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Abstract 

An organism’s observable traits, or phenotype, result from intricate interactions 
among genes, proteins, metabolites and the environment. External factors, such 
as associated microorganisms, along with biotic and abiotic stressors, can significantly 
impact this complex biological system, influencing processes like growth, develop-
ment and productivity. A comprehensive analysis of the entire biological system 
and its interactions is thus crucial to identify key components that support adaptation 
to stressors and to discover biomarkers applicable in breeding programs or disease 
diagnostics. Since the genomics era, several other ’omics’ disciplines have emerged, 
and recent advances in high-throughput technologies have facilitated the generation 
of additional omics datasets. While traditionally analyzed individually, the last decade 
has seen an increase in multi-omics data integration and analysis strategies aimed 
at achieving a holistic understanding of interactions across different biological layers. 
Despite these advances, the analysis of multi-omics data is still challenging due to their 
scale, complexity, high dimensionality and multimodality. To address these challenges, 
a number of analytical tools and strategies have been developed, including cluster-
ing and differential equations, which require advanced knowledge in bioinformatics 
and statistics. Therefore, this study recognizes the need for user-friendly tools by intro-
ducing Holomics, an accessible and easy-to-use R shiny application with multi-omics 
functions tailored for scientists with limited bioinformatics knowledge. Holomics 
provides a well-defined workflow, starting with the upload and pre-filtering of single-
omics data, which are then further refined by single-omics analysis focusing on key 
features. Subsequently, these reduced datasets are subjected to multi-omics analyses 
to unveil correlations between 2-n datasets. This paper concludes with a real-world 
case study where microbiomics, transcriptomics and metabolomics data from previ-
ous studies that elucidate factors associated with improved sugar beet storability are 
integrated using Holomics. The results are discussed in the context of the biologi-
cal background, underscoring the importance of multi-omics insights. This example 
not only highlights the versatility of Holomics in handling different types of omics data, 
but also validates its consistency by reproducing findings from preceding single-omics 
studies.
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Background
An organism’s phenotype and vitality are the results of complex interactions between 
its genes, proteins, metabolites, many other molecular components, its microbes and 
its environment. In particular, external factors, such as biotic and abiotic stressors, can 
influence this balanced biological system dramatically, affecting growth, development 
and productivity. Therefore, analyzing such a biological system in its entirety with its 
interactions between different functional layers is crucial for i) identifying key compo-
nents that can support adaptation to these stressors to maintain or even increase the 
vitality of an organism, or ii) discovering biomarkers that can be applied in plant and 
animal breeding programs, or for disease diagnostics and forecasting [1–4].

Since the era of genomics that began around 1990 [5], a large number of additional 
’omics’ have emerged to this end: transcriptomics, metabolomics, microbiomics, prot-
eomics, epigenomics, to name a few. In each of these fields, recent advances in high-
throughput technologies have enabled the generation of large and complex datasets 
harboring a wealth of information about biological molecules and their interactions at 
that specific omics-level. These omics-levels are still traditionally analyzed individually, 
however, for the last decade, an increasing number of omics datasets have been ana-
lyzed in an integrative manner to gain additional information. This integrative approach, 
known as multi-omics analysis, has become more popular as high-throughput tech-
niques are becoming increasingly cheaper. The multi-omics approach aims to gain a 
more holistic and systems-level understanding of the relationships and interactions 
between different biological components located across multiple layers of a biological 
system [6, 7].

Already, single-omics data are often of a large scale and complex structure requiring 
specialized analytical tools plus a certain knowledge base in bioinformatics. Multi-omics 
analysis is particularly challenging due to the high dimensionality of individual single-
omics data, as well as the heterogeneity and multimodality of the overall multi-omics 
dataset, making the integration of these diverse datasets from multiple and heteroge-
neous sources (or modalities) into a meaningful model and the extraction of relevant 
information a formidable task. A variety of methods and strategies have been developed 
in recent years, ranging from clustering methods to co-expression to differential equa-
tions and modeling, and recently, also going into the sphere of machine learning; how-
ever, there is a need to expand the knowledge of bioinformatics and statistics along this 
axis, as comprehensively reviewed [8, 9]. In addition, there is already a plethora of tools 
and packages for analyzing and integrating omics data [10]. However, many of them 
come with certain restrictions and limitations, e.g., they are tailored to a specific omics 
method, limited in the number of omics datasets or limited with regard to the species of 
interest. A very sophisticated and quite user-friendly tool (through its well-established 
tutorials, webinars and workshops) that must be mentioned here is the R package mix-
Omics [11], which is making use of a multi-block data design and its integrative analysis 
are based on sparse multivariate models [12]. It is well used in the research commu-
nity working on multi-omics data integration across multiple disciplines [13–15], it 
appears in multi-omics data integration guidelines and protocols [16, 17], and because 
it is designed to work seamlessly with other R packages and tools, many of mixOmics’ 
functions have been successfully implemented in various other packages, workflows, and 
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pipelines, e.g., multiomics [18]. However, despite the availability of educational tools for 
learning multi-omics data integration approaches, using the necessary tools and pack-
ages, including mixOmics, often requires not only a deep understanding of statistics, but 
also good programming skills in R and/or Python, which may cause difficulties for some 
users. Therefore, the availability and development of tools should also focus on ensur-
ing user-friendliness, especially for bioinformatics beginners, to be able to perform their 
first steps in multi-omics data integration.

