understand genome-wide features in 3D space (e.g. chromatin interaction, genomic 
structure, TAD, chromatin loops). To efficiently represent the Hi-C data, researchers 
developed .hic [12], .cool [60], .mcool [60], and other representational formats. Hi-TrAC 
is another technique for genome-wide interaction profiling at a high resolution [9]. 
We represented all the input and output formats used in loop and peak calling tools in 
Table 7. The .cool format represents Hi-C data in three columns (bin, chromosome, and 
pixel) and index [60]. The .mcool format is a different representation on the .cool for-
mat having multiple-resolution data. The .hic is a highly compressed binary file for fast 
random access containing multiple resolution contact matrix [12]. The .bed and .bedpe 
are developed to represent genomic data. The .bed (Browser Extensible Data) format 
contains a maximum of 12 columns (chrom, chromStart, chromEnd, name, score, 
strand, thickStart, thickEnd, itemRgb, blockCount, blockSizes, and blockStarts) where 
the first three are required [61]. Another format is .bedpe (containing chrom1, start1, 
end1, chrom2, start2, end2, name, score, strand1, strand2, and user-defined fields) was 
introduced to represent interchromosomal features for variation analysis of the chro-
mosome structure [62]. The .sam is a sequence alignment or a map format developed 
by Li et al. [63]. It is a tab-separated text format having an optional header section and 
alignment section. The alignment section has 11 fields (QNAME, FLAG, RNAME, 
POS, MAPQ, CIGAR, RNEXT, PNEXT, TLEN, SEQ, QUAL) and the @ symbol sepa-
rates the header section from the alignment section. The .bam (binary alignment map) 
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is the binary representation of the .sam format [63]. The .hdf5 (hierarchical data format 
version 5) is an open-source data format that supports large, complex, and heterogene-
ous data in a single file and acts like a file system [64]. The .h5 is developed based on the 
.hdf5 container. It has a specific structure describing intervals, matrix, distance count, 
nan_bins, and correction_factors. The .rds (Ray Dream Studio) is a 3D object file exten-
sion that is serializable and compressible into a smaller size. The .bedGraph is a track 
format that can hold continuous-valued data such as chromosome name, start, end, 
and data value [61]. It is similar to the wiggle format and suitable for transnational and 
probability score data. The .clpy is the Coolpup.py defined custom data format for stor-
ing pileup results from the method pipeline [39].

Table 7 Loop caller algorithms overview (input, output, resolution)

Each column denotes the information about the algorithm in order: the tool name, the year released, the 3C-based 
sequences data it accepts, the input data file format, the accepted input data resolution, and the output data file format. All 
the tools have different input and output formats, sequence data, and recommended input resolutions. It is worth noting 
that often many of the tools accept 3C-based data with resolutions lower than the ones stated in the table. The reported 
resolution for each tool is based on what was used by the authors in their manuscripts

