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Background
RNA sequencing is a ubiquitous tool in molecular biology [1, 2]. The technology can 
detect gene transcription and quantify RNA abundance [2, 3]. Paired short reads, as 
generated by Illumina sequencing machines, constitute the vast majority of RNA-seq 
in public databases [1], and several software tools specialize in mapping short reads to 
references. Mappers such as Salmon [4] and Kallisto [5] use alignment-free algorithms, 
while mappers such as Bowtie2 [6, 7] and STAR [8, 9] are alignment-based. A com-
parison of these two approaches found that alignment-free methods are faster, and are 
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equally accurate on simulated data, but fail to achieve the accuracy of alignment-based 
methods for quantification of human RNA-seq [10]. Various short-read aligners have 
been tested and compared for many applications [11–17]. Aligners such as HiSat2 [18, 
19] and STAR [8, 9] specialize in mapping RNA-seq to genome sequences, a task that 
requires virtual splicing of read sequences into exons and generation of alignments that 
skip over introns in the reference.

Differential expression analysis (DEA) is the statistical and comparative analysis of 
RNA-seq quantities between environmental conditions, organisms, tissues, or other 
factors [3, 20, 21]. As a special case, DEA is used to detect imbalanced transcription 
of the maternal and paternal alleles in a diploid genome. The imbalance phenomenon 
is called allele-specific expression (ASE) [22]. Possible epigenetic mechanisms include 
genomic imprinting by DNA methylation or chromatin modification [23]. ASE has 
been associated with cancer and other human diseases [22]. ASE may be of evolution-
ary importance, as it is seen in interspecies hybrids of animals and plants [24]. ASE has 
been detected in the Neanderthal genes inherited by some modern humans [25]. ASE 
has been documented in seeds of plant hybrids, including hybrids of model organisms 
[26] as well as important crops [27]. MetaImprint [28], the Plant Imprinting Database 
[29], and ASMdb [30] are examples of databases of imprinted genes.

When using RNA-seq for ASE detection, a critical step is the computational associa-
tion of each RNA sequence with its putative source allele. At least three basic approaches 
have been used to accomplish this. (1) A first approach aligns reads to a concatenation 
of two parental references, trusting the aligner to choose the better target. This was done 
in a study of crosses involving three species of the flowering plant Arabidopsis, A. thali-
ana, A. lyrata, and A. halleri [31]. In this case, references were available for only two of 
the three species, but a reference transcriptome for the third species was generated ad 
hoc by applying the Trinity [32] assembler to RNA-seq from that species. (2) A second 
approach aligns each read pair to each parental reference separately, then compares the 
quality of both alignments. This was used in two studies of crosses between ecotypes 
of Arabidopsis thaliana [26, 33]. In these studies, each parent’s transcriptome reference 
was computed by aligning its RNA-seq reads to a common reference, then customiz-
ing that reference with consensus polishing software [34]. (3) A third approach aligns 
reads to a single reference to bin them by gene, and then analyzes the reads for known 
single-nucleotide polymorphisms (SNPs) between the parental alleles of each gene. This 
approach has been used in many studies including studies of Arabidopsis thaliana [35, 
36] and Mus musculus [37] intra-species crosses, and of the mule interspecies hybrid 
[38, 39]. This general approach has also been implemented in software [40, 41].

Machine learning has been used to generate pairwise sequence alignments [42, 43]. 
To our knowledge, it has not been used to post-process the output of standard sequence 
aligners.

We propose a machine learning approach to binning RNA-seq reads for the pur-
pose of ASE detection in interspecies hybrid crosses. Our approach is inspired by trio 
binning, a technique that assigns DNA reads to either parental haplotype before com-
puting a haplotype-resolved genome assembly of their cross [44]. We train a binary 
classifier to assign each RNA-seq read pair to its correct parent by analyzing fea-
tures of its alignments to both parental references. Once trained, the classifier could 
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be deployed on RNA-seq from the hybrid cross to assist ASE detection. Given the 
alignment of one read pair to both parental references, the classifier would choose the 
more likely parental alignment, which would indicate the most likely allele and gene 
of origin. Our results indicate that using a combination of an aligner plus machine 
learning is more accurate than using an aligner by itself. The resulting boost in parent-
of-origin classification accuracy offers potential to boost the quality of ASE detection.

