
StackDPP: a stacking ensemble based 
DNA‑binding protein prediction model
Sheikh Hasib Ahmed1, Dibyendu Brinto Bose1, Rafi Khandoker1 and M Saifur Rahman1* 

Introduction
DNA-binding proteins (DNA-BPs) contain one or more DNA-binding domains which 
enable them to bind and interact with DNA. DNA-BPs are essential for numerous bio-
logical processes, such as transcriptional control, genomic rearrangements, replication, 

Abstract 

Background: DNA-binding proteins (DNA-BPs) are the proteins that bind and interact 
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scription and DNA replication, repair, and organization of the chromosomal DNA. Very 
few proteins, however, are DNA-binding in nature. Therefore, it is necessary to develop 
an efficient predictor for identifying DNA-BPs.

Result: In this work, we have proposed new benchmark datasets for the DNA-binding 
protein prediction problem. We discovered several quality concerns with the widely 
used benchmark datasets, PDB1075 (for training) and PDB186 (for independent test-
ing), which necessitated the preparation of new benchmark datasets. Our proposed 
datasets UNIPROT1424 and UNIPROT356 can be used for model training and inde-
pendent testing respectively. We have retrained selected state-of-the-art DNA-BP 
predictors in the new dataset and reported their performance results. We also trained 
a novel predictor using the new benchmark dataset. We extracted features from vari-
ous feature categories, then used a Random Forest classifier and Recursive Feature 
Elimination with Cross-validation (RFECV) to select the optimal set of 452 features. 
We then proposed a stacking ensemble architecture as our final prediction model. 
Named Stacking Ensemble Model for DNA-binding Protein Prediction, or StackDPP in short, 
our model achieved 0.92, 0.92 and 0.93 accuracy in 10-fold cross-validation, jackknife 
and independent testing respectively.

Conclusion: StackDPP has performed very well in cross-validation testing and has out-
performed all the state-of-the-art prediction models in independent testing. Its per-
formance scores in cross-validation testing generalized very well in the independent 
test set. The source code of the model is publicly available at https:// github. com/ Hasib 
Ahmed 1624/ Stack DPP. Therefore, we expect this generalized model can be adopted 
by researchers and practitioners to identify novel DNA-binding proteins.

Keywords: DNA-binding protein, Sequence identity, Classification, Data imbalance, 
Recursive feature elimination

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Ahmed et al. BMC Bioinformatics          (2024) 25:111  
https://doi.org/10.1186/s12859‑024‑05714‑9

BMC Bioinformatics

*Correspondence:   
mrahman@cse.buet.ac.bd

1 Department of CSE, BUET, 
ECE Building, West Palashi, 
Dhaka 1000, Bangladesh

https://github.com/HasibAhmed1624/StackDPP
https://github.com/HasibAhmed1624/StackDPP
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05714-9&domain=pdf


Page 2 of 21Ahmed et al. BMC Bioinformatics          (2024) 25:111 

repair, modification and so on [1]. These proteins are indispensable for the assortment 
and separation of single-stranded DNA as well as for the detection of DNA damage. 
Consequently, proteins that target certain DNA sequences have the potential to be treat-
ments for malignancies and genetic disorders. Transcription factors, nucleases, histones 
etc. are some other examples of DNA-binding proteins. Transcription factors regulate 
the transcription process, nucleases cut DNA molecules, and histones are involved in the 
packaging of chromosomes in the cell nucleus. DNA-BPs exhibit significant sequence 
and structural diversity. These proteins can be categorized into several families accord-
ing to their structural motifs, including the helix-trun-helix, zinc finger, leucine zipper, 
C2-H2 etc. [1, 2]. Unfortunately, the most contemporary approaches to identify DNA-
binding proteins possess several shortcomings as a result of overly uneven data. Thus, 
a rapid and efficient method for identifying DNA-binding proteins is needed. Although 
numerous works have been published in this area in the last decade, further research is 
warranted to improve the prediction quality.

Early computational predictors of DNA-BP relied on structural information of the 
proteins [3–10]. This limits the application of these predictors to proteins with experi-
mentally determined structure. However, for the vast majority of sequence-known 
proteins, structure is yet to be determined. Therefore, in the past dacade, many new 
predictors have been proposed that does not rely on true structure of the protein. Wei 
et al. [11] trained a random forest classifier using local Pse-PSSM (Pseudo Position-Spe-
cific Scoring Matrix) characteristics and produced encouraging results. The suggested 
characteristics could effectively capture local conservation information from the evolu-
tionary profiles along with sequence-order information. Named Local-DPP, the model 
was trained using the PDB1075 benchmark dataset, developed by Liu et al. [12]. On the 
other hand, PDB186 [13] benchmark dataset was used for independent testing. At the 
time of its publication, Local-DPP outperformed all the contemporary methods both in 
jackknife and independent testing. Notably, to avoid homology bias during independ-
ent testing, they removed sequences from PDB1075 which had more than 25% sequence 
similarity with sequences in PDB186. They then retrained the model in the reduced 
training set to perform the independent testing. Most of the subsequent models using 
the same benchmark datasets have followed their approach.

Chowdhury et  al. introduced iDNAProt-ES [14], a DNA-binding protein prediction 
approach that makes use of both sequence-based evolutionary information and pre-
dicted structure-based properties of proteins. In their study, they leaned on properties 
like bigram, Position Specific Scoring Matrix (PSSM) composition, and secondary struc-
ture occurrence to reach their desired outcome. They extracted such features using PSI-
BLAST [15] and SPIDER2 [16], then applied recursive feature elimination, followed by 
model training using SVM with a linear kernel. iDNAProt-ES also used PDB1075 for 
training and PDB186 for independent testing. While it outperformed Local-DPP in jack-
knife as well as independent testing, it was later discovered that their independent test-
ing had a flaw resulting in more than 25% sequence similarity between the training and 
the test sets, thereby invalidating the independent test results [17].

Another technique, known as the DNA-binding Protein Prediction model using 
Chou’s general PseAAC (DPP-PseAAC) [17], derived relevant information from protein 
sequences without relying on functional domain, structural or evolutionary information. 
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The authors used Random Forest (RF) to rank the features after feature extraction. They 
then utilized the Recursive Feature Elimination (RFE) approach to extract an optimum 
set of features before training a prediction model with a linear kernel using Support Vec-
tor Machine (SVM). As DPP-PseAAC does not depend on PSSM or predicted structural 
features, the model is very fast to train and it can quickly infer prediciton results on 
novel proteins. It has the best jackknife performance till now in the PDB1075 dataset. 
However, the independent test performance in PDB186 dataset, while commendable, 
falls significantly compared to the jackknife results. This suggests overfitting the training 
set and lack of generalizability to novel datasets.

