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Background
Genome-wide distributed variants provide sufficient information for prediction of genetic 
value. In human studies, genetic value prediction is usually applied for prediction of com-
plex traits such as disease risk and human height [1, 2]. In plants and animals, genetic 
prediction is important for genetic selection [3, 4]. So far, a variety of statistical analysis 
methods have been used to predict genetic values. Genomic best linear unbiased estimates 
(GBLUP) are the most common method, which uses genome-wide molecular markers to 
construct a kinship matrix between individuals and then uses BLUP techniques to predict 
individual genetic values [5]. Bayesian method is another popular method, which mainly 
includes BayesA, BayesB, BayesCπ and BayesLASSO, etc. [6–8]. These methods use Monte 
Carlo Markov chain techniques to estimate parameters. The main difference among them is 
the assignment of hyperparameters for variables, and each method has its own advantages 
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and disadvantages. BayesA is mainly applicable for the traits controlled by genes with multi-
ple tiny effects, whereas BayesB and BayesCπ are suitable for the traits controlled by a small 
number of main effect genes. In human disease risk prediction, “Clumping + Thresholding” 
(C + T) method has been developed and applied [9–12]. C + T method first identifies a set 
of markers with predictive power, and then uses these markers to predict disease risk by 
logistic regression [1, 13, 14], which is suitable for the disease controlled by several main 
effect genes. Although several methods exist, each has its own limitations, so far, there is no 
one method that always outperforms others.

Ensemble learning is a machine learning method, which integrates the predictions from 
multiple methods to obtain a new prediction through supervised or unsupervised learn-
ing methods [15]. As early as 20 years ago, it was found that ensemble learning can reduce 
generalization error [16] and ensemble methods that combine the output of multiple meth-
ods have been shown to achieve better generalizability than a single method [17]. So far, 
ensemble learning has independently made a substantial impact on the field of bioinformat-
ics through their widespread applications [18]. One example is in predicting localization 
of long non-coding RNAs, where multiple sub-networks were used to integrate distinct 
feature sets to maximize method performance [19]. In another work, a CNN/RNN (Con-
volutional Neural Networks/Recurrent Neural Network) ensemble was used to integrate 
features and raw sequence data to predict different types of translation initiation sites [20], 
overcoming the generalizability issue of traditional methods that can only predict a spe-
cific type of translational initiation sites. Moreover, the stability and reproducibility offered 
by ensemble methods such as in feature selection are also making a substantial impact in 
biomarker discovery [21, 22]. To our best knowledge, the remarkable flexibility and adapt-
ability characters of ensemble learning has led to the proliferation of their application in 
bioinformatics research [23].

We herein propose an ensemble learning method for Prediction of Genetic Values 
(ELPGV). ELPGV trains several different basic methods, such as GBLUP, BayesA, BayesB 
and BayesCπ, to produce more accurate prediction. The core of ELPGV uses the hybrids 
of differential evolution [24] and particle swarm optimization [25] to train the weight, by 
which the predictions of basic methods are weighted averaged to generate new predic-
tion. A variety of dataset including WTCCC (Wellcome Trust Case Control Consortium), 
IBDGC (International Inflammatory Bowel Disease Genetics Consortium), cattle, wheat 
and computational simulations are employed to validate ELPGV.

Materials and methods
Basic methods

The prediction is based on a linear method according to Eq. (1):

where y is the phenotypes; X is design matrix for fixed effects; α is the fixed effect; Z 
is genotypes of variants, coding with “0”, “1” and “2” for genotypes “AA”, “Aa” and “aa” 
respectively, or genotype dosages of SNPs; β is the SNP effects; and e is the residual 
errors, assumed to follow normal distribution,e ∼ N 0, Iσ 2

e  , where I is a vector of iden-
tity matrix and σ 2

e  is the residual variance.

(1)y = Xα + Zβ + e
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In this study, four basic methods are used for genetic value predictions, BayesA, 
BayesB, BayesCπ and GBLUP. In BayesA, all SNPs are assumed to contribute to genetic 
variation, and the variance of the SNP effect is assumed to follow inverse chi-square 
distribution; BayesB and BayesCπ assumes a small fraction ( π ) of SNPs have non-zero 
effects [6, 8], where π is set as 0.1 in BayesB [26]. The Bayesian methods are implemented 
with the function “BGLR” in the R package “BGLR” [27]. In the GBLUP, the variances of 
all SNP effects are assumed to be equal, and then the genetic values are estimated with 
mixed model equation through kinship matrix constructed with SNPs [5]. The GBLUP is 
implemented using the function “emmreml” in the R package “EMMREML” [28].

ELPGV model construction

The ELPGV framework comprises two components, weight training and weighted pre-
diction. First, it trains basic methods to get predictions; then, it trains the weight of basic 
methods with machine learning; finally, it generates new predictions by the weighted 
average of the predictions of basic methods. The schematic diagram of the study meth-
odology is given in Fig. 1.