Results
We developed the process illustrated in Fig.  1. The training pipeline uses RNA-seq 
read pairs from both parents, as well as a reference genome or transcriptome from 
each parent. Every read pair is aligned to both parental references. Features are 
extracted from the alignments by a Python script that parses the aligner output. A 
machine-learning model is trained to predict the parent-of-origin per read pair based 
on the alignment features. The prediction pipeline applies a similar process to read 
pairs from the hybrid offspring. In this case, the unknown parent-of-origin per read 
pair must be predicted. To assess model accuracy in hybrids, we simulated hybrid 
data by combining real RNA-seq data from both parents in equal quantities. Possible 
limitations of the simulation are addressed in Discussion.

Fig. 1  Process for classifying RNA-seq by machine learning. For training the model, read pairs are obtained 
from parents P1 and P2. Each read pair is aligned to the P1 and P2 references separately. A filter removes 
all but the primary alignment per read pair. The process can use transcriptomes or genomes as references, 
and any suitable aligner. For read pairs that align to both P1 and P2, features are extracted and given to the 
machine learning model. Initially, the model is given the true parent label per read pair and trained to predict 
this. After training, read pairs from the hybrid cross are given instead. In this illustration, after a hybrid read 
pair (green) is aligned to the P1 (blue) and P2 (yellow) references, the trained model (red) chooses P2 as the 
more likely source. For most of this study, the model was a random forest binary classifier. Read pairs classified 
by this process could be binned by gene and quantified to detect allele-specific gene expression in the 
hybrid
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We searched INSDC databases [45] for any two organisms each having (1) a refer-
ence genome assembly, and (2) a reference transcriptome assembly, and (3) at least one 
RNA-seq dataset. We filtered for organisms that are known to hybridize and belong to 
the same genus. We filtered further for organisms having RNA-seq datasets that were 
comparable by read length and sample collection methods. In some cases, after low map 
rates were seen, different RNA-seq data was sought out. The search yielded data for: (1) 
two species of the flowering plant genus Arabidopsis; (2) two species of the cultivated 
plant genus Brassica; (3) two strains of the mouse species Mus musculus; and (4) two 
species of the equine genus Equus.

We selected mapping software packages based on the software’s ability to generate 
SAM/BAM files [46] that include the required and optional fields required for our align-
ment feature extraction process. For mapping to reference transcripts, we selected the 
aligners Bowtie2 [6, 7] and STAR [8, 9], and configured STAR for mapping to RNA refer-
ences lacking introns. For mapping to reference genomes, we selected HiSat2 [18, 19], 
which incorporates Bowtie2, and STAR using STAR’s default configuration for mapping 
to DNA containing introns. Results from the bwa mem [47] aligner and the Salmon [4] 
mapper were summarized but not used for machine learning because their outputs did 
not fully satisfy the requirements of our feature extraction process.

We filtered alignments to require the reads map as a proper pair, to retain only the pri-
mary alignment per pair, and to have non-zero map quality score, i.e. mapq >  = 1. More 
stringent mapq filters would have eliminated large quantities of multiply mapped reads, 
which are integral to our process. Analysis of alignments to transcriptomes showed that 
a mapq >  = 40 filter eliminates many reads having an alignment that achieved the maxi-
mum alignment score (Additional file  2: Table  S14) and all alignments to many tran-
scripts (Additional file 2: Table S15).