Nanni et al. [18] developed a representation of proteins based on their 3-dimensional 
tertiary structure. Their experiment produced a more accurate independent test result 
for identifying DNA-binding proteins. Fu et al. [19] introduced K-PSSM-Composition, 
a unique feature creation approach based on PSSM. They too leveraged recursive fea-
ture elimination to obtain the ideal collection of features and trained a support vector 
machine model. Adilina et al. [20] recently developed another approach that retrieved 
numerous properties such as monogram percentile separation, bigram percentile sep-
aration, closest neighbor bigram, etc. solely using the protein primary sequence. They 
applied grouped feature selection as well as recursive feature elimination for selecting 
features. Extra Tree and Random Forest classifiers were trained to produce the final pre-
diction models. Hu et al. [21] applied deep learning to solve the DNA-BP classification 
problem. They attempted to identify the functional domain of the protein sequence by 
combining CNN with a Bidirectional LSTM. They prepared a large training dataset to 
train the deep learning model. However, our investigation raises some concerns about 
this dataset, which suggests their results may be overestimated (Section “A need for new 
benchmark datasets”).

From the brief literature review presented above, it is clear that quite a bit of work 
has been published in recent times to tackle the problem of DNA-BPs prediction. The 
majority of these predictors have been trained using the PDB1075 dataset and tested on 
the PDB186. However, our analysis (Section “A need for new benchmark datasets”) has 
uncovered several concerns about the quality of the PDB1075 dataset. Therefore, in this 
paper, we have attempted to rectify the issues by preparing a new benchmark dataset. 
We have also retrained selected state-of-the-art predictors in the new dataset.

The specific contribution of this work can be enumerated as follows.

• We have identified quality issues with the PDB1075 benchmark training dataset that 
has widely been used to train DNA-BP predictors in recent times. Also, there are 
several common sequences between this and the PDB186 dataset used for independ-
ent testing. We have noted that this has unnecessarily complicated the training and 
testing process.

• To mitigate this problem, we have prepared new benchmark datasets: UNI-
PROT1424 (training set), comprising 712 DNA-BPs and 712 non-DNA-BPs, and 
UNIPROT356 (independent test set) consisting of 178 DNA-BPs and 178 non-DBA-
BPs. We have ensured 25% sequence identity threshold within as well as between the 
sets of DNA-BP and non-DNA-BPs in each of the benchmark datasets. We have also 
ensured the same threshold within and between the training and test sets.
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• We have retrained selected state-of-the-art DNA-BP predictors using the UNI-
PROT1424 dataset and reported the cross-validation performances. We have 
also reported independent test performances in the UNIPROT356 test set. These 
results will help researchers in future in comparing their proposed new DNA-BP 
prediction models with the state-of-the-art methods.

• We have trained a new stacking ensemble based DNA-BP predictor using the 
UNIPROT1424 training set and benchmarked it in the UNIPROT356 test set. 
Named Stacking Ensemble Model for DNA-binding Protein Prediction, or Stack-
DPP in short, our model achieved 91.86%, 92.14% and 92.70% accuracy in 10-fold 
cross-validation, jackknife and independent testing respectively. StackDPP has the 
best independent test results, compared to the state-of-the-art methods. As its 
performance does not degrade between cross-validation and independent test-
ing, it is expected that the model has been able to capture the general essence 
of DNA-BPs and can successfully discriminate between DNA-BPs and non-DNA-
BPs when presented with novel protein sequences.

The rest of the paper is organized as follows. Section  “Materials and methods” 
describes the materials and methods used for our research work. Our experimental 
results and relevant discussions are provided in section  “Results and discussions”. 
Finally, section “Discussion and conclusion” concludes the paper.

Materials and methods
In this section, we describe the tools and techniques that we have used for dataset 
preparation, protein sample representation for machine learning pipeline, feature 
extraction and selection, model training, performance evaluation, etc.

Dataset

Building a high quality dataset is imperative for generating a robust and accurate 
ML-based prediction model. We investigated the widely used datasets PDB1075 and 
PDB186, which were respectively prepared by Chou et al. [12] and Liu et al. [13]. In our 
research, we identified several issues with these datasets. Therefore, we decided to create 
new benchmark datasets UNIPROT1424 and UNIPROT356. Detailed workflow of our 
dataset preparation process can be visualized in Fig. 1, which is briefly described below.

We have collected DNA-BPs and non-DNA-BPs from UniProt [22]. We have only 
worked with the manually reviewed proteins using UniProtKB/Swiss-Prot [23]. We 
then applied the following filters: 

1. Discard proteins with length ≤ 50 (might be fragment)
2. Discard proteins with any residue labeled as ‘X’ (unknown residue)
3. Ensure sequence similarity threshold of 25% using PSI-CD-HIT variant of CD-HIT 

[24] within the sets of DNA-BPs and non-DNA-BPs.
4. Ensure sequence similarity threshold of 25% using PSI-CD-HIT variant of CD-HIT 

between the sets of DNA-BPs and non-DNA-BPs.
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We have used default values for all parameters in CD-HIT, and varied the sequence 
identity as per our needs.. From each cluster produced by CD-HIT, we kept the long-
est sequence. A point to be noted here is that CD-HIT might need multiple runs to 
fully ensure the sequence similarity threshold. The output of ith run is used as the 

Fig. 1 Workflow of dataset preparation
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input of (i + 1)th run. This is because CD-HIT places a sequence in either the best 
matching cluster or the first matching cluster depending on a parameter, but not in all 
of the matching clusters.

After applying filter 3 (as described above), we obtained 890 DNA-BPs. We aimed to 
retain all the DNA-BPs even after applying filter 4. For convenience, we applied filter 
4 in two steps. We initially chose non-DNA-BPs having 40% or less sequence similar-
ity with the 890 DNA-BPs by using CD-HIT-2D. 40% is the lowest threshold that can 
be set with CD-HIT-2D. Then we combined these DNA-BPs and non-DNA-BPs and 
ran PSI-CD-HIT with a sequence identity threshold of 25% and chose DNA-BPs out of 
every cluster containing more than one protein sequence. Finally, after applying filter 4 
we picked up 890 non-DNA-BPs randomly. Then we did an 80-20% split on both the set 
of positive and negative samples. By combining 80% samples from both sets, we got our 
training dataset UNIPROT1424. The rest of the samples constituted the test set, which 
we named UNIPROT356.