A number of user-friendly, web-based tools are already available to the community 
that do not require advanced programming skills. For example, MetaboAnalyst can 
process raw input data from both targeted and untargeted metabolomics. It offers inte-
grated pathway analysis of genes and metabolites, but only works with transcriptom-
ics and metabolomics data [19]. PaintOmics 4 provides a graphic interface and utilizes 
biological pathway maps to analyze and visualize multi-omics datasets focusing on the 
combination of metabolomics with transcriptomics and/or proteomics data [20]. On the 
other hand, 3Omics implements a correlation network-based approach with a simple 
and clear interface, but is currently only suitable for analyzing human data and is lim-
ited to transcriptomics, proteomics, and metabolomics data [21]. Web-based platforms 
that explicitly mention also the inclusion of microbiomics data are, for example, Omics-
Net 2.0 [22] and MiBiOmics [23]. The first uses a network-based multi-omics approach 
and the latter incorporates weighted-gene correlation network analysis, is implemented 
as an easy-to-use R shiny application, but is currently limited to a maximum of three 
omics datasets. Other applications based on R shiny [24] that address multi-omics data 
integration and analysis include FORALL, tailored for acute lymphoblastic leukemia cell 
lines [25], GMIEC, tailored for human data [26], ShinyOmics, mainly designed for the 
downstream analysis of transcriptomics data [27], or an yet unpublished application for 
multi-omics analysis of inflammatory bowel disease [28].

In order to provide a tool that is not limited to any organism or number of omics data-
sets, and in particular to address beginners in multi-omics data analysis, we developed 
Holomics, an easy-to-use R shiny application with a selected set of multi-omics func-
tions mainly based on the R package mixOmics [11]. One of the novelties of Holomics 
lies in the implementation of an automated filtering process to reduce high dimensional 
input datasets, which is based on the median absolute deviation (MAD). Furthermore, 
the mixOmics-based tuning procedures are automatized in Holomics. Specifically, when 
there are feature columns with a near-zero variance usually causing algorithm failure, the 
datasets are automatically adapted and the tuning process is restarted without any nec-
essary interaction by the user. In addition, Holomics offers the possibility to explore the 
calculated associations between the omics datasets through an interactive network [29]. 
And last but not least, some Holomics plots allow for a custom color scheme defined by 
the user.

Implementation
Holomics was implemented in R version 4.2.0 [30] using the R package shiny [24] 
to make it an easy-to-use, interactive web application. Most of the integrated analy-
sis algorithms rely on the R package mixOmics [11]. In detail, we integrated the by 
mixOmics developed mixMC framework [31, 32] for preprocessing microbiomics 
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datasets, as well as the single-omics analyses (s)PCA (with its functions pca and 
spca) and (s)PLS-DA (with the functions plsda and splsda). The sparse version 
of the analyses is used during the tuning procedures. In addition, Holomics inte-
grates mixOmics’ pairwise-omics analysis (s)PLS (functions pls and spls), and its 
multi-omics analysis DIABLO (with the function block.splsda) in its supervised 
version.

When using Holomics, a three-step workflow as shown in Fig. 1 is recommended: 
first, data are uploaded (Sects. “Input data” and “Data upload”); second, single-omics 
analysis including feature reduction is performed (Sect. “Single-omics analyses”); and 
third, multi-omics analysis is done (Sect.  “Multi-omics analyses”). A more detailed 
description is given in the Holomics vignette [33].

Input data

When working with omics data and prior to any integrative analyses, the user needs 
to tackle difficulties such as class imbalance, missing data, data heterogeneity, the 
curse of dimensionality, and diverse scalability problems [34]. Also in case of Hol-
omics, a certain preprocessing of the datasets might need to be performed before 
their upload, e.g. in case of missing data, an imputation task has to be done. There 
are different strategies and tools to impute omics datasets, e.g. for metabolomics data 
MICE [35] or for transcriptomics and microbiomics data the R package missForest 
[36] can be recommended. Alternatively, eUTOPIA [37] allows its users to preprocess 
any microarray data.

In general, any kind of omics data on a continuous scale can be used for the inte-
grative analysis of Holomics. However, sequence-based count data needs to be pro-
cessed before using Holomics to convert it to continuous data. To further improve the 
results from multi-omics data integration, users need to address the remaining, above 

Fig. 1 The Holomics workflow. To make use of all the functionality provided by Holomics, a certain workflow 
should be followed. (1) Input datasets: first, the datasets are uploaded where an eventual pre-filtering/
transformation step takes place. (2) Single-omics analysis: afterwards, the single-omics analysis is performed, 
where key features are identified and the datasets are reduced accordingly. (3) Reduced datasets: the 
single-omics feature selection process is resulting in reduced datasets. (4) Multi-omics analysis: with these 
reduced datasets (or with the input datasets from step 1), the multi-omics analyses are applied to identify 
correlations between 2-n datasets
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mentioned difficulties separately as Holomics lacks any further built-in normalization 
or class balancing algorithms. Mirza et al. [34] provide a good overview on how and 
with which tools the data preparation tasks can be tackled.