For each genus, RNA-seq read pairs from two parental organisms were combined 
in equal quantities. The 50:50 ratio was chosen based on our assumption that parental 
expression in real hybrid data is about even for most genes, and to discourage models 
from incorporating priors i.e. favoring predictions of the majority class. The 50:50 com-
bination represents a simple model of real hybrid RNA-seq lacking any ASE, overlooking 
complicating factors such as differential isoform abundances between parental alleles.

Read pairs were mapped to both parental references, using either both transcriptomes 
or both genomes as references. For machine-learning approaches, fifty-three features 
were selected to represent the pairwise sequence alignment generated by one aligner of 
one RNA-seq read pair to two parental references, where both references were either 
transcriptomes or genomes. The features are listed in Table 1. A portion of the read pair 
were used to train a random forest model [48]. A separate portion of the read pairs were 
used to quantify the predictive performance of the trained model.

After an aligner, such as Bowtie2, aligned an RNA-seq read pair to both parental ref-
erences, the primary alignment per reference was selected based on flags in the aligner 
output. Then, 53 features were extracted for machine learning. A) These 10 features, 
taken directly from the aligner output, describe the alignment of one read to one refer-
ence. Four sets of 10 features were extracted to represent reads R1 and R2 aligned to 
references of parents P1 and P2. B) These features combine and compare the features 
in part A. C) This compares the lengths of the read pair’s projection onto each parental 
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reference. D) This compares the overall alignment scores, generated by the aligner, of the 
read pair to each parental reference.

For comparisons, mappers were also used without machine learning to predict parent-
of-origin. One comparison ran each mapper against both parental references together 
and extracted parent-of-origin from the mapper’s primary alignment choice. A second 
comparison ran each mapper against both parental references separately and decided 
parent-of-origin (or a tie) from the higher alignment score. A third possibility, relying 
only on reads that aligned to one parent only, was found to be ineffective (Additional 
file 2: Table S13) and was not used.

Results with genus Arabidopsis

This experiment used public data from A. lyrata and A. halleri, two species of the 
flowering plant genus Arabidopsis. The transcriptome results are characterized in 
Table 2. As shown in column A, we achieved 73% accuracy by running Bowtie2 on the 
concatenation of parental references. As shown in column B, we achieved 81% accu-
racy by running Bowtie2 twice, once on each parent reference, then choosing the one 
alignment having the higher alignment score. As shown in column C, we achieved 
95% accuracy by applying the random forest post-process to the alignment generated 
for column B. Out of these three approaches, the random forest achieved the highest 

Table 1  Alignment features used for machine learning

Feature type Extraction Technical notes

(A) Per read alignment
AS: Alignment Score
ED: Edit Distance
MM: Mismatch count
HQMM: HQ mismatch count
GO: Gap Open count
GE: Gap Extend count
INS: Insertion count
HQINS: HQ insertion count
DELS: Deletion count
HQDEL: HQ deletion count

Taken from:
● P1 R1,
● P1 R2,
● P2 R1,
● P2 R2
10 feature types,
40 features total

High-quality (HQ) means that the base call 
quality score is the maximal value. The HQ 
requirement was applied to the one base 
involved in a mismatch or insertion, and 
to the two surrounding bases for deletion. 
INS or DEL refer to an extra or missing base 
in the read, respectively. GO is the number 
of separate indels, and GE is the number of 
bases in indels

(B) Compare totals per parent
AS diff
ED diff
MM diff
HQMM diff
GO diff
GE diff
INS diff
DELS diff
HQINS diff
HQDEL diff
MAT diff

Subtract
(P1 R1 + P1 R2)
from
(P2 R1 + P2 R2)

Each difference represents the sum over the 
read pair alignments to parent 2 minus the 
equivalent sum for parent 1
MAT is the matched base count. See A) for 
other feature types

(C) Compare spans per parent
Span diff Subtract P1 span from P2 span Span is the length of the read pair alignment 

along the reference

(D) The better alignment score
Parent choice Compare P1 to P2 Use -1 or + 1 to indicate whether P1 or P2 

had the greater alignment score, respectively, 
or 0 if tied
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performance by all measures including accuracy, F1-score, and MCC. Columns D, 
E, and F show the same experiment repeated using the STAR aligner configured for 
transcript alignments. Again, the highest performance was achieved with random for-
est. Column G characterizes the performance of the alignment-free software called 
Salmon, and column H characterizes the bwa mem software, whose output lacked a 
feature required for our machine learning. The model performance in this table and 
subsequent tables was measured on a set of read pair alignments reserved for testing 
and withheld from training. Five-fold cross-validation results on the training sets pre-
dicted similar results with low variance; see supplement S2-B.