Protein representation

The simplest expression of a sequence of protein P is:

Here L is the length of the protein primary sequence, and Ri is the i-th residue. We 
would like to transform a protein sample from this sequential expression to a vector. But 
the transformation must somehow keep the sequence order information or any intrinsic 
patterns. The Pseudo Amino Acid Composition (PseAAC) [25] was developed to achieve 
this. According to the generic PseAAC notion [20], any protein sequence may be repre-
sented as a PseAAC vector as follows.

Here T is a transpose operator, and � is an integer whose value, as well as the com-
ponents ψu ( u = 1, 2, . . . ,� ), will depend on how the relevant information is extracted 
from the amino acid sequence of P, as explained in [26].

Feature extraction

We have categorized all features into three different classes based on their origin – 
sequence-based features, PSSM features, and features based on SPIDER3 [27].

For the sequence-based features, we relied on Amino Acid Composition (AAC) 
[14, 17–20], Dipeptides Composition (DPC) [28, 29], Tripeptides Composition (TPC) 
[28], n-gapped-dipeptides (nGDip) [17, 30], Position specific n-grams (PSN) [17], 
Monogram Percentile Separation (MPS) [20], Bigram Percentile Separation (BPS) 
[20], Nearest Neighbor Bigram (NNB) [20, 30], Dubchak [14], Dipeptide Devia-
tion from Expected Mean (DDE) [31], Grouped Amino Acid Composition (GAAC) 
[32], Grouped Dipeptide Composition (GDPC) [33], Grouped Tripeptide Composi-
tion (GTPC) [33], n-gapped Amino Acid Group Pair (nGAAGP) [33], Composition 
Transition Distribution (CTD) composition descriptor (CTDC) and CTD transi-
tion descriptor (CTDT) [34], Conjoint Triad (CTriad) [35], k-Spaced Conjoint Triad 

(1)P = R1R2R3...Ri...RL

(2)P = [ψ1ψ2ψ3...ψu...ψ�]T
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(KSCTriad) [35], Sequence-Order-Coupling Number (SOCNumber) [36, 37], Quasi-
sequence-order (QSOrder), Pseudo-Amino Acid Composition (PAAC) [33], Amphi-
philic Pseudo-Amino Acid Composition (APAAC) [35], K-Nearest Neighbor for 
peptides (KNNpeptide) [38], Moran Correlation (Moran) [39], Geary Correlation 
(Geary) [40] and Normalized Moreau-Broto Auto-correlation (NMBroto) [41]. Sev-
eral of these features have successfully been used in the very problem of DNA-BP pre-
diction. For example, AAC, DPC, TPC, nGDip, PSN were used in DPP-PseAAC [17]. 
MPS, BPS, NNB in [20], Dubchak in iDNAProt-ES [14], QSOrder in [18]. The rest 
have been used in various other protein related prediction problems in literature. This 
motivated us to experiment with these sequence-based features in StackDPP as well.

Again, for capturing the PSSM features our preference was Local Pse-PSSM (L-Pse-
PSSM) [11] ( n = 1, 2, 3, 4, 5 and � = 8 was used), PSSM Bigram (bi-PSSM) [14], PSSM 
1-lead Bigram (1-bi-PSSM) [14], PSSM Composition (comp-PSSM) [14], PSSM Auto-
Covariance (aCov-PSSM) [14], PSSM Segmented Distribution (segD-PSSM) [42].

Finally, for the SPIDER3 based features, we used Secondary Structure Occurrence 
(occ-SS), Secondary Structure Composition (comp-SS), Accessible Surface Area 
Composition (ASA), Torsional Angles Composition (com-TA), Structural Probabili-
ties Composition (com-SP), Torsional Angles Bigram (bi-TA), Structural Probabilities 
Bigram (bi-SP), Torsional Angles Auto-Covariance (aCov-TA), Structural Probabili-
ties Auto-Covariance (aCov-SP), Half sphere exposure (HSE).

Feature selection

The size of our feature vector (55856) precluded comprehensive training. We had to 
use feature selection to condense our feature vector into an ideal set. We used Recur-
sive Feature Elimination with cross-validation (RFECV) for feature selection. RFECV 
automatically selects the best feature subset and the chance of overfitting is reduced 
due to internal cross-validation. We have used a Random Forest classifier for RFECV. 
We have used stratified K-Fold strategy for splitting our data into training and valida-
tion sets. In our methodology, the value of K is 10.

Generally, in each step of RFECV, one feature gets eliminated. However, consider-
ing our enormous feature vector, discarding a single feature at a time would take a 
long time. Thus, following [17] we took the following steps. 

1. Feature selection was conducted on the full set of 55856 features. In each recursive 
step, 1000 features were eliminated. The best model performance was obtained for 
6856 features. This is shown in Fig. 2.

2. We then conducted another feature selection experiment with a more granular elimi-
nation, i.e. 100 features were eliminated in each recursive step. Since 6856 features 
produced the best result in the earlier approach, we wanted to use slightly more fea-
tures than that, hence 7856 top features were chosen for this round of RFECV. In this 
case, the best result was obtained for 1856 features (Fig. 3).

3. Following the same strategy, we then used the top 1956 features with an elimination 
step of 25 and the best performance was obtained for 606 features (Fig. 4).
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4. Finally, we used the top 631 features, with 1 feature being eliminated in each recur-
sive step. Finally, the best performance was obtained for 452 features (Fig. 5). Subse-
quently, we have referred to this optimal set of features as rf452.

Fig. 2 Feature selection conducted on the full set of 55856 features. In each recursive step, 1000 features 
were eliminated

Fig. 3 Feature selection conducted on the top 7856 features. In each recursive step, 100 features were 
eliminated
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Choice of predictor

We have run 10-fold cross-validation on the rf452 feature set using several classifiers 
(Table 1). The result of the Support Vector Classifier (SVC) with Radial Basis Func-
tion (RBF) kernel was the best. Therefore we performed hyperparameter tuning on 
SVC with RBF kernel to further improve the performance. We achieved good 10-fold 

Fig. 4 Feature selection conducted on the top 1956 features. In each recursive step, 25 features were 
eliminated

Fig. 5 Feature selection conducted on the top 631 features. In each recursive step, 1 feature was eliminated
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cross-validation performance with C = 5.445 and γ=0.00237. We did the tuning 
by Grid Search using stratified 10-fold cross-validation. In Table  1, the result after 
hyperparameter tuning is shown as SVC (rbf, tuned).