Examples of omics data that can be used are a (FPKM-, TMM-, etc. [38]) normalized 
read count table as a transcriptomics dataset or normalized quantities of the measured 
metabolites as a metabolomics dataset [39]. Microbiomics, at its simplest level, inves-
tigates the composition of microbial communities, which is typically done using 16S 
rRNA or ITS profiling, for bacterial or fungal communities, respectively [40]. The micro-
biomics dataset(s) can therefore consist of a table of amplicon sequence variants (ASVs 
or OTUs, operational taxonomic units). Beyond these examples, also proteomics, phe-
nomics, metagenomics, metatranscriptomics, etc. data can be included, as long as they 
are continuously scaled, pre-processed and normalized. Examples of metabolomics, 
microbiomics, and transcriptomics data as well as a file with the labels and class infor-
mation can be found in Additional file 1: Tables S1–S5. These omics data serve as test 
datasets for Holomics and can be uploaded directly into the application after removing 
the first line with the table title in each case. In addition, exactly the same datasets were 
processed with Holomics in the herein described case study.

Data upload

Basically an unlimited number of datasets from any omics kind can be uploaded, 
whereas every upload file can have a maximum size of 50 Mb. As mentioned before, 
Holomics does not provide any omics-specific normalization algorithms. Only in the 
case of microbiomics data (e.g., in form of an ASV table), which have to be specified as 
such during data upload, the mixMC framework [31, 32] is applied in the background as 
a pre-processing step. If the omics dataset contains more than 10,000 features, Holomics 
automatically filters the dataset to 10,000 or fewer features. Therefore, firstly, low count 
filtering is used, meaning that all feature columns with a column sum less than 10 are 
removed, and secondly, if necessary, the remaining n columns with the lowest MAD are 
removed to obtain the maximum of 10,000 features. The whole filtering process is per-
formed because it is recommended to use the mixOmics algorithms with a maximum of 
10,000 features per dataset [11].

In addition to the omics datasets, at least one corresponding metadata file needs to 
be uploaded, which contains the labels or class information of the samples in the cor-
responding omics data. Furthermore, the metadata file can include a personalized color 
scheme for the distinct classes that are used later in the plots.

Single‑omics analyses

Single-omics analysis in Holomics can be performed either using the unsupervised prin-
cipal component analysis (PCA) [41] or the supervised partial least squares discriminant 
analysis (PLS-DA) [42]. When following the Holomics workflow (Fig. 1), the key concept 
of single-omics analysis is to identify the key features of each omics layer and to reduce 
the dataset accordingly for further usage in the multi-omics analyses.

With regard to PCA, this filtering process calculates the number of components that 
are needed to obtain at least 80% of the explained variance. Afterwards, sparse PCA 
(sPCA) [43] is used to determine the information-rich features of the before calculated 
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components. In the end, the dataset is reduced to only these important features. Com-
pared to that, the filtering process of the PLS-DA takes the number of the pre-selected 
components, puts it into a sparse PLS-DA (sPLS-DA) model [44], where the number 
of features per component is tuned using n-fold cross-validation, and finally takes the 
number of components and associated features that have the lowest balanced error rate 
(BER) during the tuning process. Also here, the reduced dataset consists only of the 
above mentioned associated features. In both cases, the resulting feature-selected data-
set is automatically available for the subsequent multi-omics analyses and can addition-
ally be downloaded manually.

Generally, both single-omics pages present several plots visualizing the results of the 
uploaded as well as the reduced filtered dataset next to each other. These plots include a 
sample plot, which is a visual representations of the sample similarities, and a number of 
variable plots showing the influence of the features on the selected or calculated number 
of components.