Suppose n basic methods are investigated, the prediction of ELPGV can be expressed 
as Eq.  (2), where, pj is the predicted values of the jth basic method, which is eas-
ily obtained from each basic method, and Wj is the weight of the jth basic method, 
respectively.

To train the weight W, a fitness function is defined as the correlation coefficient 
between the predicted values gpredicted and observed values yobserved (Eq. 3), gpredicted is 
the predicted values of ELPGV based on Eq. (2).

For testing population, phenotype yobserved is unknown, we therefore introduce refer-
ence genetic values to replace the unknown phenotypic values in Eq.  (3). The genetic 

(2)gpredicted =

n
∑

j=1

Wj × pj

(3)f (W ) =

∑
(

yobserved − yobserved
)

(

gpredicted − gpredicted

)

√

∑
(

yobserved − yobserved
)2

√

∑

(

gpredicted − gpredicted

)2

Fig. 1 Schematic diagram of the study methodology
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predictions with the best fitness among basic methods was taken as the reference genetic 
values.

ELPGV uses a mixture of differential evolution (DE) algorithm and particle swarm 
optimization (PSO) algorithm to estimate the weight W, which includes initialize, muta-
tion, crossover and selection steps.

Step 1. Initialization: ELPGV randomly initializes the weights W i·(Wi,1, . . . ,Wi,j ) and 
the optimization velocities V i·(Vi,1, . . . ,Vi,j ), for i = 1, . . . ,m and j = 1, . . . , n , where m is 
the number of particles or the number of candidate weight; and n is the number of basic 
methods. The weight is initialized with Eq. (4) and the optimization velocity is initialized 
with Eq. (5).

First, the m group weights are replaced into Eq. (2) to obtain the ELPGV predictions 
of m groups, respectively; then the predictions are replaced into Eq. (3) to assess the cor-
responding fitness for each group. We then define the optimal weight W (0) as the best 
fitness one in all group weights,

Step 2. Mutation: In t th iteration, Eq. (4) is replaced with Eqs. (7) and (8) for updating 
the weight of each group, respectively.

where F  is scaling factor, controlling the effect of difference vector, the index i  = k  = p 
 = q.

Step 3. Crossover: The crossover operation switches the weight at current iteration (t) 
and last iteration (t − 1) randomly with Eq.  (9), where CR is crossover probability and 
randi·(0, 1) is a random value between 0 and 1 of i th group weight.

Step 4. Selection: Last, the all the group weights are updated with Eqs. (10) and (11).

After t th iteration, each group weight has a velocity which are updated as Eq.  (12), 
where ε is inertia weight, c1 and c2 are accelerated factors.

(4)Wi,j = rand(Wmin,Wmax)

(5)Vi,j = rand(Vmin,Vmax)

(6)W (0) = argmax
(

f (W i·)
)

(7)Pi·(t) = W i·(t − 1)+ V i·(t − 1)

(8)H i·(t) = W k·(t − 1)+ F ×
(

W p·(t − 1)−W q·(t − 1)
)

(9)U i·(t) =

{

H i·(t) randi·(0, 1) ≤ CR
W i·(t − 1) else

(10)Gi·(t) =

{

U i·(t) f (U i·(t)) ≥ f (Pi·(t))
Pi·(t) else

(11)W i·(t) =

{

Gi·(t) f (Gi·(t)) ≥ f (W i·(t − 1))

W i·(t − 1) else
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At the same time, ELPGV updates the fitness with new weights at t th updating with 
Eq. (3), the optimal weight can be expressed as Eq. (13) in t th iteration.

After the fitness meets a certain criterion, or the iterations reach the maximum num-
ber, ELPGV returns the optimal weights W  and the predictions with Eq. (2). To reduce 
sampling error and increase the estimate accurate of weights, the whole estimates are 
repeated for 100 times and the averaged weights are taken for ELPGV (Table 1).

Monte Carlo cross‑validation

Cross-validation was employed to evaluate the prediction performance of GS methods. 
The individuals of each dataset were first randomly divided into two parts with ratio 9:1, 
and they were taken as training set and testing set, respectively. The cross-validation was 
repeated 100 times. In the prediction, the phenotypes of individuals in testing set were 
masked, and the genetic values were predicted with training set; then the Pearson’s cor-
relation coefficient between the predicted values and their true phenotypes were used to 
evaluate the predictive ability of each method.

Paired‑sample t‑test

Because all the methods are compared with the same replicated dataset, we were able 
to compare ELPGV with other basic methods using paired-sample t-test, which is 
expressed as t = d/sd  , with degree of freedom n− 1 , where n is the times of cross valida-
tion and d is the difference of the predictive ability between ELPGV and other methods.