The cross-validation result of several classifiers was quite close to that of SVC (rbf, 
tuned). So we decided to ensemble some of the methods to increase the prediction per-
formance further. We used mlxtend library to estimate the bias and variance of our SVC 
(rbf, tuned) model. Using the Mean Square Error (MSE) strategy we got an average bias 
and variance approximation of 0.0728 and 0.0170 respectively. As these values are rea-
sonably low, we did not consider applying bagging or boosting. Instead, to improve the 
predictive quality, we decided to implement a stacking ensemble technique. We calcu-
lated the Pearson product-moment correlation of the prediction of different classifiers 
using the predicted probability for of positive class (Table 2). We chose three classifiers 
that are the least correlated – Decision Tree, AdaBoost, and Linear Discriminant Analy-
sis (LDA). But these predictors had worse performance than SVC with the RBF kernel, 
as can be seen from Table  1. So we put these three classifiers within a Voting Classi-
fier (VC) and added SVC (RBF, tuned) alongside it, as another base estimator. Finally, 
we used the logistic regression classifier as the meta-layer classifier. This architecture 
is shown in Fig. 6. We have named our prediction model Stacking Ensemble Model for 
DNA-binding Protein Prediction, or StackDPP in short.

Predictor evaluation

We have used widely used performance metrics for evaluating our proposed predic-
tor. These are accuracy (ACC), sensitivity (SN), specificity (SP), precision (PREC), 
F1-score (F1) and Matthew’s correlation coefficient (MCC). Let TN, FN, TP and FP 
respectively be the number of true negative, false negative, true positive, and false 
positive samples. Then the aforementioned metrics can be defined as follows.

Table 1 Result of 10-fold cross-validation on rf452 using several classifiers

SVC: Support Vector Classifier. For each performance metric, the best result is shown in bold-face

Classifier ACC (%) SN (%) SP (%) MCC

Decision tree 84.27 85.53 83.00 0.6874

Logistic Regression 88.35 89.75 86.94 0.7682

Random Forest 90.03 88.76 91.30 0.8025

SVC (RBF) 91.01 90.45 91.57 0.8213

SVC (RBF, tuned) 91.96 91.72 92.28 0.8412
SVC (linear) 86.03 87.64 84.41 0.7224

SVC (polynomial) 89.46 93.68 85.25 0.7935

SVC (sigmoid) 88.83 89.61 88.06 0.7782

Extra Tree 90.81 90.31 91.29 0.8167

Gaussian Naive Bayes 88.76 89.74 87.78 0.7772

Adaboost 87.22 88.61 85.82 0.7462

Linear Discriminant Analysis 87.36 89.32 85.39 0.7484

K-nearest neighbour 89.39 91.01 87.78 0.7895

Bagging classifier 89.25 86.93 91.58 0.7873

Bagging with SVC (RBF) 91.08 90.73 91.43 0.8226
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Additionally, we also assessed the area under receiver operating characteristic curve 
(AUROC or AUC in short) and area under precision-recall curve (AUPR in short).

Statistical test

We have used Friedman non-parametric statistical test (FMT) [43] to determine 
whether the results in the independent tests are statistically significant. The Friedman 

(3)ACC = TP + TN

TP + TN + FP + FN

(4)SN = TP

TP + FN

(5)SP = TN

TN + FP

(6)PREC = TP

TP + FP

(7)F1 = 2TP

2TP + FP + FN

(8)MCC = (TP × TN )− (FP × FN )√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

Fig. 6 Stacking ensemble architecture of our proposed model
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test is the non-parametric test for analyzing differences in multiple methods across mul-
tiple datasets. It does not assume any particular distribution of the data. All the meth-
ods are ranked in each dataset, which is then averaged to produce the average ranking. 
Lower rank indicates a better performer. The Friedman test was performed based on the 
accuracy of the predictors, with the significance level, α = 0.05 . Post hoc Holm test was 
conducted to perform the paired comparisons. Notably, for statistical testing, we have 
first bootstrapped the independent test set to produce 20 replicates and produced inde-
pendent test results from StackDPP as well as several state-of-the-art methods in each 
replicate.

Results and discussions
In this section, we report our analysis of the existing benchmark datasets PDB1075 and 
PDB186, which paved the way for creating a new benchmark dataset. We then show 
reproduced results of a select few state-of-the-art DNA-BP predictors. We also compare 
the performance of StackDPP with these state-of-the-art methods, retrained on the new 
benchmark dataset.

A need for new benchmark datasets

The widely used benchmark training set PDB1075, and independent test set PDB186 
were created in 2013-2014 [12, 13]. Since then a lot of protein sequences have been 
added to the different protein databases. It was therefore high time that a new, enhanced 
dataset is created for the DNA-BP prediction problem. Besides, we have found several 
issues in the aforementioned datasets, as described below.

Within PDB1075, only 1071 of the 1075 sequences are unique, rest are duplicate 
sequences despite having unique ids. On the other hand, between PDB1075 and PDB186 
datasets, there are 42 proteins common by id, and 79 proteins common by sequence. 
Having common sequences in the training and test sets is not desirable as the test results 
would overestimate the quality of the predictor. As PDB1075 and PDB186 had many 
sequences in common, the standard training procedure with these two datasets was 
to train with PDB1075 for cross-validation. And for independent testing, researchers 
would retrain their models with reduced PDB1075, which includes only those sequences 
of PDB1075 that have sequence similarity less than or equal to 25% with sequences of 
PDB186. This process is time-consuming and there is published work (e.g. iDNAProt-ES 
[14]) that has missed this important step. Also, there remains a chance of error when 
producing reduced PDB1075 to eliminate duplicate sequences with PDB186. For exam-
ple Rahman et al. [17] received 1035 sequences form Wei et al. [11] as reduced PDB1075. 
Though these 1035 sequences do not have any repeated sequences within themselves, 
there are 42 common protein sequences between this dataset and PDB186.

While preparing the PDB1075 dataset, Liu et al. [12] ensured 25% sequence similar-
ity threshold within the positive and negative classes using PISCES [44]. However the 
authors did not ensure the same for the between class sequences. This is another limita-
tion of this dataset.

For these reasons, we decided to create a new benchmark dataset. We have avoided 
repeated sequences and ensured a sequence similarity threshold of 25% among all 
1424+356=1780 protein sequences in our prepared benchmark dataset.
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Recently Hu et al. [21] prepared another benchmark dataset which has 17151 DNA-
BPs in the training set, which is quite a large number. While the authors have mentioned 
that they only included manually reviewed protein sequences from UniProt, our inves-
tigation clearly shows that there is not as many reviewed DNA-BPs in that database. 
Therefore there is some concern about this dataset. The authors also failed to ensure less 
than 25% sequence similarity among the sequences. When we tried to analyze the qual-
ity of their dataset, we made the following observations.

