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Abstract 

Background: Single-cell RNA-sequencing (scRNA) datasets are becoming increas-
ingly popular in clinical and cohort studies, but there is a lack of methods to investigate 
differentially expressed (DE) genes among such datasets with numerous individuals. 
While numerous methods exist to find DE genes for scRNA data from limited individu-
als, differential-expression testing for large cohorts of case and control individuals using 
scRNA data poses unique challenges due to substantial effects of human variation, i.e., 
individual-level confounding covariates that are difficult to account for in the presence 
of sparsely-observed genes.

Results: We develop the eSVD-DE, a matrix factorization that pools information 
across genes and removes confounding covariate effects, followed by a novel two-
sample test in mean expression between case and control individuals. In general, dif-
ferential testing after dimension reduction yields an inflation of Type-1 errors. However, 
we overcome this by testing for differences between the case and control individuals’ 
posterior mean distributions via a hierarchical model. In previously published data-
sets of various biological systems, eSVD-DE has more accuracy and power compared 
to other DE methods typically repurposed for analyzing cohort-wide differential 
expression.

Conclusions: eSVD-DE proposes a novel and powerful way to test for DE genes 
among cohorts after performing a dimension reduction. Accurate identification of dif-
ferential expression on the individual level, instead of the cell level, is important for link-
ing scRNA-seq studies to our understanding of the human population.

Keywords: Case–control subjects, Gamma–Poisson distribution, Matrix factorization, 
Multi-individual data

Background
High-throughput single-cell RNA-seq (scRNA) technology has advanced tremendously 
over the last decade and helped biologists uncover differing cell-type proportions as well 
as differentially expressed (DE) genes within a particular cell-type when studying various 
diseases or disorders. These findings were previously inaccessible using bulk RNA-seq 
technology. As the technology has developed more in accuracy and cost-efficiency, many 
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labs have begun sequencing entire cohorts of individuals to study up-regulated/down-
regulated pathways specific to each cell type in diseases/disorders that generalize to the 
human population. For example, biologists have sequenced hundreds of thousands of 
cells for 44 individuals with lung adenocarcinoma [1], hundreds of thousands of neu-
rons for 84 individuals with varying severity of Alzheimer’s Disease [2], and millions of 
blood cells for 162 individuals with systemic lupus erythematosus and 99 control indi-
viduals [3] in order to discover DE genes for the disease/disorder consistent with the 
entire cohort. While numerous existing and benchmarked single-cell DE methods are 
designed to find differentially-expressed patterns among cells [4, 5], this task fundamen-
tally differs from the cohort-wide studies’ goal of finding differentially expressed patterns 
among individuals. This pressing methodological gap has been raised by many biologists 
who have collected cohort-wide scRNA-seq datasets [6, 7]. Hence, we reinvestigate the 
shortcomings of existing DE methods commonly used to analyze cohort-wide scRNA-
seq data and design a new DE method specifically suited for such data. Focusing on 
scRNA-seq data enables us to study more principled ways to model cohort-wide scRNA-
seq data, which we hope could be used to inspire cohort-wide DE methods for other 
single-cell technologies in the future, as well as pioneer applications in future eQTL, as 
well as upcoming studies that sequence spatial transcriptomics or paired multiomics on 
large cohorts.

One of the main distinctions between a DE analysis among cells compared to a DE 
analysis among individuals lies in how the case and control population distributions are 
quantified. DE analyses among individuals need to account for variability within and 
among individuals in order to properly model human variation. However, most exist-
ing DE methods lack one of these two aspects. On the one hand, variability within an 
individual hinders “pseudobulk” analyses where all the cells among each individual are 
summed to yield a pseudobulk sample. Then, methods originally designed for bulk RNA-
seq data such as DESeq2 [8] and edgeR [9] are used, but these methods do not account 
for the variability within an individual. On the other hand, variability across individuals 
hinders most DE methods made for scRNA-seq data. Specifically, a gene could be differ-
entially expressed among cells but not among individuals if all cells with a significantly 
higher gene expression come from a small subset of individuals.

The second main distinction is that in cohort-wide scRNA-seq data, there are poten-
tially substantial effects of individual-level covariates such as age, sex, and smoking sta-
tus that can induce differences in gene expression among the cells that do not reflect 
the biological differences related to the disease or disorder. A conventional strategy is 
to regress out the covariate effects for each gene one at a time via a mixed effects model 
such as MAST [10] and NEBULA [11] where there is a random effect for each individ-
ual. However, this regression might be inaccurate since each gene is sparsely sequenced, 
detrimentally impacting the downstream DE analysis. Hence, an alternative strategy is 
to use a dimension-reduction method via matrix factorization such as GLM-PCA [12], 
ZINB-WaVE [13], or scGBM [14]. These methods pool information across genes to 
remove confounding covariates’ effects more effectively. However, a naive application of 
DE testing on the dimension-reduced scRNA-seq data has been observed to inflate the 
Type-1 error [15]. This inflation occurs because the dimension reduction introduces cor-
relations among genes that contaminate the signal. Null genes could seem significantly 
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(and erroneously) differentially expressed after a dimension reduction if the test is 
not performed with care. (See an illustration of this phenomenon in Additional file 1: 
Fig. A1.) The main focus of our paper is to solve this statistical dilemma of how to per-
form differential testing after dimension reduction. We note that another recent line of 
work has developed differential testing among cells after a dimension reduction via deep 
variational autoencoders [16, 17]. The authors overcome the aforementioned pitfall of 
DE testing after dimension reduction by leveraging the inherent randomness in autoen-
coders and adding pseudocounts to avoid deeming genes with a small log-fold change 
as significant. However, we do not pursue this direction since matrix factorizations offer 
practitioners a more transparent and interpretable framework.

We design the exponential-family SVD differential expression (eSVD-DE) to over-
come these two main obstacles, which extends our previous work [18]. Importantly, 
our method infers the differential expression based on the posterior distribution after 
performing a dimension reduction, which helps counteract the Type-1 error inflation. 
This combination of matrix factorization, the posterior distribution, and a test statistic 
designed to assess differential expression among individuals enables eSVD-DE to bet-
ter detect DE genes in cohort studies compared to current methods. The eSVD-DE also 
enables model diagnostics to assess if the assumed statistical model is appropriate for 
modeling the scRNA-seq dataset.

In this paper, we focus on testing for cells of a particular cell type. We show that eSVD-
DE can find reproducible signals in multiple pairs of cohort datasets, either across vari-
ous cell types between two independent studies of idiopathic pulmonary fibrosis (IPF) 
in the human lung [6, 19] or within a study of non-inflamed and inflamed cells studying 
ulcerative colitis in the human colon [20]. We also show that eSVD-DE can find novel 
DE genes across different cell types in a dataset studying autism [21]. Altogether, these 
analyses provide evidence that eSVD-DE is a valuable tool for investigating differential 
expression among cohort studies that will become more prevalent as high-throughput 
sequencing technologies are applied to large cohorts.

Results
Overview of eSVD‑DE for differential expression testing

eSVD-DE performs DE by first projecting the cells onto a low-dimensional manifold 
while removing the effects of covariates. This step is the cornerstone and namesake of 
our method. Our dimension reduction follows previous dimension-reduction work such 
as GLM-PCA [12], ZINB-WaVE [13], and scGBM [14], where we embed the cells via the 
Poisson distribution based on the gene expression A ∈ {0, 1, 2, . . .}p×n and the covariate 
matrix C ∈ R

n×r , where n, p, and r denote the number of cells, genes, and covariates 
(Fig.  1A). Importantly, these covariates contain an intercept term, the log sequencing 
depth (computed as the log of the total counts per cell), the case–control indicator, and 
covariates that could be potential confounders, such as clinical covariates of each indi-
vidual (sex, age, and smoking status). We denote the specific covariate for the case–con-
trol indicator as C·,(cc) . The eSVD-DE learns a coefficient matrix that removes the effects 
of the covariates as well as the low-dimensional embedding of “residuals” X via the hier-
archical model for gene j ∈ {1, . . . , p} and cell i ∈ {1, . . . , n} following work such as [22],
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and

where X ∈ R
n×k and Y ∈ R

p×k , and ℓji denotes the covariate-adjusted sequencing depth 
that accounts for the effect of all the remaining covariates in C aside from C·,(cc) . Here, 
γj denotes the overdispersion parameter for gene j, which measures how much extra 
variability exists between the assumed Poisson fit in the low-dimensional embedding 
and the observed data, analogous to works like SAVER [23] and totalVI [24]. While this 
k-dimensional embedding X can be helpful for a wide variety of applications down-
stream, we focus on modifying our previous work [18] to perform DE analysis for cohort 