WTCCC dataset

The WTCCC dataset was accessed from the Wellcome Trust Case Control Consortium 
(WTCCC1, https:// www. wtccc. org. uk/) [29], including 14,000 cases and 2,938 shared 
controls, all were genotyped for ~ 450,000 SNPs. Six diseases were investigated, including 

(12)
V i·(t) = ε ∗ V i·(t − 1)+ c1 ∗ rand(0, 1) ∗ (W i·(t)−W i·(t − 1))

+ c2 ∗ rand(0, 1) ∗ (W (t − 1)−W i·(t − 1))

(13)W (t) = argmax
(

f (W i·(t))
)

Table 1 Lists the hyper parameters used in above equations

Parameters Value

Wmin minimum weight 0

Wmax maximum weight 1

Vmin minimum update velocity  − 0.01

Vmax maximum update velocity 0.01

m the weight size 20

F scaling factor 0.5

CR crossover probability 0.3

ε inertia weight 1

c1 accelerated factor 1 2

c2 accelerated factor 2 2

Max_iterations 25

https://www.wtccc.org.uk/
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bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), rheuma-
toid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). For this study, 
we removed SNPs using PLINK [30], with either minor allele frequency (MAF) < 0.01, 
or genotype call rate (CR) < 0.95, or p-value < 0.05 from Hardy–Weinberg equilibrium 
(HWE) test; then the SNPs were further pruned with PLINK [30]  (r2 = 0.5) for reducing 
computational burden. The number of cases and the SNPs of each disease are shown in 
Table 2.

Inflammatory bowel disease (IBD) dataset

The inflammatory bowel disease dataset was accessed from the International IBD Genet-
ics Consortium (IBDGC), including 20,155 Crohn disease (CD), 15,191 ulcerative colitis 
disease (UC) and 34,257 controls of European ancestry. In total, genotypes were called 
using optiCall for 192,402 autosomal variants before quality control. A total of 161,681 
SNPs was available after removing the SNPs with MAF < 0.02 and p-value < 10e−5 from 
the HWE test. The missing genotypes were imputed with impute2 using 1000 genome 
as a reference. (For details, see refs. [31]. To reduce computation burden, we further 
pruned SNPs for linkage disequilibrium with threshold r2 = 0.5 using PLINK [30] and 
randomly sampled 1,000 individuals from Liege and Brussels batches.

Cattle dataset

German Holstein genomic prediction population was further employed to validate 
ELPGV, which comprised 5024 bulls [32], and all were genotyped with the Illumina 
Bovine SNP50 Beadchip [33]. After removing the SNPs with HWE p-value < 10 − 4, 
CR < 0.95 and MAF < 0.01, a total of 42,551 SNPs remained for the downstream analysis. 
The estimated breeding values of three traits milk fat percentage (mfp), milk yield (my), 
and somatic cell score (scs) were available and used in this study.

Wheat dataset

The wheat dataset was collected from CIMMYT’s Global Wheat Program, the grain 
yields (GY) of the 599 wheat inbred lines were recorded for four places [34, 35]. Each 
wheat line was genotyped with 1447 Diversity Array Technology (DArT) by Triticarte 
Pty. Ltd, which had two genotypes coded with “0” or “1”, to indicate its presence or 
absence, respectively, after filtering, 1279 markers were kept for analysis.

Table 2 Brief summary of the disease to WTCCC data sets

bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and 
type 2 diabetes (T2D)

Disease Case size SNP size

BD 1868 373,369

CAD 1926 372,541

HT 1952 373,338

RA 1860 373,056

T1D 1963 372,964

T2D 1924 373,149
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Simulations

We took advantage of the genotypes of wheat datasets for simulation. A number of 
QTL were simulated with effects sampled from gamma distribution with scale param-
eter 1.66 and shape parameter 0.4; the residual errors were sampled from normal 
distribution with variance set according to the heritability. We performed two simula-
tion experiments to investigate the performance of ELPGV: (1) simulation of different 
number of QTLs, 5 and 1,000, respectively; and (2) simulation of different heritabili-
ties, 0.5 and 0.2, respectively. This led to four sets of experiments (QTL5 and  h2 = 0.2, 
QTL5 and  h2 = 0.5, QTL1000 and  h2 = 0.2, QTL1000 and  h2 = 0.5).

Results
We used both real dataset and simulated dataset to validate the performance of 
ELPGV. In this study, four popular GS methods, GBLUP, BayesA, BayesB, and 
BayesCπ, were used for assembling with ELPGV, although ELPGV is able to assemble 
as many methods as possible. In addition, cross-validation was employed to evaluate 
the prediction performance of each method. Taken advantage of the fact that all the 
methods were compared with the same dataset, we used paired-sample t-test for sig-
nificance comparison.