Multi‑omics analyses

Pairwise‑omics analysis

One of the multi-omics analyses integrated in Holomics is the unsupervised, pairwise, 
multivariate version of the sparse partial least squares s(PLS) analysis [45], which can be 
used to analyze two omics datasets (X and Y). In general, mixOmics provides multiple 
modes for the (s)PLS algorithm, whereas in Holomics only the regression and canoni-
cal mode can be used. When using the regression mode, the algorithm tries to predict 
dataset Y using dataset X, so changing the order of the datasets leads to different results. 
On the other hand, with the canonical mode the datasets should be interchangeable, and 
this mode is especially relevant when there is no prior known dependency between the 
two datasets [46]. However, during our case study, we observed that interchanging the 
datasets, when using the canonical mode, still led to different results. Like in the feature 
selection process of the single-omics analyses, multi-omics analyses include a tuning 
process. The tuning process of the (s)PLS analysis takes the number of pre-selected com-
ponents and calculates the Q2 score per component using n-fold cross-validation. Dur-
ing this calculation the algorithm can fail due to feature columns, which have a variance 
that is near zero. If the algorithm fails, the tuning process of Holomics calculates the 
percentage of distinct values per feature column for both datasets. It then determines 
which dataset has the column(s) with the lowest uniqueness percentage and removes 
these column(s) from the determined dataset. Afterwards, the calculation of the Q2 
score gets restarted. This whole procedure is performed as long until the calculation 
algorithm finishes or one or both datasets become too small. In general, the tuning pro-
cess determines the correlation between the actual and predicted components using dif-
ferent configurations for the number of features selected per dataset. In the end, the last 
number of components with a total Q2 above 0.0975 [47] is the ideal number of compo-
nents and the number of features, which had the highest correlation, is the ideal number 
of features for the datasets used. Based on this information, the dataset is tuned down 
to only contain the selected features and is subsequently used to recalculate the (s)PLS 
analyses. Within the Holomics application, the user can always see the result plots of 
the (s)PLS using the untuned datasets on the left side of the page and the plots using the 
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tuned datasets on the right side. Figure 2 shows the effect of the (s)PLS tuning process 
using two microbiomics datasets. It is clearly visible that the tuning algorithm cuts out 
the features of both datasets with a positive or negative correlation between the datasets.

Multi‑omics analysis

The last analysis integrated in the Holomics workflow is the multiblock sPLS-DA 
multi-omics analysis (referred to as DIABLO, Data Integration Analysis for Biomarker 
discovery using Latent variable approaches for Omics studies [12]). To reach this step 
is the end-target of every Holomics user, as it maximizes the correlated information 
between the datasets and simultaneously identifies the key variables of the omics 
datasets. Generally, DIABLO can be used in a supervised and unsupervised fashion, 
whereas Holomics currently offers only the supervised version. When using the DIA-
BLO analysis a design matrix must be specified, whereas the selection of the matrix 
can be determined based on a variety of aspects. One of them is a data-driven aspect, 
where the value of the design matrix is based on the pairwise correlations, calculated 
with the PLS analysis, of the provided datasets [12]. Holomics calculates the pairwise 
correlations automatically as soon as the user selects the datasets, which should be 
used for the DIABLO analysis. The lowest calculated correlation is then automatically 
set for the design matrix. However, the value is always adjustable by the user as e.g. 
there could be a prior known biological correlation between the datasets that should 
be used for the design matrix. Like for the (s)PLS analysis, a tuning process can be 
used to optimize the datasets for the DIABLO analysis. Similar to the tuning of the 
(s)PLS analysis, the DIABLO tuning process takes the user pre-selected components 
and fits a DIABLO model up to the number of components using n-fold cross-valida-
tion without any feature selection. During this calculation, similar to the (s)PLS algo-
rithm, the DIABLO algorithm can fail due to feature columns, which have a variance 
that is near zero. If the algorithm fails, the tuning process of Holomics determines the 

Fig. 2 Example of the sPLS tuning effect using heatmaps. (s)PLS analysis and the tuning process were 
performed with two microbiomics datasets (ITS and 16S). A Result of the (s)PLS analysis using the two mixMC 
pre-processed, PLS-DA-filtered and within the PLS analysis standardized datasets, ITS (119 features) as dataset 
X of the analysis and 16S (40 features) as dataset Y. The analysis was performed using canonical mode and 
four components. The heatmap visualizes the correlations between the features of the two datasets. B 
Result of the (s)PLS analysis after the tuning process, which reduced the ITS dataset down to 10 features and 
the 16S dataset to 25 features. Additionally, the ideal number of components is 1. The heatmap shows the 
correlations between the features of the two reduced datasets. Note: Feature names were removed from the 
heatmaps
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datasets that led to the failure, calculates the percentage of distinct values per feature 
column for these datasets, determines the lowest percentage value and removes the 
column(s) with this uniqueness percentage value. Afterwards, the tuning process is 
restarted. This process is performed as long as any dataset leads to a failure of the 
process or until the calculation process is finished. In the end, the number of com-
ponents is chosen based on the overall BER using the centroids distance metric. To 
obtain the number of features per dataset, n-fold cross-validation is performed using 
again the centroids distance metric. According to the determined parameters, the 
used datasets are tuned to contain only the necessary features. DIABLO analysis is 
performed again and the results are presented next to those of the original datasets. 
Figure 3 shows how the tuning process affects the number of features per dataset used 
for the DIABLO analysis.

Plots

All the above mentioned analyses provide a number of plots to visualize the results. 
These include sample plots that visualize the samples of the datasets and variable plots 
that illustrate the connection between variables and components or the process by 
which the components are created from the initial variables [11]. One of the main graphs 
of the DIABLO analysis is the ’Relevance Network Graph’, which visualizes the correla-
tions between the features of the different datasets in the form of a network [48]. Within 
Holomics, this graph is illustrated in an interactive way using the R package visNetwork 
[29]. First, the user can change the cutoff value to show only the connections and corre-
sponding nodes for which the absolute correlation value is higher than the cutoff value. 
Second, the user can select a target node in the graph, resulting in the highlighting of the 
selected node along with its connected nodes, providing a clearer visualization of the 
interconnections between nodes. Finally, the nodes can be dragged around in the plot-
ting area to change the structure of the graph and obtain a better overview.