Aji|�ji ∼ Poisson(ℓji · �ji), and �ji ∼ Gamma(mean = µji; variance = γj · µji),

µji = exp
(

(Yj,·)
⊤(Xi,·)+ Zj,(cc) · Ci,(cc)

)

,

Fig. 1 A Schematic of the eSVD-DE’s matrix factorization, where the observed scRNA-seq data is modeled 
as a sum of two low-rank matrices, one for the covariates and one for the cells’ latent vectors, with an 
exponential link function (for the Poisson distribution). B The cells’ latent vectors can be used for diagnostic 
checks, such as visualization via Isomap. C To account for overdispersion and over-fitting of the dimension 
reduction, shrink each cell via the negative binomial distribution’s posterior mean. D Represent each 
individual by a Gaussian distribution among the individual’s cells. E Compute a test statistic analogous to the 
T-test after aggregating cells from the cases or control individuals in the cohort. C through E are performed 
for each gene. F Volcano plot, showing a multiple testing cutoff to determine the significant DE genes
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data. We advocate using a matrix-factorization-based approach to perform this dimen-
sion reduction over deep learning approaches since our approach enables conventional 
model diagnostics to assess and tune eSVD-DE (Fig. 1B).

After fitting a low-dimensional embedding, we cater the following procedure to test 
for DE among individuals, an aspect absent from our previous work [18]. First, we 
adjust the predicted relative expression for each cell’s gene expression using its poste-
rior according to the Gamma-Poisson distribution (i.e., Negative Binomial, Fig. 1C). This 
posterior, denoted by �ji | Aji , is computed by first estimating the overdispersion γj of 
each gene. Importantly, this posterior distribution is computed to be the relative expres-
sion after accounting for the contributions of the confounding covariates. For a particu-
lar gene, we summarize the cells’ posterior distribution of �ji | Aji from each individual 
as a Gaussian distribution following the Central Limit Theorem, and we then compute 
the T-test statistic reflecting the collective difference between the Gaussians from case 
individuals to those from control individuals (Fig. 1D, E). Notably, this means we do not 
perform a differential expression test based on µji ’s because different genes are highly 
correlated based on their values in µji due to the low dimensional embedding, which 
will artificially inflate the Type-1 error. (See the Appendix for a more in-depth discus-
sion.) Finally, we use a multiple-testing procedure based on empirical null distribution 
to report the DE genes, which has been successful in other settings to account for pos-
sible model misspecification [25] (Fig. 1F). More details of the eSVD-DE procedure are 
described in “Statistical model and method.”

eSVD-DE relies on three primary statistical assumptions: (1) scRNA-seq data can be 
appropriately modeled through the Gamma-Poisson distribution, (2) the effects of con-
founding covariates can be effectively removed through a GLM framework, and (3) the 
DE genes show significant differences in means between case and control individuals 
after accounting for the individual-level covariates. Towards the first assumption, our 
posterior distribution effectively models counts through a Negative Binomial distribu-
tion, which has been justified for modeling scRNA-seq data [22] and has served as the 
foundation for many methods [13, 23, 26]. Towards the second assumption, many meth-
ods from the bulk RNA-seq data such as edgeR [9] and DESeq2 [8] have found tremen-
dous success regressing out covariates through the GLM framework. Towards the last 
assumption, we note that there are existing methods such as IDEAS [27], scDD [28], 
and waddR [29] that test for differential distributions instead of differential mean expres-
sions. However, we have found it more challenging to generalize these results when 
comparing different datasets of similar biological systems, as differentially distributed 
genes are not neatly characterized by over-/under-expression.

Design of simulation studies

The main message we wish to convey in this simulation section is two-fold: (1) testing 
for differential expression among individuals is fundamentally different from among 
cells, and (2) eSVD-DE’s framework enables more accurate inference due to its usage of 
dimension reduction and posterior correction. Figure 2A conceptualizes the first point. 
Large within-individual variability hinders “pseudobulk” DE methods that sum the gene 
expressions across all the cells originating from the same individuals since these meth-
ods do not account for the variability of expression within an individual. On the other 
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Fig. 2 A Illustration of challenges for cohort-wide DE testing. B Setup for our simulation setup. C Isomap of 
the cells based on the true DE genes’ expression before introducing the confounding variables. No individuals 
concentrate tightly in any region on the Isomap manifold, and there is a strong separation between the 
cases (shades of red) and controls (shades of blue). D Isomap of the observed data based on all the genes. 
Cells from the same individual concentrate in the embedding, suggesting that confounding covariates 
additionally drive the difference in expression profiles among individuals. E Downsampling experiment, 
demonstrating that by pooling information across genes, eSVD-DE outperforms gene-by-gene Negative 
Binomial regression for regressing out covariate effects. F Illustration of the importance of shrinkage, where 
the x-axis and y-axis represent each gene’s test statistic with and without posterior correction, respectively. 
The genes are colored by their true log-fold change, of which the circled genes denote the top 50 genes with 
the highest true log-fold change. G ROC curve comparing four different methods, illustrating that eSVD-DE 
has more power than competing methods. The area under the curve (AUC) is shown for each method, where 
the percentage represents the area between the method’s curve and the diagonal line as a fraction of total 
possible area. The bolded method denotes the method with highest AUC 
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hand, large between-individual variability hinders most existing methods designed for 
testing DE genes among cells from scRNA-seq data. This is because even if the differ-
ence in mean expression is insignificant on the cohort level, many cells from a small sub-
set of individuals can yield highly significant differences in mean expression on the cell 
level. Since previous work has explained the importance of accounting for within-indi-
vidual variability [27, 30, 31], we focus on a simulation that illustrates the importance of 
accounting for the between-individual variability here.

Our simulation study contains 700 genes and 20 individuals equally split among cases 
and controls, where each individual contributes 250 cells. The cells have gene expres-
sion profiles that are impacted by covariates correlated with the case–control status 
(such as age, sex, and tobacco use) and are sampled from a Gamma-Poisson distribution 
(Fig. 2B). Overall, the true generative model is more complex than the statistical model 
assumed by eSVD-DE to not give eSVD-DE an unfair advantage in our benchmarking 
experiment. Nonetheless, the data is generated such that 50 genes are drastically more 
differentially expressed among cases and controls on the cohort level than the remain-
ing 650 genes, barring confounding effects. This true signal can be visualized via an 
Isomap [32, 33], where there is no apparent stratification within the case or control indi-
viduals (Fig. 2C). However, when the covariate effects of age, sex, and tobacco use are 
also included, there is obvious confounding of which genes are differentially expressed 
(Fig. 2D). Specifically, the cells from the same individual concentrate in different regions 
of the embedding. We choose to use the Isomap here, as opposed to the more commonly 
used UMAP [34], since the Isomap has well-studied statistical properties [35–37]. This 
quality is valuable when we use these visualizations to diagnose our hypothesis testing 
framework instead of an exploratory tool, as we will illustrate later.

Simulations verify that eSVD‑DE effectively remove covariate effects in the presence 

of sparsity

We first show that by pooling information across genes via the dimension-reduction 
framework, eSVD-DE removes the confounding variables’ effects more accurately com-
pared to a Negative Binomial (NB) regression applied separately for each gene (Fig. 2E). 
To demonstrate this, we incrementally downsample the data to reduce the signal size 
of the DE genes. As the amount of downsampling increases, it will be more difficult 
for a method to remove the confounding effects properly. We measure the accuracy of 
how well the confounding effects were removed by computing the Pearson correlation 
between each cell’s vector of true natural parameters across the 700 genes and its vec-
tor of estimated natural parameters after the confounding effects have been removed. 
We observe that at starting at 30% downsampling, eSVD-DE removes the confound-
ing effects more accurately than the gene-by-gene NB regression (0.95–0.87). Addi-
tionally, although both methods drop in accuracy for downsampling levels of 60% or 
more, eSVD-DE is still more accurate than the gene-by-gene NB regression. This find-
ing is statistically intuitive since when genes are sparsely observed, there is not enough 
information within a specific gene to accurately estimate the NB regression coefficients. 
However, by pooling information across genes, the coefficients for the confounding vari-
ables are better estimated.
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Simulations verify that eSVD‑DE’s posterior enables gene‑specific discoveries

We next illustrate that the posterior correction performed by eSVD-DE is important 
for DE testing on the cohort level (Fig.  2F). We plot the test statistic derived directly 
from the low-dimensional embedding against the test statistic derived from the poste-
rior-corrected relative expression, where we mark the 50 genes the largest true log-fold 
change. In particular, the former represents the prototypical analysis of applying DE 
after denoising the data by a dimension-reduction method, and we observe that many 
null genes display large test statistics (x-axis), confirming the findings of previous work 
that observes an inflation of Type-1 error for such procedures [15, 30, 38]. However, by 
adjusting the relative expressions using the posterior mean, many null genes have drasti-
cally smaller test statistics (y-axis). This phenomenon occurs because the assumed lin-
ear model between the covariates and the gene’s natural parameter does not sufficiently 
capture more complex non-parametric relationships often displayed among individu-
als, distorting the lower-dimensional embedding of the “residuals.” This distortion has 
an adverse effect when genes vary substantially in sparsity—sparsely observed genes are 
denoised by projecting the cells onto the incorrect manifold.