WTCCC dataset

We first illustrated the results of T2D. Four basic methods, GBLUP, BayesA, BayesB, 
and BayesCπ were applied for genetic prediction, BayesCπ performed the highest 
predictive ability (r = 0.8471) and GBLUP performed the lowest (r = 0.4390) (Table 3). 
We then used ELPGV to assemble the predictions of four Basic methods to generate 
new predictions. To this end, we first evaluated the fitting effect of four basic methods 
with train set, the basic methods with the best fitting effect was used to generate the 
reference genetic values. The fitting effect was defined as the correlation between the 
estimated genetic values and the phenotypes in train set. It was found that BayesCπ 
usually had the best n than other methods. With reference genetic values, ELPGV 
assembled four basic methods to obtain new predictions, the average predictive abil-
ity of ELPGV across 100 validations was r = 0.8471, significantly higher than any basic 
methods with comparison p-value ranged from 1.090E−112 (GBLUP) to 6.458E−31 
(BayesCπ) Table  3). Because we compared each method with the same dataset, we 
were able to compare ELGPV with four basic methods in each of 100 experiments, 
separately. Figure 2a–f shows the prediction abilities in each of experiment, ELPGV 
is more accurate than other four basic methods, and the advantage of ELPGV over 
GBLUP is more obvious. We also compared ELPGV with four basic methods in data-
set of BD, CAD, T1D, RA and HT (Table 3). For all diseases, ELPGV was obviously 
more accurate than four basic methods with p-values ranged from 4.853E−118 to 
9.640E−20 (Table 3).

IBD dataset

We also applied ELPGV to predict disease risk for IBD dataset of European ancestry. 
The averaged predictive ability of 100 cross-validations of GBLUP, BayesA, BayesB 



Page 8 of 18Gu et al. BMC Bioinformatics          (2024) 25:120 

Ta
bl

e 
3 

Th
e 

pr
ed

ic
tiv

e 
ab

ili
ty

 o
f f

ou
r b

as
ic

 m
et

ho
ds

 a
nd

 E
LP

G
V,

 a
nd

 th
e 

co
m

pa
ris

on
 p

‑v
al

ue
 b

et
w

ee
n 

EL
PG

V 
an

d 
ot

he
rs

 in
 T

1D
, T

2D
, B

D
, R

A
, C

A
D

, H
T 

w
ith

 W
TC

CC
 d

at
as

et

EL
PG

V 
is

 th
e 

en
se

m
bl

e 
le

ar
ni

ng
 b

as
ed

 o
n 

Ba
ye

sA
, B

ay
es

B,
 B

ay
es

Cπ
 a

nd
 G

BL
U

P

—
 R

ep
re

se
nt

s 
no

 e
xp

lic
it 

re
su

lt 
w

as
 fo

un
d 

in
 th

is
 m

et
ho

d

ty
pe

 1
 d

ia
be

te
s 

(T
1D

), 
ty

pe
 2

 d
ia

be
te

s 
(T

2D
), 

bi
po

la
r d

is
or

de
r (

BD
), 

rh
eu

m
at

oi
d 

ar
th

rit
is

 (R
A

), 
co

ro
na

ry
 a

rt
er

y 
di

se
as

e 
(C

A
D

) a
nd

 h
yp

er
te

ns
io

n 
(H

T)

M
et

ho
d

T1
D

T2
D

BD
RA

CA
D

H
T

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

Pr
ed

ic
tiv

e 
ab

ili
ty

p‑
va

lu
e

EL
PG

V
0.

88
79

 ±
 0

.0
00

8
—

0.
84

71
 ±

 0
.0

00
9

—
0.

91
95

 ±
 0

.0
00

6
—

0.
88

43
 ±

 0
.0

00
8

—
0.

87
05

 ±
 0

.0
00

8
—

0.
91

32
 ±

 0
.0

00
6

—

Ba
ye

sA
0.

86
64

 ±
 0

.0
00

9
9.

03
7E
−

69
0.

80
22

 ±
 0

.0
01

4
9.

33
0E
−

72
0.

89
84

 ±
 0

.0
00

7
5.

19
1E
−

73
0.

86
28

 ±
 0

.0
01

0
1.

45
4E
−

68
0.

84
59

 ±
 0

.0
01

0
6.

01
1E
−

61
0.

88
79

 ±
 0

.0
00

7
2.

52
5E
−

75

Ba
ye

sB
0.

88
41

 ±
 0

.0
00

8
4.

33
0E
−

27
0.

83
96

 ±
 0

.0
01

0
1.

51
7E
−

33
0.

91
67

 ±
 0

.0
00

5
4.

41
6E
−

32
0.

88
10

 ±
 0

.0
00

8
1.

42
5E
−

27
0.

86
51

 ±
 0

.0
00

8
2.

27
2E
−

28
0.

91
00

 ±
 0

.0
00

5
9.

31
9E
−

29

Ba
ye

sC
π

0.
88

63
 ±

 0
.0

00
8

1.
82

7E
−

23
0.

84
47

 ±
 0

.0
01

0
6.

45
8E
−

31
0.

91
68

 ±
 0

.0
00

6
9.

40
0E
−

39
0.

88
27

 ±
 0

.0
00

8
9.

64
0E
−

20
0.

86
88

 ±
 0

.0
00

8
1.