To evaluate alternate machine learning architectures, the Bowtie2 experiment was 
repeated with three other architectures: a gradient boosting classifier, a support vec-
tor machine, and a multi-layer perceptron. The results (Additional file 1: Table S1) did 
not exceed those of Table 2. To evaluate whether more trees would help the random 
forest, the experiment was repeated after increasing the number of trees within the 
random forest. The results (Additional file 1: Table S2) did not exceed those of Table 2. 
Therefore, the default random forest model was used for the remaining experiments.

Whereas Table 2 showed results with the transcriptome references, Table 3 shows 
the results using the genome references and splice-aware alignments. The highest 
performance, as measured by accuracy, F1, or MCC, was achieved with the machine-
learning post-process (columns C and F). The overall highest accuracy on Arabidop-
sis data was achieved with HiSat2 plus random forest, and in this case, the accuracy 
climbed from 73% with the aligner alone to 95% with machine learning.

Mild class imbalance is seen in Table  2. For example, in column C, sensitiv-
ity < specificity and precision > recall. (Recall and sensitivity are the same in binary 
classification). Also, the positive-preference statistics show less than 50% of read 
pairs assigned to the positive class, though the sample contained 50% from each class. 
These statistics reveal a bias for choosing the negative class (A. lyrata) and a tendency 

Table 2  Classification Performance with Reference Transcripts of genus Arabidopsis 

Performance metrics for parent-of-origin classification in Arabidopsis. In all seven approaches, RNA-seq read pairs were 
assigned to either of two reference transcriptomes. Whether used with Bowtie2 or STAR, the random forest method 
demonstrated superior performance. For the sake of directional statistics like sensitivity, species A. lyrata and A. halleri were 
designated as the negative and positive classes, respectively. (A) Parent chosen by the Bowtie2 aligner. (B) Parent chosen by 
comparing Bowtie2 alignment scores. (C) Parent chosen by the random forest classifier using Bowtie2 alignment features. 
(D, E, F) Similar to columns A, B, C, but using the STAR aligner, configured to avoid splicing. (G, H) Parent chosen by Salmon 
or bwa, respectively

Arabidopsis RNA A
Bowtie2

B
Bo_AS

C
Bo_RF

D
STAR​

E
St_AS

F
St_RF

G
Salmon

H
bwa

Accuracy 72.7% 81.0% 95.0% 73.0% 80.9% 88.5% 70.8% 75.2%

Sensitivity 56.9% 70.7% 90.6% 56.0% 69.9% 87.2% 48.1% 60.9%

Specificity 88.5% 91.3% 99.5% 90.0% 91.9% 89.9% 93.5% 89.0%

Precision 83.2% 89.1% 99.4% 84.9% 89.6% 89.6% 88.0% 84.7%

F1-score 67.5% 78.8% 94.8% 67.5% 78.5% 88.3% 62.2% 70.9%

MCC 0.478 0.634 0.904 0.489 0.633 0.770 0.466 0.521

AUPRC – – 99.5% – – 96.5% – –

AUROC – – 99.4% – – 96.2% – –

Pos Pref 34.2% 39.7% 45.6% 33.0% 39.0% 48.6% 27.3% 36.0%

Ties – 14.0% – – 14.7% – – –
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to mistakenly assign A. halleri read pairs to the A. lyrata parent. Investigation showed 
the mistakes were non-random, with a few transcripts attracting large portions of the 
mistaken alignments. Class bias is seen again in Table  3. In both tables, the devia-
tion from 50% was reduced in the machine learning predictions, compared to that 
of the aligners. Possible causes and mitigations for the bias will be addressed in the 
“Discussion”.