Simulations verify that eSVD‑DE’s low‑dimensional embedding improves power over other 

methods

Lastly, we illustrate the eSVD-DE has more power than other conventional methods 
to test for DE in cohort-wide scRNA-seq data through our simulation. Since differ-
ent methods estimate sets of DE genes with dramatically different sizes for a particular 
FDR cutoff, we plot the entire curve of true positive rate (TPR) and false positive rate 
(FPR) over all possible cutoffs (Fig. 2G). Here, we compare against three other methods: 
DESeq2 [8] (i.e., the prototypical method representing “pseudobulk” analyses), MAST 
[10] (i.e., the commonly used method using mixed-effect models where there is a ran-
dom effect among individuals) and SCTransform [39] (i.e., the prototypical method of 
performing DE ignoring the individual structure). We observe that eSVD-DE has the 
highest power compared to the three other methods. DESeq2 performs the best among 
the three competing methods since the averaging among cells of an individual dramati-
cally reduces the estimation variability, while MAST performs the next best since it 
accounts for the individual structure.

We perform further power analyses across different number of genes and imbalances 
between number of cells across individuals (Additional file 1: Figs. C4 and C5). We also 
perform a separate simulation in the Appendix (Additional file  1: Figs. B2 and B3) to 
demonstrate that eSVD-DE does not inflate the Type-1 error among true null genes.

eSVD‑DE enables diagnostics to assess the performance of removing covariate effects

Moving beyond simulations, we now investigate how well eSVD-DE removes con-
founding effects in scRNA-seq datasets and how the dimension-reduction frame-
work enables conventional model diagnostics. To demonstrate this, we investigate a 
broad collection of scRNA-seq datasets from diverse tissues but focus here on the 
8909 T-cells from a dataset of lung cells containing 10 healthy individuals and 24 indi-
viduals with IPF sequenced using the 10x Chromium single-cell platform, henceforth 
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called the “Adams” dataset [6]. We focus on 6969 genes for our analysis, including 
5000 highly-variable genes, the genes reported to be DE by the authors as well as the 
1003 human housekeeping genes [40]. We report the summary table of the Adams 
dataset, as well as the other datasets in this paper, in Table  1, where p denotes the 
number of genes and n denotes the number of cells. We include an extended sum-
mary table of the datasets in the Appendix When visualizing these cells via Isomap, 
we can see a clear separation of the case and control individuals, suggesting there are 
many genes with separable expression patterns (Fig. 3A). However, we also see that 
individual-level covariates like sex and smoking status also are locally concentrated 
in different regions of the Isomap. We do not wish to report genes as differentially 
expressed if the differences are induced only by sex differences or smoking.

After applying eSVD-DE, we see that the resulting Isomap of the fitted embedding 
no longer carries expression patterns correlated with the individuals, sex, or smok-
ing status (Fig. 3B). If biologists prefer quantitative diagnostics, the practitioner can 
purposely omit a small percentage of values from the scRNA-seq count matrix before 
applying eSVD-DE and assess how correlated the predicted values are to these omit-
ted values. This strategy was used successfully in our previous work [18]. For all these 
reasons, we advocate the matrix-factorization strategy in the eSVD-DE as opposed to 
deep-learning alternatives where there are fewer interpretable diagnostics available. 
The remaining diagnostics and the Isomaps for other scRNA-seq datasets are shown 
in the Appendix (Additional file 1:  Fig. F6).

eSVD‑DE appropriately adjusts for the sequencing depth using a dimension‑reduction 

approach

Many authors have concluded that appropriately adjusting for the sequencing depth 
of each cell is one of the most influential aspects of an effective DE method [41, 42]. 
This adjustment is critical for scRNA-seq data since we do not wish to deem genes as 
DE simply because specific cells have a larger sequencing depth than others. Instead, 
genes should be deemed as DE if the case and controls have significantly different 
expression relative to the cells’ sequencing depth. Accounting for this sequenc-
ing depth has been the source of numerous debates on how to normalize the cells’ 
expression best [43]. The most commonly used approach is to log-normalize the gene 
expressions, but many existing work has cited that this normalization distorts qualita-
tive aspects of the scRNA-seq dataset [12, 39].

Table 1 Summary table of datasets

Dataset p n # Of case indiv. # Of 
control 
indiv.

Adams 6969 8909 24 10

Habermann 6969 5286 6 4

Smillie: TA 1 (I) 5713 6380 13 6

Smillie: TA 1 (NI) 5713 14,215 13 6

Velmeshev: L2/3 7094 12,984 15 16
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In order to quantify how well the sequencing depth effect was removed from the 
scRNA-seq data, we perform diagnostics analogous to those in [39]. Specifically, we 
group the genes into 6 bins based on their mean gene expression. We observe a sig-
nificant relationship between each gene’s expression and the cells’ sequencing depth 
before normalizing the scRNA-seq data (Fig. 3C). This means without any account-
ing of the sequencing depth, genes could be deemed significantly differentially 
expressed solely due to cells having different sequencing depths. However, after fit-
ting the eSVD-DE, this relationship is mainly removed across all bins, discounting 
the genes with the smallest mean expressions (Fig. 3D). Observe that eSVD-DE bears 
an advantage over other normalization methods such as SCTransform [39] and Scran 
[44] since eSVD-DE assesses the appropriate sequencing-depth normalization by 

Fig. 3 A Isomap of the leading principal components for the T-cells in the Adams dataset, shown by 
individuals, sex, and smoking status. The number in the insets denotes how correlated the individual-level 
covariate is correlated with the leading principal components. B Isomap of the cell embedding after applying 
eSVD-DE, demonstrating that confounding covariate and individual effects have been removed. The number 
in the insets denotes how correlated the individual-level covariate is correlated with the estimated eSVD-DE 
cell embedding. C, D Relationship between gene expression and cells’ log sequencing depth before or 
after eSVD-DE (shown on a log scale), respectively, for groups of 6 genes partitioned by the gene’s mean 
expression relationship after eSVD-DE. After eSVD-DE, each gene becomes more uncorrelated with the 
cell’s log sequencing depth. E Relationship between each cell’s log sequencing depth and overdispersion 
parameter, highlighting two genes displaying different shrinkage levels via the posterior mean
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simultaneously accounting for the cells’ gene expression and covariate information 
through its dimension-reduction framework, an important quality when dealing with 
cohort data. See Additional file  1:  Fig. F7 for the application of this diagnostic on 
other datasets, and Additional file 1:  Fig. F8 for how this diagnostic performs when 
only log-normalization is performed instead of the eSVD-DE in the Appendix.