• If we ensure 25% sequence similarity threshold in the original set of 17151 DNA-BPs 
and 17151 non-DNA-BPs, by using PSI-CD-HIT, we are left with only 6172 protein 
sequences, which is just 17.99% of the original dataset. Among these 6172 proteins, 
there are 3564 positive samples and 2608 negative samples.

• If we ensure 25% sequence similarity threshold in test set of 10000 DNA-BPs and 
10000 non-DNA-BPs, we get only 3128 (15.64%) sequences – 2163 positive, 965 neg-
ative samples.

• Then we merged these two reduced sets and ensured a 25% sequence similarity 
threshold to get 6727 protein sequences of which 4082 are positive and 2645 are neg-
ative samples. So, overall after ensuring 25% sequence similarity, we have gotten only 
around 12.39% of the original set of sequences. This represents that the sequences 
were highly similar.

Based on the above analysis, it is clear that even though the size of Hu et al.’s dataset is 
quite large, there are questions about the quality of the data. Therefore, we chose not to 
use this dataset and proceeded with the preparation of a new benchmark dataset (i.e. 
UNIPROT1424 and UNIPROT356) as mentioned before.

Reproduced results of state-of-the-art models

In this work, we have prepared a new benchmark dataset and trained a new predictor on 
this dataset. To compare the performance of our model with the state-of-the-art models 
on the right footing, it became necessary to re-train select few models on the new data-
set. For some prior work, training scripts were available which could be used to retrain 
the model, with minor modifications. For others, we had to build the model from scratch 
following the description in the related publication.

DPP-PseAAC [17], iDNAProt-ES [14] and the model proposed by Adilina et al. [20] 
applied RFE for feature selection. But in RFE, the estimator can see the whole of the 
training dataset, which can produce overfitting during the ranking process. To avoid this 
we have instead used RFECV, which takes longer but is expected to reduce the chance of 
overfitting.

The source code of DPP-PseAAC [17] was available. So we used the scripts to retrain 
the model in the new benchmark dataset. For LocalDPP [11] we did not find the 
source code. So we re-implemented it using python3 using the scikit-learn library. It 
is to be noted that the authors worked in Weka [45]. Also, we generated PSSM using 
the UniRef90 database from https:// www. unipr ot. org/ downl oads, while the authors 
had used the nrdb90 database. For iDNAProt-ES [14], we collected the source code for 

https://www.uniprot.org/downloads
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feature selection from the authors. In this case, too, we have used the PSSM generated 
using the UniRef90 database. We have also used SPIDER3 [27] instead of SPIDER2 [16].

For the model proposed in [20], we collected the source code from the publicly shared 
repository. For reproducing the reported results, we have exactly followed their method-
ology. But when experimenting with UNIPROT1452, we increased the number of fea-
tures removed in each recursive step initially. After reducing the number of features this 
way, we finally used 1 feature elimination in each recursive step to produce the final set 
of features. This was done due to resource constraints—a single run of recursive fea-
ture elimination according to their implementation was taking more than twelve days to 
complete.

A comparison of the published results of the different state-of-the-art models and 
results obtained in our attempted reproduction is given in Tables 3 and 4. The repro-
duced results are reasonably close to the published results. Therefore we feel comfort-
able that we have the training scripts for these models at our disposal which could be 
used to retrain the models on the new benchmark dataset.

Performance comparison in the new benchmark dataset

We have shown the cross-validation performance comparison of StackDPP against 
state-of-the-art methods on the UNIPROT1424 in Tables 5 and 6. The former records 
10-fold cross-validation results while the latter logs the results from jackknife testing. In 
both cases, DPP-PseAAC is the winner by a considerable margin with respect to all four 

Table 3 Cross-validation (CV) performance of our reproduction of state-of-the-art models using the 
PDB1075 dataset

For the predictors of [20], 10‑fold CV results are cited; for others we have shown the jackknife CV results. The column P 
represents results collected from the corresponding publications. The column R represents our reproduced results of the 
corresponding models

Models ACC(%) SN(%) SP(%) MCC

P R P R P R P R

DPP-PseAAC [17] 95.91 96.59 94.10 94.67 97.64 98.36 0.98 0.93

LocalDPP [11] 79.10 77.85 84.80 81.34 73.60 74.54 0.59 0.56

Adilina et al. [20](Group) 70.21 72.43 61 68.32 79.7 76.84 0.41 0.45

Adilina et al. [20](RFE) 71.04 71.12 62 69.44 79.9 77.81 0.43 0.44

iDNAProt-ES [14] 90.18 88.21 90.38 90.39 90 86.05 0.94 0.76

Table 4 Independent testing performance of our reproduction of state-of-the-art models using the 
PDB186 dataset. The column P represents results collected from the corresponding publications

The column R represents our reproduced results of the corresponding model

Models ACC(%) SN(%) SP(%) MCC

P R P R P R P R

DPP-PseAAC [17] 77.42 75.81 83.87 83.87 70.97 67.74 0.79 0.52

LocalDPP [11] 79.00 72.50 92.50 86.02 65.60 59.14 0.63 0.47

Adilina et al. [20](Group) 82.26 79.04 95.0 86.02 69.90 61.30 0.67 0.62

Adilina et al. [20](RFE) 76.88 77.95 77.00 93.55 76.9 62.37 0.55 0.58

iDNAProt-ES [14] 80.64 72.04 81.31 83.87 80.00 60.21 0.84 0.46
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performance metrics. However, as mentioned earlier, DPP-PseAAC seems to be overfit-
ting the training dataset. This is also evident in the independent test results on the UNI-
PROT356 dataset.

Table 7 shows the independent test results on the UNIPROT356 dataset. The results of 
DPP-PseAAC degraded significantly in independent testing—there was ≈15% reduction 
in accuracy and ≈13% reduction in specificity from the cross-validation test results. For 
the rest of the predictors, the cross-validation results generalized fairly well in the inde-
pendent testing. StackDPP had the best score for each performance metric.