# Tool Year Sequence data Input format Input resolution Output format

1 FitHiC [29] 2014 Hi-C, ChIA-PET .txt .txt, .gz

2 HMRF Bayesian 
caller [36]

2015 Hi-C .txt ≤ 10 KB .hdf5, .txt

3 HiC-DC [33] 2017 Hi-C .bam ≤ 5 KB .rds

4 GOTHiC [32] 2017 Hi-C .bam, .sam ≤ 1Mb .gz

5 cLoops [25] 2019 ChIA-PET, Hi-C, 
HiChIP, TrAC-
looping

.bedpe ≤ 5 KB .txt, .pdf

6 FitHiChIP [31] 2019 HiChIP, Hi-C .txt, .gz, .sizes ≤ 5 KB .bed

7 FitHiC2 [30] 2020 Hi-C .txt ≤ 40 KB .txt

8 FIREcaller [37] 2020 Hi-C .gz, .hic, .cool 40 KB .txt

9 Peakachu [38] 2020 Hi-C, Micro-C, ChIA-
PET, HiChIP, PLAC-
Seq, Capture Hi-C

.cool, .hic, .bedpe 10 KB .bedpe

10 Coolpup.py [39] 2020 Hi-C .bed, .cool, .mcool, 
.hic, .tsv

≤ 10 KB .clpy

11 Mustache [40] 2020 Hi-C, Micro-C .txt, .hic, .cool, 
.mcool

≤ 10 KB .tsv

12 SIP & SIPMeta [41] 2020 Hi-C .hic, .mcool, file ≤ 5 KB file

13 Chromosight [42] 2020 Hi-C, ChIA-PET, 
DNA SPRITE, HiChIP, 
Micro-C

.cool ≤ 10 KB .tsv

14 LASCA [24] 2021 Hi-C, ChIP-seq .cool ≤ 10 KB .bedpe

15 cLoops2 [26] 2021 ChIC-seq, Hi-TrAC/
TrAC-looping

.bedpe ≤ 1 KB .txt

16 HiC-ACT [28] 2021 Hi-C .txt ≤ 10 KB file

17 NeoLoopFinder [35] 2021 Hi-C .mcool 10 KB .bedGraph

18 LOOPbit [23] 2022 Hi-C .tsv 5 KB .tsv

19 HiCExplorer [27] 2022 Hi-C .bam, .sam ≤ 10 KB .h5

20 ZipHiC [34] 2022 Hi-C .csv ≤ 10 KB data frame

21 HiCCUPS [48] 2014 Hi-C .hic ≤ 5 KB text

22 DeepLoop [49] 2022 Hi-C heatmap ≤ 5 KB heatmap
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Analysis methods

Overlap

Overlap defines the common loops between different loop prediction tools’ results. Here, 
we used https:// github. com/ ay- lab/ FitHi ChIP/ tree/ master/ UtilS cript to draw the overlap 
between primary, replicate, and normalized data for a specific chromosome at a specific 
resolution. We used 50 window sizes to determine the overlaps. This produces results in 
two ways, (1) comparing with a reference loop file, and (2) producing a master interaction 
file from the provided files merging them all together. We used the master interaction file 
generated from our loop files. First, it generates master interaction files from the loop files 
storing all the loop information and then sorting them. It receives up to 5 interaction files to 
draw the diagram. Next, it finds the overlap indices between the merged file and the input 
files and determines the unique overlap indices from the overlap indices.

Recovery

We computed CTCF, H3K27ac, and RNAPII recovery using different loop prediction 
results. This recovery reports the biological consistency of a tool. The main procedure 
for recovery analysis is almost same as overlap analysis. Recovery analysis requires two 
input files i) a reference file to be matched, and ii) a loop file with q-value column. It 
sorts the input file with q-value and then finds the overlap indices between the loop file 
and the reference file. It first defines the overlap between files and then only keeps the 
unique overlap indices to get the overlap statistics. It uses a window size to calculate the 
overlap and we used 50 window size in our analysis. Then it calculates a recovery rate in 
every thousand count with the reference rows. We can write it as

where f = recovery rate in every thousand, Tref = number of records in reference file, 
and l = length of overlap. To compute this recovery, we used https:// github. com/ ay- lab/ 
Utili ties/ tree/ main/ Recov ery_ Plot_ FitHi ChIP script in our manuscript.

Recovery efficiency metric

This metric computes the performance per input, specifically focusing on recovery rate, 
and subsequently normalizes it based on the number of loops. This approach enables the 
evaluation of each loop calling algorithm independently, ensuring a fair assessment that 
accounts for the varying number of detected loops. The normalization step ensures that 
the analysis remains unbiased, preventing tools from disproportionately influencing the 
results by introducing an excessive number of loops.

REM = Recovery Efficiency Metric, f = recovery rate, and LC = number of loops.