72
0E
−

24
0.

91
11

 ±
 0

.0
00

6
9.

42
6E
−

32

G
BL

U
P

0.
49

57
 ±

 0
.0

03
0

1.
59

7E
−

11
4

0.
43

90
 ±

 0
.0

03
2

1.
09

0E
−

11
2

0.
63

11
 ±

 0
.0

02
3

2.
20

7E
−

11
2

0.
53

37
 ±

 0
.0

02
5

4.
85

3E
−

11
8

0.
54

59
 ±

 0
.0

02
8

7.
56

5E
−

10
9

0.
55

96
 ±

 0
.0

02
8

3.
42

1E
−

11
0



Page 9 of 18Gu et al. BMC Bioinformatics          (2024) 25:120  

and BayesCπ of UC was 0.6687, 0.7817, 0.7831 and 0.7845, respectively. After assem-
bled with ELPGV, the averaged predictive ability was 0.7920, significantly higher than 
four basic methods, the p-values were from ranged from 3.314E−56 to 3.878E−13 
(Table 4). Similarly, the prediction abilities of CD of four basic methods were ranged 
from 0.3692 (GBLUP) to 0.4452 (BayesCπ), after assembled with ELPGV, the pre-
dictive ability was increased to 0.4516, significantly higher than four basic methods 
(p-value varied from 3.659E−34 to 3.938E−07, Table  4). We also show the com-
parison of each experiment individually, for vast majority of individual experiment, 
ELPGV outperformed four basic methods, among them, GBLUP performed the lower 
predictive ability (Fig. 3a–c).

Fig. 2 Comparison of the predictive ability of ELPGV and the basic method. a T1D, b BD, c RA, d T2D, e CAD 
and f HT with WTCCC dataset; different method is denoted with different color, each dot represents single 
experiment

Table 4 The predictive ability of four basic methods and ELPGV, and the comparison p‑value 
between ELPGV and others in CD, UC, IBD with IBDGC dataset

ELPGV is the ensemble learning based on BayesA, BayesB, BayesCπ and GBLUP

— Represents no explicit result was found in this method

Crohn disease (CD) and ulcerative colitis disease (UC)

Method CD UC IBD

Predictive ability p‑value Predictive ability p‑value Predictive ability p‑value

ELPGV 0.4516 ± 0.0065 — 0.7920 ± 0.0045 — 0.4253 ± 0.0071 —

BayesA 0.4359 ± 0.0067 1.058E−15 0.7817 ± 0.0045 7.365E−25 0.4128 ± 0.0075 2.470 E−13

BayesB 0.4338 ± 0.0063 4.932E−13 0.7831 ± 0.0047 4.845E−16 0.4052 ± 0.0067 1.911E−14

BayesCπ 0.4452 ± 0.0063 3.938E−07 0.7845 ± 0.0047 3.878E−13 0.4171 ± 0.0068 5.272E−10

GBLUP 0.3692 ± 0.0063 3.659E−34 0.6687 ± 0.0052 3.314E−56 0.3455 ± 0.0079 9.965E−35



Page 10 of 18Gu et al. BMC Bioinformatics          (2024) 25:120 

Cattle dataset

We further validated ELPGV with a cattle dataset of German Holstein, in which milk fat 
percent (mfp), milk yield (my) and somatic cell score (scs) were investigated. For genetic 
prediction of mfp, BayesCπ performed the highest predictive ability among four basic 
methods (r = 0.8632), whereas GBLUP performed the lowest (r = 0.8259) (Table 5). After 
assembled of four basic methods with ELPGV, the predictive ability was 0.8748, signifi-
cantly higher than any basic methods (the comparison p-values ranged from 9.943E−80 
to 2.356E−10, Table  5). The individual experiment showed that for vast majority of 
the predictions, ELPGV was obviously more accurate than four basic methods, espe-
cially than GBLUP (Fig. 4b). For my, ELPGV also outperformed the four basic methods 

Fig. 3 Comparison of the predictive ability of ELPGV and the basic method. a CD, b UC and c IBD with IBDGC 
dataset; different method is denoted with different color, each dot represents single experiment

Table 5 The predictive ability of four basic methods and ELPGV, and the comparison p‑value 
between ELPGV and others in mfp, my, scs with cattle dataset

ELPGV is the ensemble learning based on BayesA, BayesB, BayesCπ and GBLUP

— Represents no explicit result was found in this method

mfp, milk fat percentage; my, milk yield; scs, somatic cell score

Method mfp my scs

Predictive ability p‑value Predictive ability p‑value Predictive ability p‑value

ELPGV 0.8748 ± 0.0009 — 0.7959 ± 0.0016 — 0.7523 ± 0.0019 —

BayesA 0.8713 ± 0.0010 2.665E−31 0.7935 ± 0.0017 5.726E−19 0.7496 ± 0.0019 1.242E−23