Lastly, recall that our eSVD-DE framework adjusts the fitted gene expression values by 
the posterior Negative Binomial distribution. This adjustment relies on first quantifying 
the overdispersion of each gene, i.e., a higher overdispersion means the gene’s expression 
patterns conform less to the estimated low-dimensional embedding. We hypothesize a 
negative correlation between the sequencing-depth normalization and the amount of 
overdispersion. This hypothesis is in line with previous works that investigate this rela-
tionship [39], citing that a smaller overdispersion implies that the fitted values are a good 
approximation of the gene expressions, which often occurs for densely observed genes. 
This can be visualized as a scatterplot (Fig. 3E). Additionally, this plot enables practition-
ers to survey the amount of shrinkage across all the genes broadly. We highlight RPS24 
and SMAD3, 2 genes implicated in previous studies [45–47], as example genes that are 
highly and lowly shrunk via the posterior distribution since these genes were. All these 
aspects collectively support the claim that eSVD-DE is appropriately adjusting each 
gene’s expression by the sequencing depth, which enables us to investigate the perfor-
mance of the DE analyses downstream.

eSVD‑DE recovers reproducible differences between case and control expression 

across multiple datasets

While it is difficult to assess the validity of DE genes in cohort-wide scRNA-seq data 
due to the lack of negative control genes, we hypothesize that a reliable proxy to assess 
the quality of the DE method is to collect two different cohort-wide scRNA-seq datasets 
of the same system and diseases/disorder and see if genes reported to be significant in 
one dataset display similar significances in the other. Towards this end, we investigate 
another dataset of 5286 T-cells of lung cells from 4 healthy individuals and 6 individuals 
with IPF sequenced using the 10x Chromium single-cell platform of the same 6969 genes 
here, henceforth called the “Habermann” dataset (Fig. 4A) [19]. Since we are primarily 
interested in comparing eSVD-DE to other DE methods using this pair of datasets, we 
do not deploy a multiple-testing procedure to select DE genes but investigate the sets 
genes with the largest test statistic magnitudes of the same cardinality as those reported 
by the authors for meaningful comparisons. For starters, the volcano plot on the Adams 
dataset shows that 20 of the 84 genes with the largest test statistics derived from our 
eSVD-DE procedure intersect with the 84 DE genes reported by the authors, resulting 
in Fisher’s exact test p-value of 2.2× 10−21 (Fig. 4B). Similarly, the volcano plot on the 
Habermann dataset shows that 30 of the 157 genes with the largest test statistics derived 
from our eSVD-DE procedure intersect with the 157 DE genes reported by the authors, 
resulting in Fisher’s exact test p-value of 3.1× 10−20 (Fig. 4C). Additionally, since house-
keeping genes constitute genes primarily responsible for basic cellular functions and are 
stably expressed regardless of cellular condition, we hypothesize that these genes should 
not carry substantial differential expression patterns [40]. This phenomenon is demon-
strated through the volcano plots (Fig. 4B, C).
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When comparing different DE methods, we ask if the leading genes derived from the 
Adams dataset using eSVD-DE are either (1) genes reported by authors of the Haber-
mann dataset or (2) themselves the leading genes derived from the Habermann dataset 
using eSVD-DE, or vice-versa. If the size of this intersection is larger than those derived 
by other DE methods in either scenario, we would have partial evidence that eSVD-DE 
is more consistently recovering reproducible signals across both datasets. We compared 

Fig. 4 A Number of case and control individuals and the total number of cells across cell types and datasets. 
The x-axis denotes the total number of cells on a log scale, while the partitioning of case and control cells 
denotes the number of cells from each individual relative to the total number of cells. B, C, G, H Volcano 
plot, where the set of genes with the largest test statistics (having the same size as the original author’s set) 
is depicted in orange. The genes reported by the respective authors or housekeeping genes are in purple 
and green, respectively. The Fisher exact test’s p-value between the enrichment of eSVD-DE’s DE genes and 
the author’s reported DE genes is also reported. D Upset plot showing the intersection between pairs of 
DE genes, either the reported DE genes in the Habermann and Adams dataset and the estimated DE genes 
using eSVD-DE or DESeq2. E, I Hexplots showing the correlation between genes’ eSVD-DE test statistics 
across datasets, either the originally reported DE genes in either dataset or the housekeeping genes. F, J 
Similar to E, I but showing the gene’s DESeq2 test statistics
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against DESeq2 whereby cells of each individual are aggregated into “pseudobulk” 
expressions prior to performing DESeq2 [8] for this investigation. We highlight this 
pseudobulk procedure specifically since this procedure was reported to be more reliable 
for scRNA-seq with biologically-replicate samples, but its reliability for cohort data was 
not investigated [4]. For this comparison, we select the 226 genes with the largest test 
statistics in magnitude from either the Adams or Habermann dataset using either eSVD-
DE or DESeq2 since the 84 reported DE genes for the Adams dataset and 157 reported 
DE genes for the Habermann dataset yield 226 unique genes. The upset plot shows that 
eSVD-DE yields larger intersections between the two datasets than DESeq2 (Fig. 4D).

Additionally, we hypothesize that if a DE method recovers reproducible signals, the 
DE genes test statistics should be positively correlated between the two datasets. Indeed, 
if a reported DE gene has a positive log-fold change in one dataset, the other dataset 
should also show evidence of a positive change. On the other hand, we hypothesize that 
genes unrelated to the disease/disorder should be uncorrelated test statistics between 
the two datasets. This hypothesis would be biologically justifiable, as the log-fold change 
of a gene unrelated to disease/disorder would be determined by random chance. We 
observe these relationships for eSVD-DE’s test statistics (Fig. 4E). In contrast, the cor-
relation for DESeq2’s test statistic among the reported DE genes is near-zero (Fig. 4F). 
We suspect all the above phenomenons are likely driven by pseudobulk methods’ lack of 
accounting for the within-individual variability.

To further support our empirical claims regarding eSVD-DE, we also study cells from 
18 individuals with ulcerative colitis (UC) and 12 healthy individuals across multiple 
cell types in the colon and 5713 genes, henceforth called the “Smillie” dataset [20]. Each 
individual with UC contributed cells from inflamed and non-inflamed colon biopsies, 
and each healthy individual contributed two biologically replicated samples from biop-
sies in analogous colon regions. In our analysis, we treat each tissue sample as a different 
“individual” and perform two DE analyses—one of non-inflamed samples from individu-
als with UC against healthy samples (i.e., the “non-inflamed” analysis) and another of 
inflamed samples from individuals with UC against healthy samples (i.e., the “inflamed” 
analysis). Importantly, we split the healthy tissue samples so each healthy sample is only 
involved in one of the two DE analyses. While we apply this pair of analyses on multi-
ple cell types in this biological system, we focus on the analysis of transit amplifying 1 
(TA 1) cells here (Fig. 4A). Similar to before, we see that the volcano plots for both the 
non-inflamed and inflamed DE analysis yield highly-enriched intersections between the 
genes with the largest test statistics and the DE genes reported by the authors, as well as 
near-zero enrichment of the housekeeping genes (Fig. 4G,H).

The authors of the Smillie dataset observed a high correlation among the test statis-
tics of reported DE genes between the non-inflamed and inflamed DE analyses when 
aggregating across all the cell types, suggesting that the transcriptomic signature of 
UC precedes inflammation [20]. We hypothesize that a higher-powered DE analysis 
of cohort-wide scRNA data should reveal a strong correlation even when focusing on 
only one cell type. Indeed, we see this positive correlation among eSVD-DE’s test sta-
tistics ( ρ = 0.84 , Fig.  4I). Additionally, while we see a positive correlation among the 
housekeeping genes ( ρ = 0.49 ), many of such genes have a near-zero test statistic in the 
non-inflamed analysis. This observation suggests that the differences in housekeeping 
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genes’ expression are induced more by the inflammation of the tissue rather than a bio-
logical mechanism disrupted by ulcerative colitis. In contrast, when we apply a similar 
pair of analyses using DESeq2 on pseudobulk data, the correlation among the reported 
DE genes is substantially lower (Fig. 4J). See Additional file 2 for the resulting statistics 
when analyzing the Adams and Habermann dataset, and Additional file 3 for the Smillie 
datasets.

eSVD‑DE detects DE genes highly enriched with previously‑annotated genes

Having demonstrated all the advantages of eSVD-DE, we hypothesize that our method 
leads to novel cell-type specific DE discovery. Towards this end, we analyze brain 

Fig. 5 A Number of case and control individuals and the total number of cells across cell types for the 
Velmeshev dataset, analogous to Fig. 4A. B Volcano plot showing eSVD-DE’s results for layer 2/3 cells, 
where the set of genes exceeding the empirical FDR cutoff are depicted in orange. The SFARI, bulk DE, and 
housekeeping genes are in purple, blue, and green, respectively. The Fisher exact p-value between the 
selected genes via eSVD-DE and the bulk DE genes is noted. C Comparison of the eSVD-DE p-values against 
the DESeq2 p-values, and the genes exceeding an FDR cutoff for DESeq2 are shown in yellow. The correlation 
between the two sets of negative log10 p-values is noted. D Increase in enrichment for relevant GO terms 
among the 331 DE genes found by eSVD-DE, the 144 DE genes found by DESeq2, and the 109 genes initially 
reported by the authors. E Upset plot comparing the SFARI or bulk DE genes with the top 100 DE genes 
estimated by eSVD-DE, DESeq2, MAST, or SCTransform. F Downsampling experiment, illustrating the stability 
of the 50 genes with the largest test statistics in magnitude among the SFARI or the bulk DE genes as the 
dataset is artificially downsampled. The values on the y-axis is the ratio of the test statistic between these 
genes and the housekeeping genes
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single-cells from controls and case individuals who had been diagnosed with autism 
spectrum disorder (ASD), partitioned among many cell-types [21], henceforth called 
the “Velmeshev” dataset (Fig. 5A). We focus on this particular system since the Simons 
Foundation Autism Research Initiative (SFARI) routinely curates a list of autism risk 
genes based on genetic studies from many publications [48], which can provide relevant 
genes to compare our eSVD-DE results against. Additionally, a recent bulk-DE analysis 
of ASD provides a high-quality and independent list of genes to compare against, which 
we will call the “bulk DE genes” henceforth [49]. A priori, we would not expect any 
method deployed on the Velmeshev dataset to fully match these lists because our analy-
sis is cell-type specific and the SFARI list are genetic risk genes, which do not always lead 
to differential expression.