In eukaryotic genome, around 6–7% of the genes encode proteins that are DNA-
binding [1]. In a practical scenario a biologist may thus come across datasets where the 
expected number of DNA-BPs is very small. It is important to check whether StackDPP 
will perform well in the face of such heavy imbalance. Therefore, we generated a subsam-
pled test set from UNIPROT356, comprising 12 DNA-BPs and 178 non DNA-BPs, thus 

Table 5 Comparison of StackDPP with state-of-the-art methods using 10-fold cross-validation on 
the UNIPROT1424 dataset

The best value for each metric is shown in bold‑face

Model ACC SN SP MCC

DPP-PseAAC 0.98 0.99 0.98 0.97
LocalDPP 0.90 0.90 0.91 0.81

Adilina (Group) 0.86 0.84 0.88 0.72

Adilina (RFE) 0.87 0.86 0.89 0.75

iDNAProt-ES 0.94 0.94 0.94 0.88

StackDPP 0.92 0.92 0.92 0.84

Table 6 Comparison of StackDPP with state-of-the-art methods using jackknife cross-validation on 
the UNIPROT1424 dataset

The best value for each metric is shown in bold‑face

Model ACC SN SP MCC

DPP-PseAAC 0.99 0.99 0.98 0.97
LocalDPP 0.90 0.90 0.90 0.80

Adilina (Group) 0.86 0.83 0.89 0.72

Adilina (RFE) 0.87 0.85 0.88 0.74

iDNAProt-ES 0.95 0.94 0.95 0.90

StackDPP 0.92 0.92 0.91 0.84

Table 7 Comparison of StackDPP with state-of-the-art methods using independent testing on the 
UNIPROT356 dataset

The best value for each metric is shown in bold‑face

Model ACC SN SP MCC PREC F1 AUROC AUPR

DPP-PsseAAC 0.83 0.81 0.85 0.67 0.85 0.83 0.83 0.87

Local-DPP 0.88 0.87 0.89 0.76 0.89 0.88 0.88 0.95

Adelina (Group) 0.84 0.80 0.88 0.68 0.87 0.83 0.84 0.92

Adelina (RFE) 0.85 0.85 0.86 0.71 0.86 0.85 0.85 0.92

iDNAProt-ES 0.90 0.90 0.89 0.80 0.89 0.90 0.90 0.96

StackDPP 0.93 0.90 0.96 0.86 0.95 0.92 0.93 0.97
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keeping the amount of DNA-BPs to around 6%. We generated 20 replicates and meas-
ured the performance of StackDPP as well as the other predictors. The results, mean and 
standard deviation of various performance metrics, are reported in Table 8. StackDPP 
maintained high sensitivity and specificity. Precision of all the models degraded signifi-
cantly, which is not surprising. Nevertheless, only StackDPP maintained high AUROC 
and AUPR.

As mentioned in the section  “Materials and methods”, we have used Friedman test 
on the independent test accuracy of the different predictors, with the significance 
level, α = 0.05 . The Friedman statistic distributed according to Chi-square with (n− 1) 
degrees of freedom was 98.435714. Here n is the number of predictors, which is 6. 
p-value computed by the Friedman test is 4.77e−11. From the Chi-square distribution 
table, the critical value for 5 degrees of freedom is 11.07. As the Friedman test statis-
tic value (98.435714) is greater than the critical value (11.07), the null hypothesis ( H0 ) 
is rejected. Table 9 summarizes the average ranking of the predictors, where StackDPP 
comes out on top.

Post hoc Holm test was conducted subsequently. The adjusted p-values for each pair 
of methods have been plot in a heatmap in Fig. 7. It is clear that superiority of stackDPP 
over rest of the methods, except for Adilina et al. (RFE) is statistically significant.

Feature set composition

As mentioned earlier, we explored a large number of features from three feature cat-
egories – sequence based features, PSSM based features, and SPIDER3 based features. 

Table 8 Performance of StackDPP and state-of-the-art predictors on independent test sets 
subsampled from UNIPROT356 to mimic real-world proportion of DNA-BPs

The results are averaged across 20 replicates. The values after ± symbol represent standard deviation

Model Accuracy Sensitivity Specificity MCC Precision F1-score AUROC AUPR

DPP-
PseAAC 

0.85±0.009 0.82±0.137 0.85±0.000 0.42±0.079 0.27±0.035 0.41±0.057 0.84±0.068 0.38±0.093

LocalDPP 0.94±0.007 0.31±0.117 0.98±0.000 0.35±0.120 0.46±0.113 0.37±0.121 0.65±0.059 0.38±0.100

Adelina 
(Group)

0.88±0.007 0.80±0.112 0.88±0.000 0.45±0.067 0.31±0.031 0.45±0.049 0.84±0.056 0.66±0.145

Adelina 
(RFE)

0.86±0.006 0.85±0.091 0.86±0.000 0.44±0.052 0.29±0.022 0.43±0.036 0.85±0.045 0.59±0.147

iDNAProt-
ES

0.08±0.000 1.00±0.000 0.02±0.000 0.03±0.000 0.06±0.000 0.12±0.000 0.51±0.000 0.15±0.048

StackDPP 0.95±0.006 0.90±0.089 0.96±0.000 0.69±0.056 0.57±0.026 0.70±0.047 0.93±0.045 0.81±0.081

Table 9 Average rank of models based on the Friedman test

Model Avg. Rank

StackDPP 1

Adilina et al. (RFE) 2.025

Adilina et al. (Group) 3.1

DPP-PseAAC 3.875

LocalDPP 5

iDNAProt-ES 6
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We selected 452 top features using RFECV to train the final model. In Fig. 8 we can see 
the number of features of each category that we have selected in our model. Most of 
the selected 452 features are PSSM based. To be specific, 132 (29%) of the features are 
sequence based, 27 (6%) SPIDER3 based, and 293 (65%) PSSM based. This suggests that 
evolutionary features might be the key to successfully identifying DNA-binding proteins.

Discussion and conclusion
In this research work, we have critically assessed the existing widely used bench-
mark datasets, PDB1075 and PDB186, for the DNA-binding protein prediction 
problem. After unraveling several problems with these datasets, we then prepared 

Fig. 7 Heatmap of the adjusted p-values from the post hoc Holm test on the accuracy metric

Fig. 8 Feature Set Composition
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new benchmark datasets UNIPROT1424 and UNIPROT356, respectively for train-
ing and independent testing of different predictors. We have ensured that any pair of 
sequences from these two datasets combined have less than 25% sequence identity. 
We then retrained several state-of-the-art predictors on UNIPROT1424, reported 
their cross-validated performance, and finally tested the models using the UNI-
PROT356 independent test set. We have also proposed our own prediction model, 
named StackDPP. Our stacking ensemble based model produces at per results with 
state-of-the-art predictors in 10-fold and jackknife cross-validation testing. In inde-
pendent testing, StackDPP outperforms all the other predictors. More importantly, 
its cross-validation results generalize very well in independent testing. Therefore, we 
strongly believe that StackDPP, which is freely and publicly available, can be success-
fully used in annotating novel protein sequences as DNA-binding or not. This can 
immensely benefit researchers in their downstream analyses.