To test whether the trained models could generalize to parts of the references it had 
not seen, a model was trained and evaluated on different parts of the references. This 
experiment used HiSat2 alignments and Arabidopsis genomes. Alignments to chro-
mosomes 6, 7, and 8, comprising approximately 20% of alignments, were withheld 
from training and used only for testing. The resulting performance statistics (Addi-
tional file  2: Table  S9) were comparable to those in Table  3, column C. This result 
indicates that the models were not overfitting particular alignments.

Results with genus Brassica

This experiment used public data from B. oleracea and B. rapa, two species in genus 
Brassica which includes many cabbage-like cultivars consumed by humans. The tran-
scriptome and genome results are characterized in Table 4 and 5 respectively. Com-
pared to the aligners, the trained models showed comparable or better accuracy, F1, 
and MCC values.

The model did not boost the results of STAR on Brassica DNA. The overall high-
est accuracy with Brassica was achieved with HiSat2 plus random forest, and in this 
case, the accuracy rose from 93% with the aligner alone to 95% with machine learn-
ing. Each mapping software package showed better performance with the Brassica 
data (Tables 4 and 5), than with the Arabidopsis data (Tables 2 and 3) and the gains 
by machine learning were smaller. A possible factor is the smaller numbers of align-
ment score ties in Brassica (3%-5%) than in Arabidopsis (13%-15%). It may be that the 

Table 3  Classification Performance with Reference Genomes of genus Arabidopsis 

Performance metrics for parent-of-origin classification in Arabidopsis. In all six approaches, RNA-seq read pairs were 
assigned to either of two reference genomes. Whether used with HiSat2 or STAR, the random forest led to superior accuracy, 
F1, and MCC. For the sake of directional statistics like sensitivity, species A. lyrata and A. halleri were designated as the 
negative and positive classes, respectively. (A) Parent chosen by the HiSat2 aligner. (B) Parent chosen by comparing HiSat2 
alignment scores. (C) Parent chosen by the random forest classifier using HiSat2 alignment features. (D, E, F) Similar to 
columns A, B, and C but using the STAR aligner, configured for splicing. (G) Parent chosen by bwa

Arabidopsis DNA A
HiSat2

B
Hi_AS

C
Hi_RF

D
STAR​

E
St_AS

F
St_RF

G
bwa

Accuracy 73.3% 82.8% 94.5% 72.9% 81.4% 88.6% 76.4%

Sensitivity 50.1% 72.1% 91.2% 49.6% 69.9% 87.6% 56.1%

Specificity 96.4% 93.5% 98.3% 96.2% 93.0% 89.7% 96.7%

Precision 93.4% 91.7% 98.1% 92.9% 90.9% 89.5% 94.4%

F1-score 65.2% 80.7% 94.5% 64.6% 79.0% 88.5% 70.4%

MCC 0.525 0.671 0.897 0.518 0.646 0.773 0.578

AUPRC – – 99.3% – – 96.5% –

AUROC – – 99.2% – – 96.2% –

Pos Pref 26.8% 39.3% 46.5% 26.7% 38.4% 48.9% 29.7%

Ties – 13.3% – – 14.7% – –
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random forest has the most effect when the aligners generate many equally good (or 
equally bad) alignments between the two parental references.

Mild class imbalance is seen in the Brassica results, though the positive preference was 
closer to 50% than in Arabidopsis. The alignment-based methods (columns A, B, D, and 
E) showed the most imbalance between sensitivity and specificity, and these imbalances 
were reduced by the machine-learning post-process (columns C and F).