Fig. 3 Showcase of DIABLO tuning effect using Circos plots. Usage of the DIABLO analysis and tuning 
process with a metabolomics, a transcriptomics and two microbiomics datasets (16S and ITS). A Result of 
the DIABLO analysis using the four untuned, PLS-DA-filtered and within the DIABLO analyzes standardized 
datasets, metabolomics (23 features), transcriptomics (16 features), 16S (40 features) and ITS (119 features), 
and nine components. The Circos plot shows the correlations between the features of the four untuned 
datasets using an absolute cutoff value of 0.8. B Result of the DIABLO analysis after the tuning process, which 
reduced the metabolomics dataset to 10 features, transcriptomics to 10 features, 16S to 10 features and ITS 
to 50 features. Additionally, the ideal number of components is 1. The Circos plot shows the correlations 
between the features of the four reduced datasets using an absolute cutoff value of 0.8
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Results and discussion
To demonstrate the applicability and functionality of Holomics, we decided to address 
the described problem of post-harvest storability in sugar beet: after harvest, sugar beet 
is often stored for several weeks before it is processed. During this time, the sucrose is 
converted into invert sugars and mold forms, which leads to an economic loss for the 
entire sugar production and processing sector [49, 50]. Therefore, deciphering key fac-
tors associated with good storability is crucial because these factors can be used as bio-
markers, e.g., to screen available varieties or to optimize breeding programs by including 
marker-assisted selection (MAS) targeting prolonged storability. Several single-omics 
studies have already been performed to address the above described problems [51–
53]. However, a multi-omics analysis targeting this research question has not yet been 
performed.

Case study datasets

An overview of the analyzed sugar beet varieties, their storage behavior and which sam-
ples were taken for further omics-analysis is given in Fig. 4.

I
II

well
bad

0        1        2        3        4        5        6        7        8        9       10      11   12 -13   

storage time (weeks)
Harvest After storage

Storability classes

n = 3 beets
per timepoint
& per variety

n = 4 
varietiesV1 V6V2 V5

Soil Peel Tissue 
(periphery)

Tissue
(center)

Microbiomics

1x1x6 cm

Disc of tissue Elongate blocks

Transcriptomics
& Metabolomics

T
M

Fig. 4 Sampling scheme of the case study input datasets. The following four varieties were included: two 
(V1, V6) with good storability (less sucrose loss, marked in green) and two (V2, V5) with increased sucrose loss 
after storage (purple coloring). After harvest, the sugar beets were stored in a semi-controlled environment 
for 12–13 weeks as previously described [51]. From three individuals per variety, samples for microbiomics 
(16S rRNA and ITS amplicon sequencing) were taken from the adhering soil, the peel, the tissue at the 
periphery and the tissue of the center of the beet root. For transcriptomic (T) and metabolomic (M) analyses, 
a disc was cut from the beet root, from which blocks were extracted and of which the outer first centimeter 
was removed [51]. Designed by Tatjana Hirschmugl
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In detail, the transcriptomics data used in the present study include the count data 
of samples taken after 13 weeks of storage that were generated by Madritsch et al. [51]. 
Using the same beet root samples, targeted metabolomics (predominantly amino acids) 
was performed [52], representing the metabolomics input dataset. Although six sugar 
beet varieties with contrasting storage properties were analyzed in these two studies, 
we selected only the two varieties classified as well storable and the two least (badly) 
storable varieties for use in our case study. In addition, 16S rRNA and ITS amplicon 
sequencing for microbial community analysis was done on the same four varieties, but 
on different individuals which were stored for 12 weeks [54]. For microbiomics analysis, 
sampling was done on separate levels (soil, peel, peripheral tissue and inner tissue of the 
beet root); however, for this case study, these four levels were merged to reduce the ana-
lytical complexity. We followed a standard bioinformatics workflow as described [55]. 
The resulting ASV table represents the microbiomics input datasets in this case study. 
Each variety is represented by three biological replicates, summing up to a final dataset 
of 12 samples. The data tables used can be found in Additional file 1: Tables S1–S5.

Single‑omics

For the integrative analysis, the original, unfiltered and normalized datasets were 
uploaded to Holomics. The two microbiomics datasets were automatically subjected to 
the mixMC pipeline and the transcriptomics dataset was filtered down to 10,000 fea-
tures, as it originally exceeded this limit. Afterwards, each pre-filtered dataset was put 
into both single-omics analysis for feature selection, before going into the multi-omics 
analysis. The filtering process of the PLS-DA was performed multiple times with differ-
ent settings for the pre-selected number of components (ranging from 3 to 7), whereas 
the received results did not change after a certain number of pre-selected components. 
Therefore, the last run, whose results were used for the following analyses, was per-
formed with a number of pre-selected components that was in the middle of the testing 
range. Table 1 presents the number of features extracted during the upload, pre-filtering 
and single-omics filtering step. In general, compared to the PLS-DA, PCA tended to 
form a greater number of components during the filtering step. Also, the datasets shrank 
relatively less when using PCA.