Like DNA-binding proteins, RNA-binding proteins are also an important class of 
proteins to study. Many properties of known RNA-binding protein motifs are simi-
lar to those of DNA-BPs. Thus an RNA-binding protein can potentially confuse a 
DNA-BP predictor. Whether StackDPP is able to differentiate between the two will be 
something interesting to investigate in future. As there is yet another class of proteins 
that can bind to both DNA and RNA, dataset should be carefully curated for such an 
investigation. A multi-class classification problem can also be formulated to differen-
tiate among these classes of proteins and the ones that binds neither with DNA nor 
RNA.

Compared to the number of sequence-known proteins, very few proteins have their 
structures experimentally determined. Thus researchers have tried to build predictors 
that do not directly rely on the strurctural informatio. However, AlphaFold 2 [46] has 
been very successful in computationally determining the tertiary structure of proteins 
with high accuracy. Therefore utilizing this information in DNA-BP classification is 
another important direction to explore. At the same time, recently built protein lan-
guage models [47, 48] have also successfully been used in many protein attribute predic-
tion problems. We wish to investigate these models in the context of the DNA-BPs in 
future as well. We also plan to build a web version of StackDPP so that researchers can 
schedule DNA-BP prediction jobs and get the results from a powerful server quickly.

In adddition to proposing StackDPP, an highly effective predictor of DNA-binding pro-
teins, we have also benchmarked several existing predictors in the new dataset curated 
in this study. We hope that this gives the foundation for other researchers to come up 
with novel ideas to train their DNA-BP predictors in this dataset and benchmark their 
models’ performance against the state-of-the-art predictors without much hassle. Over-
all, StackDPP and the dataset preparation groundwork associated with it advance the 
frontier of research around the DNA-binding protein prediction problem considerably.
Acknowledgements
We thank the anonymous reviewers for their valuable feedback.

Author Contributions
MSR conceived the study. SHA, DBB, and RK conducted the experiments. MSR, SHA, and DBB analyzed the experimental 
results. All the authors reviewed the manuscript.

Funding
No funding was available for this research work.



Page 20 of 21Ahmed et al. BMC Bioinformatics          (2024) 25:111 

Availibility of data and materials
The source code (python) of StackDPP and the protein sequences (FASTA file) of the proposed benchmark datasets 
UNIPROT1424 and UNIPROT356 are available publicly at https:// github. com/ Hasib Ahmed 1624/ Stack DPP.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 8 December 2022   Accepted: 20 February 2024

References
 1. Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structures of protein-DNA complexes. 

Genome Biol. 2000;1:1–37.
 2. Sonnhammer EL, Eddy SR, Durbin R. Pfam: a comprehensive database of protein domain families based on seed 

alignments. Proteins: Structure, Function, and Bioinformatics 1997;28(3): 405–420
 3. Stawiski EW, Gregoret LM, Mandel-Gutfreund Y. Annotating nucleic acid-binding function based on protein struc-

ture. J Mol Biol. 2003;326(4):1065–79.
 4. Ahmad S, Sarai A. Moment-based prediction of DNA-binding proteins. J Mol Biol. 2004;341(1):65–71.
 5. Shanahan HP, Garcia MA, Jones S, Thornton JM. Identifying DNA-binding proteins using structural motifs and the 

electrostatic potential. Nucleic Acids Res. 2004;32(16):4732–41.
 6. Bhardwaj N, Langlois RE, Zhao G, Lu H. Kernel-based machine learning protocol for predicting DNA-binding pro-

teins. Nucleic Acids Res. 2005;33(20):6486–93.
 7. Szilágyi A, Skolnick J. Efficient prediction of nucleic acid binding function from low-resolution protein structures. J 

Mol Biol. 2006;358(3):922–33.
 8. Gao M, Skolnick J. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions. Nucleic 

Acids Res. 2008;36(12):3978–92.
 9. Nimrod G, Szilágyi A, Leslie C, Ben-Tal N. Identification of DNA-binding proteins using structural, electrostatic and 

evolutionary features. J Mol Biol. 2009;387(4):1040–53.
 10. Nimrod G, Schushan M, Szilágyi A, Leslie C, Ben-Tal N. iDBPs: a web server for the identification of DNA binding 

proteins. Bioinformatics. 2010;26(5):692–3.
 11. Wei L, Tang J, Zou Q. Local-dpp: An improved DNA-binding protein prediction method by exploring local evolution-

ary information. Inf Sci. 2017;384:135–44. https:// doi. org/ 10. 1016/j. ins. 2016. 06. 026.
 12. Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X, Chou K-C. idna-prot|dis: Identifying dna-binding proteins by incorporating 

amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS 
ONE. 2014;9(9):1–12. https:// doi. org/ 10. 1371/ journ al. pone. 01066 91.

 13. Lou W, Wang X, Chen F, Chen Y, Jiang B, Zhang H. Sequence based prediction of DNA-binding proteins based on 
hybrid feature selection using random forest and gaussian naíve bayes. PLoS ONE. 2014;9(1):1–10. https:// doi. org/ 
10. 1371/ journ al. pone. 00867 03.

 14. Chowdhury SY, Shatabda S, Dehzangi A. idnaprot-es: Identification of DNA-binding proteins using evolutionary and 
structural features. Sci Rep. 2017;7(1):14938. https:// doi. org/ 10. 1038/ s41598- 017- 14945-1.

 15. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped blast and psi-blast: a new 
generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

 16. Yang Y, Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Zhou Y Spider2: A package to predict 
secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Prediction 
of protein secondary structure, 2017;55–63

 17. Rahman MS, Shatabda S, Saha S, Kaykobad M, Rahman MS. Dpp-pseaac: a DNA-binding protein prediction model 
using chou’s general pseaac. J Theor Biol. 2018;452:22–34. https:// doi. org/ 10. 1016/j. jtbi. 2018. 05. 006.

 18. Nanni L. Brahnam S Set of approaches based on 3D structure and position specific-scoring matrix for predicting 
DNA-binding proteins. Bioinformatics. 2018;35(11):1844–51. https:// doi. org/ 10. 1093/ bioin forma tics/ bty912. www. 
acade mic. oup. com/ bioin forma tics/ artic le- pdf/ 35/ 11/ 1844/ 28759 204/ bty912. pdf

 19. Fu X, Zhu W, Liao B, Cai L, Peng L, Yang J. Improved DNA-binding protein identification by incorporating evolution-
ary information into the chou’s pseaac. IEEE Access. 2018;6:66545–56. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28766 
56.