Results with genus Mus

This experiment used public data from Mus musculus, the mouse species that serves as 
a model organism for mammalian genetics. The B6 and D2 strains are inbred labora-
tory strains of the same species. Parent-of-origin classification accuracy was low, barely 

Table 4  Classification Performance with Reference Transcripts of genus Brassica 

Performance metrics for transcript-based parent-of-origin classification in Brassica. Whether used with Bowtie2 or STAR, the 
random forest improved the accuracy, F1, and MCC. For directional statistics, species B. rapa and B. oleracea were considered 
the negative and positive classes, respectively. (A, B, C) Using the Bowtie2 aligner, a parent was chosen by the aligner, or by 
comparing alignment scores, or by the random forest, respectively. (D, E, F) Similar to A, B, and C but using the STAR aligner, 
configured to avoid splicing. (G, H) Parent chosen by Salmon or bwa, respectively

Brassica RNA A
Bowtie2

B
Bo_AS

C
Bo_RF

D
STAR​

E
St_AS

F
St_RF

G
Salmon

H
bwa

Accuracy 89.3% 92.1% 93.9% 91.8% 92.2% 93.8% 89.4% 89.6%

Sensitivity 92.8% 94.7% 92.8% 94.3% 94.6% 93.7% 89.3% 92.9%

Specificity 85.9% 89.5% 94.9% 89.2% 89.8% 93.9% 89.6% 86.3%

Precision 86.8% 90.1% 94.8% 89.7% 90.3% 93.9% 89.6% 87.1%

F1-score 89.7% 92.3% 93.8% 92.0% 92.4% 93.8% 89.4% 89.9%

MCC 0.789 0.844 0.877 0.836 0.846 0.876 0.788 0.793

AUPRC – – – – – 98.4% – –

AUROC – – 98.4% – – 98.4% – –

Pos Pref 53.4% 52.6% 49.0% 52.6% 52.4% 49.9% 49.8% 53.3%

Ties – 3.3% – – 5.0% – – –

Table 5  Classification Performance with Reference Genomes of genus Brassica 

Performance metrics for genome-based parent-of-origin classification in Brassica. Whether used with HiSat2 or STAR, the 
random forest improved the accuracy, F1, and MCC. For directional statistics, species B. rapa and B. oleracea were considered 
the negative and positive classes, respectively. (A, B, C) Parent chosen by the HiSat2 aligner, or by comparing HiSat2 
alignment scores, or by the random forest using HiSat2 alignment features, respectively. (D, E, F) Similar to columns A, B, and 
C but using the STAR aligner, configured for splicing. (G) Parent chosen by bwa

Brassica DNA A
HiSat2

B
Hi_AS

C
Hi_RF

D
STAR​

E
St_AS

F
St_RF

G
bwa

Accuracy 93.0% 93.1% 95.1% 94.5% 92.7% 94.3% 94.8%

Sensitivity 95.8% 95.7% 94.7% 97.1% 94.8% 94.0% 97.3%

Specificity 90.3% 90.6% 95.6% 91.9% 90.5% 94.6% 92.3%

Precision 90.8% 91.0% 95.6% 92.3% 90.9% 94.6% 92.6%

F1-score 93.2% 93.3% 95.1% 94.6% 92.8% 94.6% 94.9%

MCC 0.862 0.863 0.903 0.890 0.854 0.886 0.897

AUPRC – – 99.0% – – 98.5% –

AUROC – – 98.9% – – 98.5% –

Pos Pref 52.8% 52.6% 49.5% 52.6% 52.2% 49.7% 52.5%

Ties – 3.4% – – 4.8% – –
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exceeding the 50% expected by random guessing. Accuracy did not exceed 57% by any 
method tested. These two strains harbor five to ten fold less sequence divergence than 
the other genera tested here, as shown by the mash [49] similarity scores (Additional 
file  2: Table  S10). These results suggest that within-species hybrids do not present 
enough genomic variation for parent-of-origin classification. For this reason, the Mus 
results are shown in supplement (Additional file 1: Tables S3 and S4), and the procedure 
is not recommended for crosses between very similar genotypes. Nevertheless, even on 
this dataset, the random forest post-processor added value, achieving 56%-57% accu-
racy, compared to 53%-56% achieved by the aligners directly. The random forest predic-
tions showed positive class bias (toward D2) using transcript references, but negative 
class bias (toward B6) using genome references.