Following the guidelines of mixOmics [56], for interpretation of single-omics analy-
sis and subsequent analysis steps, we focused on the results of PLS-DA, as this is the 

Table 1 Summary of received results from pre-filtering and single-omics filtering processes

Summary of the results obtained from the pre‑filtering and single‑omics filtering processes of the investigated omics 
datasets, metabolomics (M), bacterial microbiomics (16S), fungal microbiomics (ITS), and transcriptomics (T)

M 16S ITS T

Original no. features 23 4,398 3,252 27,964

No. features after pre-filtering – 779 290 10,000

Single-omics analyses PCA PLS-DA PCA PLS-DA PCA PLS-DA PCA PLS-DA

No. features after filtering 23 23 232 40 252 119 112 16

No. pre-selected components – 5 – 3 – 3 – 5

Ideal no. components 3 4 8 1 8 2 5 1

Filtering runtime (min) 1 2 10 10 10 10 5 15
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recommended single-omics method for a classification problem, as we have here in our 
case study. After the tuning/filtering process, one component was retained in case of 
transcriptomics and 16S data, two for ITS data, and four components for metabolomics 
data. In Fig. 5, the loading plots for the first component of each single-omics analysis are 
presented.

In the case of the targeted metabolomics analysis, all 12 amino acids within the first 
component showed association to good storability. This finding is in line with Gip-
pert et al. [52], describing that the content of 15 out of 22 tested free amino acids was 
greater in the good storable sugar beet varieties than in the bad storable ones consid-
ering the time point after storage. Within the first component of the transcriptomics 
data, three out of 16 transcripts were association with bad storability: BVRB_8g185300, 
BVRB_4g086040 and BVRB_4g086060. All three transcripts also appeared to be sig-
nificantly down-regulated at the last time point (after storage) in the badly storable 
varieties in Madritsch et  al. [51], with log2-fold changes of −2.04, −3.72, and −4.22, 
respectively. Out of the 13 transcripts linked to good storability, five appeared to be in 
the above mentioned study among the significantly upregulated genes: BVRB_5g105510, 
BVRB_015940, BVRB_9g206460, BVRB_000640, and BVRB_2g026130, with log2-fold 
change values between 1.65 and 3.06, respectively. Single-microbiomics revealed 14 fun-
gal ASVs (as proxies for taxa) associated with good storable varieties, 21 taxa associated 

Fig. 5 Contribution of component one for each of the single-omics datasets (A–C) after PLS-DA filtering. 
Green-colored features were associated with good storability, and purple-colored features were associated 
with bad storability
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with badly storable varieties (Fig. 5A), and 21 bacterial taxa associated to good and 19 
taxa to badly storable varieties (Fig. 5B). A more detailed description of the storability-
associated microbes is given in Wöber et al. [54].

Pairwise omics

After performing the single-omics analyses, the filtered datasets were pairwise ana-
lyzed using (s)PLS. In this case study, one pair was formed by the two microbiomics 
datasets, 16S and ITS, and the second pair included the metabolomics and transcrip-
tomics datasets. For both pairs, every dataset was once used as dataset X and once as 
dataset Y (they were analyzed bidirectionally) for the (s)PLS analysis. Additionally, the 
analyses were performed using once the PCA-filtered datasets and once the PLS-DA-
filtered ones. All eight analyses were performed in the canonical mode, as we expected 
no prior known dependency between the datasets. In Table  2, the parameter settings 
used to obtain the final tuned datasets and the number of features of the datasets are 
summarized. Again, the tuning process was performed multiple times, using different 
numbers of the pre-selected components (ranging from 3 to 7); however, as the results 
did not change with an increasing number of pre-selected components, the final run was 
performed with only four pre-selected components. When using the canonical mode, 
the datasets should then be interchangeable without a change of the the tuning results 
[46]. But, in our case, different results for the number of features of the respective tuned 
datasets were returned.

For the pairwise-omics analysis, we also focused on the interpretation of the results 
from PLS-DA (because of the classification problem we have, see above). For this case 
study, we first explained the expression of the metabolites with the transcripts (Fig. 6). 
The loading plot for the metabolites (Fig.  6A, left) resembles that of the single-omics 
analysis (cf. Figure 5D), where all of the metabolites show an association with good stor-
ability. In case of the transcriptomics data (Fig. 6A, right), ten transcripts appeared to be 
the major loadings on component 1, and among them, only BVRB_4g086060 was associ-
ated with bad storability (which was also seen in the single-omics analysis; cf. Figure 5C). 
Further, the heatmap (Fig. 6B) indicates a very similar pattern between the remaining 
nine transcripts and the ten metabolites. Interchanging the two datasets (to explain the 
transcriptomics data with the metabolites) did not lead to a change in the results.