When analyzing the 12,984 cells in layer 2/3, we observe that eSVD-DE estimates 
331 DE genes (among the 7055 genes used in the analysis) using an empirical FDR cut-
off of 0.05, where we calibrate the p-value according to an empirical null distribution 
to account for potential misspecification [50] (Fig. 5B). Here, 42 and 95 of these genes 
are among the SFARI and the bulk DE genes, respectively (among the total 800 and 
1556 genes, respectively). Comparing the bulk DE genes to our eSVD-DE genes (which 
are both derived from transcriptomics data), we obtain a significant Fisher p-value of 
0.002. Additionally, when we compare DESeq2 for the same cells to find DE genes (144), 
only 19 and 30 genes overlapped with the SFARI and the bulk DE genes, respectively 
(Fig. 5C). This finding demonstrates that eSVD-DE can find more DE genes, which are 
more relevant, compared to DESeq2. We report analogous plots in the Appendix when 
comparing against other methods, such as MAST and SCTransform (Additional file 1:  
Fig. F9). We note that we do not compare against the DE genes found by the authors of 
the data themselves here, as they had used MAST to find their DE genes. As our simula-
tions beforehand demonstrated, MAST is not necessarily a reliable “gold standard” to 
compare against. However, the 331 DE genes found by eSVD-DE are also much more 
enriched in GO terms that are plausibly related to ASD when compared to the DESeq2 
genes or the original genes reported for layer 2/3 (Fig. 5D). All these observations sug-
gest that eSVD-DE is well-equipped to uncover meaningful results.

Next, we investigated qualitative differences among the methods compared to the 
SFARI and bulk DE genes. We enable fair comparisons among the different meth-
ods by finding the top 100 genes with the smallest p-values for each method. We 
then counted how many of these 100 genes intersected with the SFARI or bulk DE 
genes (Fig.  5E). eSVD-DE has the highest overlap with both sets (31 with the bulk 
DE, 13 with the SFARI genes), followed closely by DESeq2 and then finally by MAST 
and SCTransform. In fact, eSVD-DE and DESeq2 have an overlap of 27 genes. The 
observations from Fig. 5D, E combined suggest that eSVD-DE inherits many advan-
tages of pseudobulk methods while improving these methods by accounting for 
within-individual variability. In the second investigation, we asked how stable each 
method was as the dataset was gradually downsampled. Indeed, as the scRNA-seq 
dataset becomes sparser, the relative difference between “strongly-expressed” DE 
genes and null genes becomes fainter, and we would expect any method to degrade 
in performance. To investigate this, we take the 50 genes with the largest test statis-
tics in magnitude among the SFARI and bulk DE genes for each method and ask how 
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their mean test statistic (relative to the housekeeping gene’s test statistic) diminishes 
as the scRNA-seq data is downsampled. We use the housekeeping genes as a proxy 
for the null genes, which is a reasonable choice given Fig.  5B. As the downsam-
pling percentage increases (i.e., the signal becomes fainter), MAST and SCTrans-
form lose their ability to distinguish between formally highly-differentiable genes 
and housekeeping genes. This finding makes sense, as MAST and SCTransform 
estimate the DE genes based on a gene-by-gene regression, meaning no informa-
tion is shared between genes. On the other hand, DESeq2 and eSVD-DE are surpris-
ingly stable—they can demonstrate a clear separation between the 50 DE genes and 
the housekeeping genes even when the data is downsampled at 40%. This finding 
is also sensible, as DESeq2 aggregates cells among individuals, and eSVD-DE pools 
information between genes; both strategies yield robustness against sparsity. How-
ever, eSVD-DE is still preferred over DESeq2 here, as the separation between the DE 
genes and housekeeping genes is much higher for eSVD-DE.

We include additional diagnostic plots via Isomaps, volcano plots of the DE genes, 
and the GO analysis results in Appendix (Additional file 1:  Fig. F7, and F10 through 
F12). See Additional file 4 for the resulting statistics when analyzing the Velmeshev 
datasets.

Conclusions
We demonstrate the nuances of performing cohort-wide differential testing for single-
cell RNA-seq data. The difficulty primarily stems frotm individual-level confounding 
covariates, which can be difficult to remove using typical DE strategies of regressing 
out their effects gene-by-gene. Instead, eSVD-DE pools the information across genes 
to remove the confounding covariates, yielding empirical performance that is more 
promising than current pseudobulk DE methods or DE methods currently used for 
scRNA-seq data when no prevalent individual-level covariates are present. We achieve 
this through a matrix factorization strategy, estimating the coefficients associated with 
the covariates and each cell’s and gene’s latent vectors. We then shrink the estimated 
denoised gene expressions via the posterior mean according to the Gamma-Poisson dis-
tribution. This strategy helps dampen potential over-smoothing effects induced by the 
matrix factorization. We then deploy a test statistic designed to test for DE genes on the 
individual level instead of the cellular level. Note that our procedure can be used concur-
rently with IDEAS [27], which aims to find differential distributions between cases and 
controls, which could be more challenging to interpret than differential means. How-
ever, we do not pursue this direction in this paper. We also note that gene selection for 
cohort-level scRNA-seq datasets is an important task that we are interested in exploring 
in future work, since the inclusion of certain genes could impact the p-value of other 
genes due to the nature of pooling information across cells and genes via a low-dimen-
sional embedding. Ideas from graph-representation work such as [51] and [52] could be 
highly relevant in this direction. We hope that eSVD-DE would be beneficial for inspir-
ing cohort-wide DE tests for future single-cell assays beyond scRNA-seq and single-cell 
eQTL analyses where abundant individual-level covariate effects must be adequately 
removed. Additionally, we are curious about broader settings where instead of having 
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case and control individuals within a cohort, we are interested in testing if continuous 
covariates such as age have a substantial transcriptomic impact on specific cell types, as 
discussed in [53].

Statistical model and method
Let A ∈ {0, 1, . . . , }p×n denote the observed count matrix with n cells and p genes, and 
C ∈ R

n×r denote the observed r covariates for the n cells. Importantly, certain columns 
of C would be the following:

• Intercept: Let C·,1 = 1 . We’ll call this column C·,(int).
• Log sequencing depth: Let si =

∑p
j=1 Aji . Then, let Ci,2 = log(si) for all 

i ∈ {1, . . . , n} . We’ll call this column C·,(lib).
• Case–control status: Let Ci,3 ∈ {0, 1} depending on whether or not cell i ∈ {1, . . . , n} 

is associated with a case or control individual. We’ll call this column C·,(cc).
• Others: The remaining columns of C could contain numerical covariates associated 

with the cells: which region of the body the cell was sampled from, the age of the cor-
responding individual, etc. We assume the categorical covariates have already been 
transformed via one-hot encodings (i.e., categorical variables with k levels are trans-
formed using k − 1 indicator variables). In contrast, assume the numerical covariates 
are standardized to have a standard deviation of 1. We have found it beneficial to not 
center the numerical covariates around 0. This way, the resulting estimated coeffi-
cients in Z are easier to interpret.

Optionally, practitioners may include one-hot encoding vectors for which cells originate 
from which individuals. In our paper, we have found this to be optional and sometimes 
detrimental to the fit. This is because the inclusion of such one-hot encoding vectors 
result in a collinear matrix C. This preparation of the covariate matrix C is primarily 
handled by the function eSVD2::.reparameterization_esvd_covariates in 
our codebase.