BayesB 0.8739 ± 0.0009 2.356 E−10 0.7948 ± 0.0017 1.335E−07 0.7503 ± 0.0020 5.614E−11

BayesCπ 0.8632 ± 0.0010 5.884E−52 0.7928 ± 0.0017 1.026E−26 0.7518 ± 0.0019 0.001E−00

GBLUP 0.8259 ± 0.0013 9.943E−80 0.7809 ± 0.0017 5.133E−52 0.7482 ± 0.0019 3.801E−29

Fig. 4 Comparison of the predictive ability of ELPGV and the basic methods. a my, b mfp and c scs with 
cattle dataset; different method is denoted with different color each dot represents single experiments
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(Fig. 4a) with the comparison p-values ranged from 5.133E−52 (GBLUP) to 1.335E−07 
(BayesB). For scs, the advantage of ELPGV over four basic methods was also significant, 
and the p-values were ranged from 3.801E−29 (GBLUP) to 0.001 (BayesCπ) (Table 5). 
Figure 4 shows the accuracies of ELPGV and four basic methods in 100 individual exper-
iments, which displays that for large proportion of predictions, ELPGV has higher pre-
diction abilities than those of four basic methods for all the investigated traits.

Wheat dataset

Wheat yields measured under four places were investigated, which includes 599 indi-
viduals genotyped for 1279 SNPs. The averaged predictive ability across 100 cross 
validations of each place is shown in Table  6. For the first place, the prediction abili-
ties of GBLUP, BayesA, BayesB and BayesCπ were 0.5251, 0.5231, 0.5080, and 0.5215, 
respectively, and the predictive ability of ELPGV was 0.5273, which was significantly 
higher than four basic methods (the comparison p-values ranged from 7.965E−19 to 
2.297E−04 (Table 6). For other three places, the results also showed that the prediction 
accuracy of ELPGV was consistently higher than four basic methods (Table 6). All the 
predictions of 100 cross-validation are shown in Fig.  5a–d, and ELPGV outperforms 
four basic methods for majority of single experiments in four places.

Simulations

We finally performed simulation studies to further investigate the performance of 
ELPGV. For each group, 100 simulated datasets were generated. Each dataset was ran-
domly divided into 5 parts evenly, and 4 of them were taken as train set and the left 1 
part was taken as test set. We first ran four basic methods including GBLUP, BayesA, 
BayesB and BayesCπ; then assembled the predictions with ELPGV to produce new 
predictions. For all simulations, ELPGV performed significant higher prediction abili-
ties than corresponding four basic methods, the comparison p-values were ranged 
from 3.553E−34 to 0.001E−00 (Table 7). The 100 replicated experiments also obviously 
revealed that for each of experiments, the prediction of ELPGV was more accurate than 
other basic methods (Fig. 6a–d) and the gain of ELPGV over GBLUP was more obvious 
when QTL number was 5 than 1,000.

We next investigated the effect of sample size of training set. We randomly sampled 
100, 200, 300, 400, 500 and 599 individuals from wheat data, respectively, the QTL 

Table 6 The predictive ability of four basic methods and ELPGV, and the comparison p‑value 
between ELPGV and others in GY with wheat dataset

ELPGV is the ensemble learning based on BayesA, BayesB, BayesCπ and GBLUP

— Represents no explicit result was found in this method

Method The first place The second place The third place The fourth place

Predictive 
ability

p‑value Predictive 
ability

p‑value Predictive 
ability

p‑value Predictive 
ability

p‑value

ELPGV 0.5273 ± 0.0104 — 0.5092 ± 0.0101 — 0.4050 ± 0.0102 — 0.4722 ± 0.0101 —

BayesA 0.5231 ± 0.0105 1.550E−10 0.5057 ± 0.0101 1.238E−07 0.3953 ± 0.0103 3.711E−15 0.4676 ± 0.0102 7.265E−14

BayesB 0.5080 ± 0.0104 2.296E−17 0.4947 ± 0.0104 5.993E−12 0.3914 ± 0.0101 4.098E−06 0.4542 ± 0.0101 1.261E−18

BayesCπ 0.5215 ± 0.0105 7.965E−19 0.5046 ± 0.0101 6.695E−11 0.3947 ± 0.0102 2.264E−17 0.4672 ± 0.0102 1.200E−13

GBLUP 0.5251 ± 0.0105 2.297E−04 0.5058 ± 0.0100 7.877E−07 0.3954 ± 0.0104 2.938E−12 0.4698 ± 0.0102 5.013E−05
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number was set as 5 and the heritability was 0.5. For each of sample sizes, 100 inde-
pendent datasets were generated. The cross validation was used to evaluate the predic-
tion abilities. It revealed that the prediction abilities of ELPGV were higher than four 

Fig. 5 Comparison of the predictive ability of ELPGV and the basic method. a–d GY (grain yield) under four 
places of CIMMYT wheat dataset; different method is denoted with different color; each dot represents single 
experiment