Peak

We used https:// github. com/ XiaoT aoWang/ HiCPe aks to generate the peak plots. Here, 
we used 20 M to 25 M regions to observe the peaks from the loop file. First, it generates 

(3)f =
l

Tref

(4)REM =
f

LC

https://github.com/ay-lab/FitHiChIP/tree/master/UtilScript
https://github.com/ay-lab/Utilities/tree/main/Recovery_Plot_FitHiChIP
https://github.com/ay-lab/Utilities/tree/main/Recovery_Plot_FitHiChIP
https://github.com/XiaoTaoWang/HiCPeaks
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the heatmap using the contact matrix file at the given specific regions. After that, it 
parses the loop file to determine the positions of loops. It creates a loop table with chro-
mosome numbers and, the start and end positions of loops. Using this table, mark the 
positions in the heatmap to indicate the loops.

APA

To determine the APA score we used https:// github. com/ XiaoT aoWang/ HiCPe aks. First, 
it determines peak regions from the loop file. After that, with these positions, the inter-
action matrix file, and the provided window size, it generates an APA submatrix. It takes 
each value of a square region according to the window size centering the peak position 
and divides each value with the mean value of those regions generating a submatrix at 
the end. We write it

where MAPA = APA submatrix, Vij = square region from a peak position according to 
the window size, w (we used window size, w = 5 ), Vmean = mean value of the square 
region Vij , and i = (i − w, i + w) and j = (j − w, j + w) . Then from the submatrix, 
it creates a mean value list for every row of the submatrix to remove the outliers and 
determine the percentils. Next, it determines the average value from the submatrix and 
calculates the lower positions matrix using the average values up to the limit of corner 
size (we used 3). Finally, it calculates the APA score by dividing the average value within 
the window by the lower position mean value. We write it

where, S = APA score, Aavg = Average APA values, and lmean = lower position mean 
value.

Consistency score

To determine the consistency score, we used sequencing depth values of each tool. First, 
we calculated the average of CTCF, H3K27ac and RNAPII REM values at high resolu-
tion, Highavg , (5  KB and 10  KB) and at low resolution, Lowavg , (100  KB and 250  KB). 
Second, with this calculated Lowavg and Highavg , we compute the Consistency score as 
follow:

It is noteworthy that for methods lacking Lowavg value, we directly utilized the singular 
Highavg value. Such tools have been identified in our analysis.

BCC score

To determine the robustness of the tools, we categorize our analysis in three category 
(Biological, Consistency and Computational) and introduced BCCscore to compute 
overall score. BCCscore calculates the weighted average score among all the features 
where users can assign their weights according to their usecase to find the robustness. 

(5)MAPA =
Vij

Vmean

(6)S =
Aavg

lmean

(7)Conscore = |Lowavg −Highavg |

https://github.com/XiaoTaoWang/HiCPeaks
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It is a flexible score function where user can include more categories according to 
their analysis. We stated BCCscore as

where Bios = biological feature score, Wbio = weight for Bios , Cons = consistency score, 
Wcon = weight for Cons , Coms = computational score, and Wcom = weight for Coms . In 
our analysis, we used CTCF, H3K27ac and RNAPII as biological feature score (Eq.  3) 
and assigned Wbio = 2 because the biological correctness of a predicted loop is more 
valuable, at least twice more valuable, and relevant for downstream analysis. We antici-
pate that the users can modify this weight, as needed, in future analysis to signify how 
important they rate biological correctness among several other features they include or 
incorporate into the BCCscore . We computed the consistency score using (Eq.  7); and 
computed the computational score using the average of the normalized running time 
and memory consumption scores with Wcon = Wcom = 1 . The BCCscore is computed by 
normalizing all category scores through Min-Max normalization. This transformation 
ensures that the minimum value becomes 0, the maximum becomes 1, and all other val-
ues are expressed as decimals between 0 and 1. Consequently, the BCCscore yields a value 
between 0 and 1, where higher values indicate better performance.
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