The statistical foundation of eSVD-DE is the following hierarchical model where each 
entry of Aji is modeled as,

(where α and β denote the shape and rate parameters of a Gamma distribution respec-
tively) for gene j ∈ {1, . . . , p} and cell i ∈ {1, . . . , n} , where the low-dimensional mean 
matrix is µ ∈ R

p×n where

for X ∈ R
n×k and Y ∈ R

p×k , and ℓji denotes the covariate-adjusted sequencing depth,

and γj > 0 denotes the overdispersion parameter for gene j which controls the vari-
ability of gene j. Here, the subset notation “ −(cc) ” means that we exclude the “ (cc) ” col-
umn from the corresponding matrix. In the terminology of previous work [22, 23], we 

(1)
(

Aji|�ji
)

∼ Poisson(ℓji · �ji), and �ji ∼ Gamma(α = µji/γj; β = 1/γj),

(2)µji = exp
(

(Yj,·)
⊤(Xi,·)+ Zj,(cc) · Ci,(cc)

)

,

(3)ℓji = exp
(

(Zj,-(cc))
⊤Ci,-(cc)

)

,
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interpret µji as the “predictable” gene expression (i.e., expression of gene j in cell i that 
can be predicted from other cells and genes, which we interpret as a low-dimensional 
manifold), and �ji as the biological relative expression of gene j in cell i. We observe 
the count matrix A as well as the covariates C, and we need to estimate the cells’ latent 
embedding X, the genes’ latent embedding Y, the covariates’ coefficients Z as well as the 
overdispersion vector γ.

Regarding the Gamma distribution

Our parameterization of the Gamma distribution is inspired by the constant Fano factor 
model used in SAVER [23]. Specifically, for the Gamma distribution in (1),

meaning the variance scales proportionally with the mean. Additionally, it can be 
derived that the marginal distribution of Aji is a negative-binomial,

meaning the moments of Aji marginally are

These equations demonstrate that γj measures overdispersion—the larger γj is, the larger 
the variance of Aji is.

Additionally, we can derive that the posterior distribution of �ji|Aji is

which will be useful when deriving our method below.

Rationale and justification of statistical model

Our hierarchical model (1) draws inspiration from two literatures. The first literature is 
the single-cell modeling literature. Various work have shown that hierarchical model (1) 
that model observed counts as a Poisson distribution originating from a Gamma prior 
is a statistically sound and empirically justified model of scRNA-seq data [22, 23]. These 
models are appealing as they explicitly separate the technical noise (i.e., noise incurred 
by the nature of sequencing, modeled via the Poisson distribution) from the biological 
noise (i.e., noise naturally occurring among cells, modeled via the Gamma distribution). 
Other work has provided additional biological explanations on why biological noise is 
commonplace in organisms [54].

The second literature is the differential-expression literature, which canonically 
focuses on testing for the differential expression of a gene, one gene at a time. For gene 
j, methods like DESeq2 [8], MAST [10], and SCTransform [39] regress the observed 
expression Aj1, . . . ,Ajn onto observed sequencing depth of each cell ℓ1, . . . , ℓn . These 
models account for the possibility that the sequencing depth detrimentally confounds 
the differential expression of gene j in varying degrees across all genes. Hence, our mod-
eling of the sequencing depth in (3) is qualitatively similar.

E[�ji] = µji, and V[�ji] = γj · µji,

Aji ∼ NB
(

r = µji/γj; p = ℓji/(ℓji + 1/γj)
)

,

E[Aji] = ℓji · µji, and V[Aji] = (ℓjiγj + 1) · ℓji · µji.

(4)�ji|Aji ∼ Gamma
(

α = Aji + µji/γj; β = ℓji + 1/γj
)

,
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High‑level description of the hypothesis test

We provide a high-level description of the hypothesis that eSVD-DE tests, with respect 
to the hierarchical model prescribed in the aforementioned statistical model. Let A 
denote the set of case individuals and B denote the set of control individuals. Consider a 
gene j ∈ {1, . . . , p} , assume that all there are parameters µ(case)

j  and v(case)j  that depict the 
unknown gene expression mean and variance among the case individuals, i.e.,

and likewise for the control individuals for unknown parameters µ(control) and σ (control),

Each individual then contributes multiple cells. Let I(s) ⊂ {1, . . . , n} denote the set 
of cells that an individual contributes. We model cell i’s expression (from individual s, 
where s refers to “subject”) for gene j as

where F (s)
j  is a distribution with mean µ(s)

j  . From here, the observed count in cell i for 
gene j, defined as Aji is related to �ji through (1).

With this alternative perspective of our statistical model, eSVD-DE is testing between 
the null and alternative hypotheses,

which are comparing the pouplation case-individual mean expression to the pouplation 
control-individual mean expression of gene j.

A few notes are in order:

• Rationale of against pseudobulk approaches: The hypothesis test in (6) might sug-
gest a pseudobulk approach (such as used by DESeq2 in our comparisons). However, 
as we have mentioned in the main text, such pseudobulk methods do not capture 
variability within an individual (i.e., the variance of the distributions F (s)

j  ). This can 
affect validity of such pseudobulk strategies, as demonstrated in our null simulations 
shown later.

• Rationale of our hypothesis test: We note that our hypothesis test in (6) relates the 
population case individual’s against the population control individual’s mean expres-
sion. This is different from the following null hypotheses that are not as apt for test-
ing for differential mean expression for cohort-wide scRNA-seq data: 

 or 

µ
(s)
j ∼ Gaussian

(

µ
(case)
j , v

(case)
j

)

, for each s ∈ A,

µ
(s)
j ∼ Gaussian

(

µ
(control)
j , v

(control)
j

)

, for each s ∈ B.

(5)�ji ∼ F
(s)
j , for i ∈ I(s),

(6)H0,j : µ(case)
j = µ

(control)
j , and H1,j : µ(case)

j �= µ
(control)
j ,

(7)H ′
0,j : Meani∈I(s),s∈A

(

{�ij}
)

= Meani∈I(s),s∈B
(

{�ij}
)

,

(8)H ′′
0,j : Meani∈I(s),s∈A

(

{µij}
)

= Meani∈I(s),s∈B
(

{µij}
)

.
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 We cannot test the null hypothesis in (7) directly since we observe only one obser-
vation Aji for each �ji . By pooling all the information across cells and genes, we can 
instead estimate µji , which is the mean of �ji based on a low-rank matrix factori-
zation. In contrast, (8) ignores which cells originated from which individual, which 
makes it undesirable for differential testing for cohort-wide scRNA-seq data. For 
example, if all the cells from a few case individuals have vastly higher gene expression 
than all other case individuals’ cells, the null hypothesis in (8) might be rejected, but 
eSVD-DE’s null hypothesis in (6) would not be rejected. In such a scenario, we would 
not want to reject the null hypothesis since the behavior of a small number of case 
individuals would not be representative of the human population of case individuals. 
In our comparisons, methods like SCTransform test the null hypothesis in (8). Meth-
ods like SCTransform face a different computational obstacle. Since these meth-
ods regress out the individuals’ substantial covariate effects one gene at a time, this 
regression might be inaccurately estimated due to the sparsity of scRNA-seq data.

• Distinction between cell‑mean and individual‑mean: Observe that even though 
our hypothesis testing framework in (5) treats all the �ji ’s for the same individual (i.e., 
i ∈ I(s) ) as i.i.d., eSVD-DE nonetheless models each cell’s mean as µji in (2). This is 
to facilitate the matrix factorization framework in order to pool information across 
cells and genes. As we will discuss later in the model, we estimate µ(s)

j  by averaging 
the estimated µji ’s (after taking its posterior distribution to account for model mis-
specification, see (14)). We believe it is important to rely on the posterior distribution 
especially for cohort-wide differential expression testing since single-cell sequencing 
data is quite sparse, so it’s important to have a data-driven procedure to adjust our 
estimated values of µji that balances how sparsely sequenced (or said differently, how 
much “information”) gene j is and how large the covariate-adjusted sequencing depth 
of cell i is.

• Covariate effects, sparsity, and overdispersion: Within this perspective of the 
model, all the confounding covariate effects is modeled through the covariate-
adjusted sequencing depth ℓji in (3), which eSVD-DE tries to model appropriately by 
pooling information across cells and genes. Additionally, we lose power to test for (6) 
as sparsity increases, which is parameterized by the overdispersion parameter γj.

Implementation and details of eSVD‑DE

Initialization

The initialization broadly falls into three steps: (1) initializing the estimate of the coef-
ficients Ẑ ∈ R

p×r , (2) initializing the estimate of the embeddings for the cells X̂ ∈ R
n×k 

and for the genes Ŷ ∈ R
p×k , and 3) reparameterizing our estimates X̂ , Ŷ  and Ẑ . We 

describe each step below.
First, to initialize our estimate Ẑ , we fit a Poisson regression with a ridge penalty sepa-

rately for each cell i. This regresses the covariates C onto A·,i , the observed gene counts 
for cell i. Specifically, for a small penalty τ > 0 , we initialize the jth row of Ẑ as
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where z−1 = (z2, . . . , zr) ∈ R
r−1 . The ridge penalty omits z1 because, by definition, C·,1 is 

the all-one vector that represents the intercept. Typically, we set τ = 0.01 , a small non-
negative value to mitigate multicollinearity issues, similar to other works such as [12].