Table 2 Summary of used configurations and received results testing the (s)PLS analyses

(s)PLS was performed with two omics dataset pairs. One pair was formed from the two microbiomics datasets (16S and ITS), 
and the second was composed of the transcriptomic (T) and metabolomic (M) datasets. Both pairwise analyses were done 
bidirectionally

Bidirectional (s)PLS

Datasets 16S & ITS vs. ITS & 16S M & T vs. T & M

Filtered with PCA PLS-DA PCA PLS-DA

No. features after tuning 10 & 10 vs. 10 
& 10

40 & 10 vs. 10 & 25 16 & 10 vs. 10 
& 18

10 & 10 vs. 10 & 10

No. pre-selected components 4 4 4 4

Ideal no. components 1 1 1 1

Tuning runtime (min) 10 2 2 1
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Another pairwise analysis was performed with the microbiomics datasets. In this case, 
the results differed when the datasets were interchanged (Fig. 7). Explaining the bacterial 
communities (16S) with the fungal communities (ITS) led to ten fungal and 40 bacte-
rial taxa (Fig. 7A). Here, one ITS taxon (ASV_227) had a different abundance than all 
the other ITS-based taxa. Among the 40 bacterial taxa (16S), the differential pattern 
appeared to be fifty-fifty. On the other hand, interchanging both datasets and explaining 
fungal communities (ITS) with bacteria led as well to ten (partly different) fungal, but 
only to 25 bacterial taxa (Fig. 7B). The latter form a subset of the 40 bacterial taxa found 
in the vice-versa analysis above. Here, one fungal taxon (ASV_237) exhibited a differ-
ent pattern than all other ITS-based ASVs; however, this taxon was different from that 
detected via the vice-versa analysis.

Thus, deciding which dataset is the target dataset and which is the explanatory dataset 
is recommended based on the individual research question, eventually including a priori 
biological knowledge.

Multi‑omics

Finally, the DIABLO analysis was performed on all four omics datasets, once on 
the PCA-filtered ones and once on the PLS-DA-filtered. The analysis was only 

Fig. 6 Loading plots (A) for metabolomics (left) and transcriptomics (right) and a heatmap (B) of pairwise 
analysis explaining the abundance of metabolites via transcriptomics

Fig. 7 Heatmaps of pairwise microbiomics analysis. First analysis (A) explained bacterial microbiomics (16S 
dataset) with fungal microbiomics (ITS dataset), and the second analysis was done vice-versa (B)
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performed once with a rather high number of seven pre-selected components. The 
design matrix value was set based on the calculated pairwise correlation values: the 
lowest correlation value was rounded down to the tenth digit and set as the design 
matrix value. The parameters and sizes of the datasets are summarized in Table 3.

Also here, we focused on the description and interpretation of the results from 
the PLS-DA-filtered data (because of the classification problem we have, see above). 
In this case, the design matrix value was set to 0.8, as was the Circos plot correla-
tion cutoff value. After tuning, seven bacterial taxa, ten fungal taxa, eight metabo-
lites, and ten transcripts were correlated with each other above the 0.8 cutoff value 
(Fig. 8).

Table 3 Summary of the configurations and results from the DIABLO analysis

For this multi‑omics analysis, all datasets were integrated: the metabolomics (M), transcriptomics (T), and the two 
microbiomics (16S and ITS) datasets

DIABLO

Datasets M & T & ITS & 16S

Filtered with PCA PLS-DA

No. features after tuning 10 & 10 & 10 & 14 10 & 10 & 50 & 10

Design matrix value 0.9 0.8

No. pre-selected components 7 7

Ideal no. components 1 1

Runtime (min) 120 40

Fig. 8 Circos plot from the DIABLO analysis indicating the positive and negative correlations among the 
features of all four omics datasets in the first component. For each feature, its ’expression’ with regard to the 
storability is presented as a continuous line: the green-colored line reflects the abundance of the feature in 
well storable varieties, whereas the purple-colored line shows the abundance in the badly storable ones
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Biological interpretation of the multi‑omics analysis

Focusing on the metabolites first, among the free amino acids, threonine (Thr) showed 
the strongest (both negative and positive) correlations with the other omics datasets. 
Thr had strong positive correlations with several features that were well present in the 
well storable varieties, such as a bacterial taxon from the genus Streptomyces (ASV_551, 
16S dataset) and one from Nocardioides (ASV_950, 16S dataset), both of which belong 
to Actinobacteria. Furthermore, Thr was also positively correlated with transcripts 
encoding the peptide methionine sulfoxide reductase (MSR) A1 gene (BRVB_5g105510), 
the mitochondrial frataxin (BRVB_2g041980) and mitochondrial superoxide dismutase 
(BRVB_2g042720). Notably, many features of the fungal ITS dataset showed negative 
correlations with Thr, the most strongly negative correlations with Starmerella bacil-
laris (ASV_225) and Pichia membranifaciens (ASV_80), which appear to be present in 
badly storable varieties. The non-Saccharomyces yeast Starmerella bacillaris (ASV_225) 
also exhibited strong negative correlations with all transcriptomics features. It is used in 
wine production because of its fermentation property [57, 58]. As it feeds on sugar, its 
presence most likely negatively influences the storability of sugar beet. At the same time, 
numerous species related to the genus Streptomyces have shown antifungal properties 
due to the production of antibiotics [59]. A Streptomyces strain was even described to 
inhibit the growth of Starmerella bombicola [60], providing support for the interaction 
found in our case study.