Table 7 The averaged predictive ability across 100 replications for different methods in 4 scenes of 
simulation

ELPGV is the ensemble learning based on BayesA, BayesB, BayesCπ and GBLUP

— Represents no explicit result was found in this method

Method 0.2 0.5

5qtl 1000qtl 5qtl 1000qtl

Predictive 
ability

p‑value Predictive 
ability

p‑value Predictive 
ability

p‑value Predictive 
ability

p‑value

ELPGV 0.4346 ± 0.0116 — 0.3079 ± 0.0109 — 0.7034 ± 0.0064 — 0.5851 ± 0.0085 —

BayesA 0.4042 ± 0.0122 3.317E−15 0.2961 ± 0.0110 1.565E−08 0.6865 ± 0.0068 1.057E−16 0.5765 ± 0.0085 2.652E−17

BayesB 0.4257 ± 0.0118 0.001E−00 0.2842 ± 0.0112 1.096E−08 0.6985 ± 0.0065 0.002E−00 0.5756 ± 0.0086 6.910E−09

BayesCπ 0.3741 ± 0.0140 4.577E−11 0.2956 ± 0.0108 2.828E−10 0.6955 ± 0.0064 1.712E−12 0.5768 ± 0.0086 2.048E−16

GBLUP 0.2952 ± 0.0144 1.032E−22 0.2959 ± 0.0110 6.161E−07 0.5505 ± 0.0096 3.553E−34 0.5727 ± 0.0084 7.160E−13
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basic methods for all simulated sample size (Table 8). We next investigated if the advan-
tage of ELPGV over other methods was dependent on the sample size. To do this, we 
summarized the maximum and minimum difference of the prediction abilities between 

Fig. 6 Comparison of the predictive ability of ELPGV and the basic method in simulation. a 5 QTL with 
heritiability 0.2; b 1000 QTL with heritiability 0.2; c 5 QTL with heritiability 0.5 and d 1000 QTL with heritiability 
0.5. Different method is denoted with different color, and each dot represents single experiment

Table 8 The maximum and minimum difference of the predictive ability between ELPGV and other 
methods in different sample size of simulation

ELPGV is the ensemble learning based on BayesA, BayesB, BayesCπ and GBLUP

Method 100 200 300 400 500 599

Predictive 
ability

Predictive 
ability

Predictive 
ability

Predictive 
ability

Predictive 
ability

Predictive ability

ELPGV 0.6055 ± 0.0220 0.7175 ± 0.0159 0.7559 ± 0.0085 0.7189 ± 0.0070 0.7378 ± 0.0061 0.7034 ± 0.0064

BayesA 0.5486 ± 0.0256 0.6827 ± 0.0170 0.7200 ± 0.0085 0.7034 ± 0.0073 0.7231 ± 0.0069 0.6865 ± 0.0068

BayesB 0.6007 ± 0.0237 0.7075 ± 0.0170 0.7502 ± 0.0084 0.7158 ± 0.0069 0.7344 ± 0.0060 0.6985 ± 0.0065

BayesCπ 0.5334 ± 0.0215 0.6215 ± 0.0266 0.7271 ± 0.0100 0.7069 ± 0.0076 0.7354 ± 0.0060 0.6955 ± 0.0064

GBLUP 0.5266 ± 0.0216 0.4785 ± 0.0243 0.5655 ± 0.0151 0.5511 ± 0.0143 0.5934 ± 0.0095 0.5505 ± 0.0096

Maximum 
difference

0.0789 (15.0%) 0.2390 (49.9%) 0.1904 (33.7%) 0.1678 (30.4%) 0.1444 (24.3%) 0.1529 (27.7%)

Minimum 
difference

0.0048 (0.8%) 0.0100 (1.4%) 0.0057 (0.8%) 0.0031 (0.4%) 0.0024 (0.3%) 0.0049 (0.7%)
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ELPGV and other methods, respectively (Table 8) and correlated the maximum (Fig. 7a) 
or minimum (Fig. 7b) differences to the corresponding sample sizes. But we did not find 
evidence of significant correlation (r = − 0.58 and − 0.076 with p-value 0.23 and 0.89), 
which implies that the gain of ELPGV over basic methods is not affected by sample size.

Discussion
We have presented an ensemble learning method, ELPGV to predict genetic values. The 
key feature of ELPGV is that it assembles predictions of other basic methods into more 
accurate predictions. Extensive datasets of human, cattle and wheat have been employed 
to validate the performance of ELPGV, all results consistently revealed that ELPGV was 
able to integrate the merit of each method together to produce significantly higher pre-
dictive ability than any basic methods. Based on these advantages, ELPGV is expected to 
be widely used for prediction in large data sets.