Second, we initialize our estimates X̂ and Ŷ  . Consider the matrix,

where log(·) of a matrix denotes taking the natural logarithm of each matrix entry. Con-
sider the SVD of R,

where U ∈ R
p×k and V ∈ R

n×k are column-wise orthonormal matrices, and D is a diag-
onal non-negative matrix with decreasing values along the diagonal. We then initialize 
our estimates of X̂ and Ŷ  as

where 
√· of a diagonal non-negative matrix denotes taking the square root of all its diag-

onal entries. This initialization of X̂ and Ŷ  is motivated by the observation that if we 
model Aji as a Poisson random variable, then log(Aji + 1) is a crude approximation of the 
natural parameter µji , and (Ẑj,·)⊤Ci,· would be an initial estimate of the covariate effect 
on µji.

This step is collectively handled by eSVD2::initialize_esvd in our codebase. It 
relies on the glmnet::glmnet function to fit the Poisson ridge regression.

Optimization of the embeddings

The iterative optimization of the embedding broadly falls into two steps to estimate the 
latent factors of the mean matrix µ defined in (2): (1) updating the estimates of X̂ , Ŷ  , and 
Ẑ , holding the initialized values of Ẑ·,(cc) fixed, and then (2) updating the estimates of X̂ , 
Ŷ  , and Ẑ , allowing the values in Ẑ·,(cc) to be updated. This step takes inspiration from 
methods such as GLM-PCA [12], ZINB-WaVE [13], and our previous work [18]. We first 
describe the details of the procedure, followed by its justification.

For a tuning parameter τ > 0 , we seek to optimize the following objective function

Let us define the natural parameter,

Then, here, log P(Aji | Xi,·,Yj,·,Ci,·,Zj,·) denotes the log-likelihood for a Poisson random 
variable,

Ẑj,· = argmin
z∈Rr

−
[

n
∑

i=1

Aji ·
(

z⊤Ci,·
)

− exp
(

z⊤Ci,·
)

]

+ τ · �z−1�22, for j ∈ {1, . . . , p},

R = log(A+ 1)− Ẑ⊤C ∈ R
p×n,

R = UDV⊤,

X̂ = V
√
D ∈ R

n×k , and Ŷ = U
√
D ∈ R

p×k ,

(9)

{

X̂ , Ŷ , Ẑ
}

= argmin
X ,Y ,Z

[

− 1

np

[

∑

ij

log P
(

Aji | Xi,·,Yj,·,Ci,·,Zj,·
)

]

+ τ ·
[

�X�2F + �Y �2F + �Z�2F
]

.

θji = (Yj,·)
⊤Xi,· + (Zj,·)

⊤Ci,·, for all i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.
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The objective function in (9) is a non-convex, as documented in [18]. This poses chal-
lenging optimization considerations. Hence, we first describe an alternating minimiza-
tion strategy that improves upon previous work computationally. Then, we describe the 
aforementioned two-step approach.

Our alternating minimization consists of the following steps, starting on an ini-
tial estimation of X̂ (0) = X̂  , Ŷ (0) = Ŷ  , and Ẑ(0) = Ẑ . This strategy is motivated by the 
observation that holding Y and Z fixed, the optimization in (9) over X is convex, and 
vice-versa. Let t denote the iteration counter.

• Optimize the cell embedding, 

• Optimize the gene embedding and coefficients 

We repeat until convergence and then perform a reparameterization (described in the 
next section).

The optimizations (10) and (11) are performed using a Newton optimization, which 
is a second-order method. This specific optimization framework is ideal for solving 
(10) and (11) for a few reasons: 

1. Parallelization into many low‑dimension optimizations: Both optimizations (10) 
and (11) decompose into n and p smaller optimization problems respectively. For 
example, the ith row of X̂ (t+1) is equivalently solved by the optimization 

 Hence, solving (10) and (11) amounts to a solving n different K-dimensional or p 
different (K + r)-dimensional optimizations respectively. Since we are in a setting 
where max(K , r) ≪ min(n, p) , it is beneficial to use a second-order method since the 
Hessian information can yield faster convergence rates in terms of the number of 
iterations needed to solve optimizations like (12), and there is not a large computa-
tional overhead to compute the Hessians to solve (12) (especially when P is the Pois-
son distribution, where the Hessians are straight-forward to derive and compute).

2. No randomness in the optimization: Since (10) and (11) decompose into n and p 
smaller optimization problems respectively, these optimizations can be embar-
rassingly parallelized. Hence, there is no need to consider stochastic optimization 
schemes. This is appealing as this means different practitioners using our method 
would necessarily obtain the same resulting fit.

log P
(

Aji | Xi,·,Yj,·,Ci,·,Zj,·
)

= Aji · θji − exp
(

θji
)

.

(10)

X̂ (t+1) = argmin
X

[

− 1

np

[

∑

ij

log P
(

Aji | Xi,·, Ŷ
(t)
j,· ,Ci,·, Ẑ

(t)
j,·
)

]

+ τ ·
[

�X�2F
]

.

(11)

{

Ŷ (t+1), Ẑ(t+1)
}

= argmin
Y ,Z

[

− 1

np

[

∑

ij

log P
(

Aji | X̂ (t+1)
i,· ,Yj,·,Ci,·,Zj,·

)

]

+ τ ·
[

�Y �2F + �Z�2F
]

.

(12)argmin
x∈RK

[

− 1

np

p
∑

j=1

log P
(

Aji | x, Ŷ (t)
j,· ,Ci,·, Ẑ

(t)
j,·
)

]

+ τ · �x�22.
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3. Generalization to other exponential families: While we focus on specifically solv-
ing (10) and (11) for the Poisson distribution, using a Newton optimization is ideal 
for other exponential-family distributions as well. This is because while other expo-
nential-family distributions like the exponential and Negative Binomial have con-
straints on the natural parameters θij , the gradient and Hessians of these log-likeli-
hoods naturally prevent the optimization iterates from violating these constraints. 
Hence, our codebase can handle modeling situations beyond this paper’s scope.

Our optimization procedure is then the following. First, starting from the current esti-
mates of X̂ , Ŷ  , and Ẑ in the previous step (“Initialization”). we updating the estimates 
of X̂ , Ŷ  , and Ẑ via alternating minimization holding the initialized values of Ẑ·,(cc) fixed 
(what we’ll call the “Phase one optimization”). After convergence, we then perform a 
second round of alternating minimization to update the estimates of X̂ , Ŷ  , and Ẑ , allow-
ing the values in Ẑ·,(cc) to be updated (what we’ll call the “Phase two optimization”). 
(Here, we omit the superscript “(t)” for notational simplicity.) We do these two phases 
of optimization since empirically, we have observed more stable behavior and a better 
final objective value doing two rounds of optimization (compared to optimizing all of X, 
Y, and Z, including Z·,(cc) from the start). This becomes imperative since Z·,(cc) will play 
a more pronounced role in the remainder of eSVD-DE compared to all the other covari-
ates in Z, because is it part of the “signal” that we wish to estimate and is not a “con-
founder.” This is inspired by theoretical results regarding warm-starting the non-convex 
optimization [55, 56]. This step is collectively handled by eSVD2::opt_esvd in our 
codebase.

Reparameterizing the matrix factorization

After completing either of the two phases mentioned above, we apply the following 
reparameterization procedure. The goal of this reparameterization is to ensure identifi-
ability since, a priori, there could be multiple estimates {X̂ , Ŷ , Ẑ} that have the same pre-
dictive power but offer different interpretations of the data. For instance, without such 
a reparameterization, there could be many columns in X̂ that are correlated with other 
columns in X̂ or columns in the covariate matrix C, which would obfuscate interpreting 
different axes of variation. Hence, our reparameterization procedure ensures orthogo-
nality among our estimated matrix factorization to resolve this identifiability concern.

When describing our reparameterization procedure, for notational simplicity, we let 
{X̂ , Ŷ , Ẑ} denote {X̂ (T ), Ŷ (T ), Ẑ(T )} , which is the final estimate after T iterations for either 
the Phase one or two optimizations. We also let the “ a ← b ” notation denote setting the 
variable a to be the value in variable b.