 20. Adilina S, Farid DM, Shatabda S. Effective DNA binding protein prediction by using key features via chou’s general 
pseaac. J Theor Biol. 2019;460:64–78. https:// doi. org/ 10. 1016/j. jtbi. 2018. 10. 027.

 21. Hu S, Ma R, Wang H. An improved deep learning method for predicting DNA-binding proteins based on contextual 
features in amino acid sequences. PLoS ONE. 2019;14(11):1–21. https:// doi. org/ 10. 1371/ journ al. pone. 02253 17.

 22. Consortium U. Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):506–15.
 23. https:// www. unipr ot. org/ help/ unipr otkb_ secti ons

https://github.com/HasibAhmed1624/StackDPP
https://doi.org/10.1016/j.ins.2016.06.026
https://doi.org/10.1371/journal.pone.0106691
https://doi.org/10.1371/journal.pone.0086703
https://doi.org/10.1371/journal.pone.0086703
https://doi.org/10.1038/s41598-017-14945-1
https://doi.org/10.1016/j.jtbi.2018.05.006
https://doi.org/10.1093/bioinformatics/bty912
http://www.academic.oup.com/bioinformatics/article-pdf/35/11/1844/28759204/bty912.pdf
http://www.academic.oup.com/bioinformatics/article-pdf/35/11/1844/28759204/bty912.pdf
https://doi.org/10.1109/ACCESS.2018.2876656
https://doi.org/10.1109/ACCESS.2018.2876656
https://doi.org/10.1016/j.jtbi.2018.10.027
https://doi.org/10.1371/journal.pone.0225317
https://www.uniprot.org/help/uniprotkb_sections


Page 21 of 21Ahmed et al. BMC Bioinformatics          (2024) 25:111  

 24. Huang Y, Niu B, Gao Y, Fu L, Li W. Cd-hit suite: a web server for clustering and comparing biological sequences. 
Bioinformatics. 2010;26(5):680–2.

 25. Shen H-B, Chou K-C. Pseaac: a flexible web server for generating various kinds of protein pseudo amino acid com-
position. Anal Biochem. 2008;373(2):386–8.

 26. Chou K-C. Prediction of signal peptides using scaled window. Peptides. 2001;22(12):1973–9. https:// doi. org/ 10. 1016/ 
S0196- 9781(01) 00540-X.

 27. Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions by long short-term memory bidirectional 
recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact num-
bers and solvent accessibility. Bioinformatics. 2017;33(18):2842–9.

 28. Dong Q, Shanyi Wang Kai Wang, Xuan Liu, Liu, B.: Identification of dna-binding proteins by auto-cross covariance 
transformation. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 470–475 
(2015). https:// doi. org/ 10. 1109/ BIBM. 2015. 73597 30

 29. Waris M, Ahmad K, Kabir M, Hayat M. Identification of DNA binding proteins using evolutionary profiles position 
specific scoring matrix. Neurocomputing. 2016;199:154–62. https:// doi. org/ 10. 1016/j. neucom. 2016. 03. 025.

 30. Liu B, Yang F, Chou K-C. 2l-pirna: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their func-
tion. Molecular Therapy Nucleic Acids. 2017;7:267–77. https:// doi. org/ 10. 1016/j. omtn. 2017. 04. 008.

 31. Saravanan V, Gautham N Harnessing computational biology for exact linear b-cell epitope prediction: a novel amino 
acid composition-based feature descriptor. Omics J Integrat Biol 2015;19(10):648–658

 32. Lee T-Y, Lin Z-Q, Hsieh S-J, Bretaña NA, Lu C-T. Exploiting maximal dependence decomposition to identify conserved 
motifs from a group of aligned signal sequences. Bioinformatics. 2011;27(13):1780–7.

 33. Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT, Wang Y, Webb GI, Smith AI, Daly RJ, Chou K-C. ifeature: a python 
package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics. 
2018;34(14):2499–502.

 34. Cai C, Han L, Ji ZL, Chen X, Chen YZ. Svm-prot: web-based support vector machine software for functional classifica-
tion of a protein from its primary sequence. Nucleic Acids Res. 2003;31(13):3692–7.

 35. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein-protein interactions based only on 
sequences information. Proc Natl Acad Sci. 2007;104(11):4337–41.

 36. Schneider G, Wrede P. The rational design of amino acid sequences by artificial neural networks and simulated 
molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J. 1994;66(2):335–44.

 37. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185(4154):862–4.
 38. Chen X, Qiu J-D, Shi S-P, Suo S-B, Huang S-Y, Liang R-P. Incorporating key position and amino acid residue features to 

identify general and species-specific ubiquitin conjugation sites. Bioinformatics. 2013;29(13):1614–22.
 39. Feng Z-P, Zhang C-T. Prediction of membrane protein types based on the hydrophobic index of amino acids. J 

Protein Chem. 2000;19(4):269–75.
 40. Sokal RR, Thomson BA. Population structure inferred by local spatial autocorrelation: an example from an Amerin-

dian tribal population. Am J Phy Anthropol Off Publ Am Assoc Phys Anthropol. 2006;129(1):121–31.
 41. Horne DS. Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. 

Biopolym Original Res Biomol. 1988;27(3):451–77.
 42. Dehzangi A, Sohrabi S, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and gram-negative subcel-

lular localization using rotation forest and physicochemical-based features. BMC Bioinf. 2015;16(4):1–8.
 43. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.
 44. Wang G, Dunbrack RL Pisces: recent improvements to a pdb sequence culling server. Nucleic Acids Res. 

2005;33(suppl_2), 94–98
 45. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: an update. ACM 

SIGKDD Explor Newsl. 2009;11(1):10–8.
 46. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. 

Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.
 47. Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M. Prottrans: 

toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell. 
2021;44(10):7112–27.

 48. Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT: a universal deep-learning model of protein sequence 
and function. Bioinformatics. 2022;38(8):2102–10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S0196-9781(01)00540-X
https://doi.org/10.1016/S0196-9781(01)00540-X
https://doi.org/10.1109/BIBM.2015.7359730
https://doi.org/10.1016/j.neucom.2016.03.025
https://doi.org/10.1016/j.omtn.2017.04.008

	StackDPP: a stacking ensemble based DNA-binding protein prediction model
	Abstract 
	Background: 
	Result: 
	Conclusion: 

	Introduction
	Materials and methods
	Dataset
	Protein representation
	Feature extraction
	Feature selection
	Choice of predictor
	Predictor evaluation
	Statistical test

	Results and discussions
	A need for new benchmark datasets
	Reproduced results of state-of-the-art models
	Performance comparison in the new benchmark dataset
	Feature set composition

	Discussion and conclusion
	Acknowledgements
	References