Ensemble learning has been widely utilized in genome selection, such as Ma et al. [36], 
who assembles two basic methods and trains the weights with PSO algorithm; however, 
it has several disadvantages, (1) it assumes the phenotypes of testing individuals have 
been known, so that it is only applicable for prediction with known phenotype, which is 
less meaningful in practice; (2) the performance of the traditional PSO greatly depends 
on its parameters, and it often suffers from being trapped in local optima [37, 38], which 
is consistent with the study of Cai et al. [39]. Liang et al. [40] construct a stacking ensem-
ble learning framework (SELF), integrating three machine learning methods and an 
ordinary least square regression was chosen as the meta learner, to improve the genomic 
predictions. A lot of experiment indicated that SELF with the great potential to improve 
genomic predictions in other animal and plant populations. In actual analysis, SELF 
taken the genomic relationship matrix derived by genotypes as the inputs directly. But 
this might reduce the prediction accuracy of a single basic method. Additionally, Gianola 
et al. [41] was found that bagging can ameliorate predictive performance of GBLUP and 
make it more robust against over-fitting. However, because of predictive ability increases 
with training set size [42]. It is obvious that bagging may not be feasible for immense 
data sets.

Fig. 7 The relationship between sample size and maximum difference or minimum difference of the 
methods
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DE algorithm is another kind of evolutionary algorithm, which has been applied 
to a series of problems arising in various fields of science, engineering, and manage-
ment [43–45]. In our analysis, we found that DE algorithm is much more stable, and 
always converge to the same solution after repeated operations; furthermore, DE con-
verges fast and is very accurate for high-dimensional problems, which has three main 
parameters (initialize solution size, scaling factor F  , crossover probability CR ), but 
it is not sensitive for parameter setups [46]. While DE algorithm has many advan-
tages, the disadvantage of it is that it is difficult to update model parameters [46], but 
PSO does not have this problem. So, hybridization is an important modification in 
DE which is implemented to enhance its performance and convergence speed. Plenty 
of work can be found in the literature on the hybridization of DE. For instance, Pant 
et al. [47] proposed a hybrid version of DE with PSO and results show that the pro-
posed DE-PSO is quite competent for solving the considered test functions as well as 
real-life problems. Zhang et al. [48] proposed a hybrid technique using DE with PSO 
for unconstrained optimization problems. Similarly, ELPGV is the hybrid of DE and 
PSO too, which not only inherits the high precision merit of DE algorithm, but also 
possesses the fast convergence character of PSO algorithm.

In the prediction of the disease risk for human, ELPGV exhibits greater advantages 
over four basic methods. In almost all of situations, ELPGV is more accurate than 
others, the gain is much more obvious when comparing with GBLUP, reflecting that 
GBLUP is not very suitable for human dataset, may be due to the fact that the rela-
tionships between individuals are quite limited and few information is available for 
GBLUP predictions. In contrast, the situation is quite different for cattle and wheat 
datasets. The reason may be that the aim of these datasets is for selection breeding 
and the individuals have extensive relationship, which is consistent with the litera-
ture [49]. Additionally, Heslot et al. [50], Azodi et al. [51] and Schrauf et al. [52] also 
compared GBLUP (or equivalent models) with other genomic prediction methods 
in a variety of plant datasets and have shown that the difference between GBLUP 
and other methods is negligible under large data sizes and polygenic architectures. 
Because the GBLUP efficiently predicts individual genetic values using the relation-
ship information, and all markers are assumed in a sense to contribute equally to the 
construction of Kinship matrix.

It is shown that the performance of ELPGV is greatly affected by the method simi-
larity, which is consistent with Granitto et al. [53] who concludes diverse basic meth-
ods is an essential characteristic of a good ensemble method. Therefore, one way to 
improve the performance of ELPGV is to increase the diversity of basic methods. For 
example, BayesB, BayesCπ and BayesR [54] are working well for major-effect QTL 
method, they often performed similar prediction abilities, so integrating them would 
not enhance the predictive ability of ELPGV too much; similarly, rrBLUP [55] is theo-
retically quite similar to GBLUP, both are based on polygenic method, it would not 
substantially increase the predictive ability by integrating them together.

We have proposed ELPGV method for optimizing the parameters, which greatly 
improves the precise of parameter estimates. It’s versatility to allow for different and 
more complex criterion to be maximized. However, it still has room to improve, for 
example, combining DE or PSO with other optimization algorithms to form a better 
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hybrid algorithm [46], or using other ensemble strategies, such as sequence integra-
tion methods such as boosting method [56].

Conclusions
We have presented an ensemble learning method, ELPGV, to predict genetic values. The 
key feature of ELPGV is that it assembles predictions of other basic methods into more 
accurate predictions. ELPGV is able to integrate the merit of each method together to 
produce significantly higher predictive ability than any basic methods and it is simple 
to implement, which uses only the predictions of basic methods as input without using 
genotype data. Therefore, ELPGV requires quite few computers RAM and can complete 
task even with PC computer; furthermore, ELPGV is computationally fast, which takes 
only several minutes to complete the assembling for tens thousands of individuals and is 
promising for wide application in genetic predictions.
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