The reparameterization procedure operates in two steps. The first step ensures that X̂ 
is orthogonal to C (which would result in adjusting X̂ and Ẑ ). This ensures that X̂ cap-
tures variability that is not explained by C. The second step ensures that both X̂ and Ŷ  
have orthogonal columns (which would result in adjusting X̂ and Ŷ  ). This ensures that 
each respective latent dimension in both X̂ and Ŷ  are identifiable.
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• Step 1: We first perform a regression of each latent dimension of X̂ onto C. That is, 
for each latent dimension d ∈ {1, . . . , k} , 

 where β ∈ R
r and ǫ ∈ R

n are the temporary variables to denote the coefficients for 
the covariates and residuals respectively. For this latent dimension d, we then per-
form the following update for each gene j ∈ {1, . . . , p} , 

 It can be seen that after performing this update for every latent dimension 
d ∈ {1, . . . , k} , X̂ is orthogonal to C (i.e., X̂⊤C = 0 ) even though the predictive 
power of our factorization (i.e., Ŷ⊤X̂ + Ẑ⊤C ) did not change.

• Step 2: We next perform a linear transformation on X̂ and Ŷ  . Specifically, using the 
details in [18], let R = Ŷ⊤X̂ ∈ R

p×n , with an SVD of R = UDV⊤ . Then, 

 It can be seen that after performing this update that both X̂⊤X̂/n and Ŷ⊤Ŷ /p are 
diagonal matrices and are equal even though the predictive power of our factoriza-
tion (i.e., Ŷ⊤X̂ + Ẑ⊤C ) did not change. This ensures identifability of X̂ and Ŷ .

Estimating overdispersion parameter

We estimate the overdispersion parameter γ1, . . . , γp > 0 , one for each gene. Following 
our model of the covariate-adjusted sequencing depth (3), we estimate the covariate-
adjusted sequencing depth of each cell as

Likewise, the estimate of the mean parameter is

Then, using a plug-in estimate of the maximum likelihood of the model in (1), we can 
derive that the estimate of γj is

where Ŵ(·) is the Gamma function. We estimate this via Newton’s method, and this step 
is primarily handled by eSVD2::estimate_nuisance in our codebase.

Computing the posterior distribution

To account for possible model misspecification, we estimate the posterior distribution 
of the mean and variance of each gene j’s expression in cell i. This is based on the model 

X̂·,d = C⊤β + ǫ,

Ẑj,· ← Ẑj,· + β · Ŷj,d , and X̂·,d ← ǫ.

X̂ ←
(n

p

)1/4
V
√
D, and Ŷ ←

(p

n

)1/4
U
√
D.

(13)ℓ̂ji = exp
(

(Ẑj,-(cc))
⊤Ci,-(cc)

)

, for all i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.

µ̂ji = exp
(

(Ŷj,·)
⊤X̂i,· + Ẑj,(cc) · Ci,(cc)

)

.

γ̂j = max
γ

n
∑

i=1

Aji log ℓ̂i + µ̂jiγ log γ − log Ŵ(γ µ̂ji)+ log Ŵ(Aji + γ µ̂ji)

− (Aji + γ µ̂ji) log(ℓ̂i + γ ),
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in (1), where we can leverage the fact that �ji conditioned on Aji follows a Negative Bino-
mial distribution. Specifically, based on the posterior distribution derived in (4), we 
compute

where µ̂(post)
ji  and v̂(post)ji  is the posterior mean and variance of �ji|Aji for gene j in cell i 

respectively. Other work have used similar modeling based on the posterior distribution 
for single-cell RNA-seq data [23], but not for the purposes of DE testing. This step is pri-
marily handled by eSVD2::compute_posterior in our codebase.

Computing the test statistic

In this step, we compute the test statistic, accounting that multiple cells originate from a 
particular individual. This broadly falls into two steps: (1) computing the mean and vari-
ance for a gene among an individual, and (2) computing the test statistic among all the 
case and control individuals.

With the posterior distribution in (14), we can compute the expected posterior mean 
and variance for a particular gene j in individual s. First, we aggregate among the cells 
for each individual. We assume that after averaging among all the cells from an individ-
ual, the resulting distribution can be reasonably approximated by a Gaussian with mean 
µ̂
(s)
j  and variance v̂(s)j  . Hence, let I(s) ⊂ {1, . . . , n} denote the set of cells originating from 

individual s. Then, via large-sample average,

where µ̂js and v̂js is the posterior mean and variance for gene j among all the cells in indi-
vidual s respectively.

Next, we aggregate among individuals. Specifically, among all the case individuals, we 
can think of the expression of gene j as a Gaussian mixture among the individuals. Let 
A denote the set of case individuals. We then summarize the Gaussian mixture with one 
Gaussian,

We do an analogous calculation among controls, letting B denote all the control 
individuals.

Lastly, we do a two-sample T-test with unequal variances, treating the distribution 
among cases as a Gaussian with mean µ̂(case)

j  and variance v̂(case)j  and the distribution 
among controls as an analogous Gaussian. Our test statistic for gene j is

(14)µ̂
(post)
ji = µ̂ji/γ̂j + Aji

1/γ̂j + ℓ̂ji
, and v̂

(post)
ji = µ̂ji/γ̂j + Aji

(1/γ̂j + ℓ̂ji)2
,

µ̂
(s)
j =

∑

i∈I(s) µ̂
(post)
ji

|I(s)| , and v̂
(s)
j =

∑

i∈I(s) v̂
(post)
ji

|I(s)| ,

µ̂
(case)
j =

∑

s∈A µ̂
(s)
j

|A| , and v̂
(case)
j =

∑

s∈A v̂
(s)
j

|A| +
∑

s∈A(µ̂
(s)
j )2

|A| −
(

∑

s∈A µ̂
(s)
j

|A|
)2

.

(15)T̂j =
µ̂
(case)
j − µ̂

(control)
j

√

1
|A| · v̂

(case)
j + 1

|B| · v̂
(control)
j

.
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In our codebase, this step is primarily handled by eSVD2::compute_test_statis-
tic.

Performing multiple testing correction

We use the multiple testing procedure based on the empirical null developed in [57] to 
handle the multiple testing corrections. This framework is also used in other methods 
designed to test for differential expression from scRNA-seq data (albeit not from cohort 
data), such as iDEA [58] and SifiNet [59]. We know that biologically, most genes are not 
directly related to the disease or disorder at the human population level; hence, most 
genes should be deemed insignificant. The empirical null, where the appropriate null 
distribution is learned from the data, is a suitable framework to ensure this behavior.

Briefly, we first estimate the degree-of-freedom of each gene j ∈ {1, . . . , p} (used for 
T-tests for unequal variances) by

and convert all the test statistics T̂j ’s into a Z-score via,

where Fb(a) is the CDF of the a t-distribution with degree freedom b > 0 evaluated at a, 
and �−1(a) is the quantile function of a standard Gaussian evaluated at a ∈ (0, 1).

To identify the DE genes, we use the locfdr::locfdr function to estimate the 
empirical null distribution’s mean and standard deviation. We then compute the 
p-value of each gene based on the (two-sided) tail area of a Gaussian distribution with 
that empirical null’s mean and standard deviation. We can compute the negative log10 
p-value for visualization purposes in a volcano plot (as in Figs.  3 and 4). To perform 
multiple testing corrections, we apply stats::p.adjust on these p-values via Benja-
mini-Hochberg. All the genes with an empirical FDR of less than 0.05 are then deemed 
to be DE genes.

This step is collectively handled by eSVD2::compute_df, eSVD2::compute_
test_statistic, and eSVD2::compute_pvalue in our codebase.

Information about data preprocessing

We describe the high-level ideas on what is needed for our preprocessing of the data 
prior to using the eSVD-DE. Importantly, we need to: (1) select the cells specific for 
our analysis, and (2) select the genes of interest for our analysis. For all the datasets 
in our analysis, the cell type labels were already provided by the author, and we used 
Seurat::FindVariableFeatures to select most of the genes in our analysis. 
(We also included housekeeping genes and genes previously reported to be differen-
tially expressed by the authors as well.) No preprocessing of the count data is needed as 
eSVD-DE models the raw count data directly, using the observed sequencing depth and 

d̂fj =

(

1
|A| · v̂

(case)
j + 1

|B| · v̂
(control)
j

)2

(

1
|A| · v̂

(case)
j

)2
/(|A| − 1)+

(

1
|B| · v̂

(control)
j

)2
/(|B| − 1)

,

Ẑj = �−1
(

F
d̂fj

(

T̂j

)

)

,
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covariates of the individuals. We more thoroughly detail these steps in the Appendix 
(Section E) and include details on which covariates were included in all our analyses as 
well as the parameters used for eSVD-DE.
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