As mentioned above, Thr was among the amino acids found to be most abundant 
in the well storable varieties after harvest [52]. One explanation for the observed Thr-
microbe interaction found in the well storable sugar beet varieties could be that some 
microbes living in symbiosis with a plant use its amino acids as a nutrient source. Plants 
can also convert amino acids into metabolites, which can later be used by microbes [61]. 
It is possible that Thr, among the other amino acids, supports the growth of a micro-
biome that positively affects the storability of sugar beet. It was found that Thr accu-
mulation was connected with suppressed activity of the pathogen Hyaloperonospora 
arabidopsidis [62], which is an obligate biotrophic oomycete and a natural pathogen of 
the model plant Arabidopsis thaliana [63].

Concerning the identified correlated transcripts, methionine sulfoxide reductase A 
(MSRA, BRVB_5g105510) not only emerged in our case study in both single- and multi-
omics analyses, but was also among the significantly upregulated genes documented 
in the well-storable varieties, as detailed in Madritsch et  al.’s single-omics study [51]. 
MSRA is described to act as an antioxidant repair enzyme: the oxidation of sulfur-con-
taining methionine in proteins inactivates these proteins, and MSRA repairs the damage 
by catalyzing the reduction of methionine sulfoxide back into methionine [64]. MSRA 
was reported to be an important oxidative stress resistance agent in Corynebacterium 
glutamicum. Without the activity of this gene, the studied bacteria exhibited a decreased 
cell viability, increased reactive oxygen species (ROS) production and increased pro-
tein carbonylation levels under various stress conditions [65]. A similar pattern has 
been described for plants, where MSRA expression levels are greater in plants under 
(photo)oxidative and osmotic stress conditions [66], and MSRA plays a key role in pre-
serving the viability and life expectancy of an organism [67]. In addition, an increase in 
MSRA was also detected after infection with a virulent pathogen in A. thaliana [68], 
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indicating its role in plant immune responses, as is described for MSRB [69]. Another 
gene, frataxin (BRVB_2g041980), was highly expressed in the well storable varieties and, 
as mentioned above, was positively correlated with Thr. This gene has been proven to 
be a mitochondrial iron-binding protein [70]. For plants, a balanced amount of iron is 
crucial for growth and development, as it activates essential metabolic pathways and is 
a component of many enzymes [71]. The main source of iron lies in the rhizosphere; 
however, a significant portion of iron is unavailable to the plant. A study showed that 
root microbes can mobilize this iron and make it accessible for the plant’s metabolism 
[72]. Interestingly, Streptomyces sp., which were positively correlated with frataxin in 
this study, were one of such microbes. These bacteria can produce siderophores, which 
are small-molecule metal chelators that support iron capture and transport under low-
iron conditions [73–75]; conditions that also might be present during sugar beet storage.

In summary, this comprehensive multi-omics analysis revealed features associated 
with either well or bad storability of sugar beet, while detecting significant associations 
among these features. The elevated levels of free amino acids observed in well stor-
able varieties may attract potentially beneficial microbes capable of producing anti-
fungal agents, thereby suppressing fermenting yeasts and contributing to the observed 
improved storability. Additionally, methionine sulfoxide reductase A (MSRA) has been 
identified consistently as an upregulated gene in well storable varieties across both 
preceding single-omics analysis [51] and the herein conducted multi-omics analyses, 
affirming the robustness of the applied multi-omics methodology. Overall, this case 
study provides first valuable insights into the intricate interplay between metabolites, 
transcripts and microbial communities, shedding light on potential mechanisms across 
different omics layers influencing sugar beet storability.

Runtime
For all three omics analyses the runtime of the filtering and tuning steps was measured 
at the minute level and documented in Tables 1, 2 and 3. As expected, the filtering pro-
cess of the three feature-heavy datasets (both microbiomics and transcriptomics) had a 
longer runtime than that of the targeted metabolomics dataset with only 23 features. In 
contrast, the tuning processes differed greatly in terms of runtime, although the dataset 
sizes were similar. The analyses were performed and measured on a Lenovo Thinkbook 
with an 11th Gen Intel(R) Core(TM) i7–11,800 H processor and 32 Gb of RAM.

Conclusion
Holomics, an R shiny application, offers a practical and user-friendly solution for con-
ducting multi-omics data integration and analysis (Fig. 9). Designed with an accessible 
interface and a guided workflow, Holomics is perfectly suited for researchers with lim-
ited bioinformatics knowledge or hardware resources. In the included case study, we 
applied Holomics to seamlessly integrate microbiomics, transcriptomics and metabo-
lomics datasets from earlier single-omics studies elucidating factors, which are associ-
ated with improved storability. This practical demonstration not only highlights the 
application’s versatility in handling diverse data types, but also validates its consistency 
by reproducing findings from these preceding studies. In essence, Holomics simplifies 
omics analyses without compromising sophistication, making it an accessible resource 
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for researchers seeking a practical and reliable tool for first insights into multi-omics 
investigations.
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