Results with genus Equus

This experiment used public data from the genus Equus. The equine species of horse, 
E. caballus, and donkey, E. asinus, can hybridize to yield a mule or hinny, depending on 

Table 6  Classification Performance with Reference Transcripts of genus Equus 

By many measures including accuracy, F1, and MCC, the random forest performance surpassed that of the other methods 
tested. For directional statistics, donkey and horse were considered the negative and positive classes, respectively. (A, B, C) 
Using the Bowtie2 aligner, a parent was chosen by the aligner, or by comparing alignment scores, or by the random forest, 
respectively. (D, E, F) Similar to A, B, and C but using the STAR aligner, configured to avoid splicing. (G, H) Parent chosen by 
Salmon or bwa, respectively

Equus RNA A
Bowtie2

B
Bo_AS

C
Bo_RF

D
STAR​

E
St_AS

F
St_RF

G
Salmon

H
bwa

Accuracy
Sensitivity
Specificity
Precision
F1-score
MCC
AUPRC
AUROC
Pos Pref
Ties

73.0%
78.4%
67.6%
70.8%
74.4%
0.463
–
–
55.4%
–

76.7%
75.2%
78.3%
77.6%
76.4%
0.535
–
–
48.4%
38.6%

81.3%
91.1%
71.6%
76.2%
83.0%
0.637
92.0%
91.4%
59.7%
–

78.8%
78.4%
79.1%
79.1%
78.7%
0.576
–
–
49.6%
–

77.2%
75.4%
78.9%
78.2%
76.8%
0.544
–
–
48.2%
38.6%

85.8%
80.1%
91.5%
90.4%
84.9%
0.720
93.9%
93.8%
44.3%
–

69.1%
54.8%
83.4%
76.8%
63.9%
0.399
–
–
35.7%
–

68.6%
76.7%
60.4%
66.0%
70.9%
0.376
–
–
58.2%
–

Table 7  Classification Performance with Reference Genomes of genus Equus 

By many measures including accuracy, F1, and MCC, the random forest performance surpassed that of the other methods 
tested. For directional statistics, donkey and horse were considered the negative and positive classes, respectively. (A, B, 
C) Parent chosen by the HiSat2 aligner, or by comparing HiSat2 alignment scores, or by the random forest using HiSat2 
alignment features, respectively. (D, E, F) Similar to columns A, B, and C but using the STAR aligner, configured for splicing. 
(G) Parent chosen by bwa

Equus DNA A
HiSat2

B
Hi_AS

C
Hi_RF

D
STAR​

E
St_AS

F
St_RF

G
bwa

Accuracy
Sensitivity
Specificity
Precision
F1-score
MCC
AUPRC
AUROC
Pos Pref
Ties

79.1%
78.4%
79.9%
79.6%
79.0%
0.582
–
–
49.3%
–

78.9%
78.2%
79.4%
79.2%
78.7%
0.576
–
–
49.4%
33.8%

84.0%
90.6%
77.4%
80.0%
85.0%
0.686
93.7%
93.5%
56.6%
–

79.2%
78.6%
79.9%
79.6%
79.1%
0.584
–
–
49.4%
–

78.2%
77.5%
79.0%
78.6%
78.0%
0.564
–
–
49.3%
37.0%

86.0%
81.9%
90.1%
89.2%
85.4%
0.723
94.0%
93.9%
45.9%
–

88.9%
91.5%
86.3%
87.0%
89.2%
0.780
–
–
52.9%
–
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which parent is male or female [50]. Results are shown in Tables 6 and 7. The bwa aligner 
performed best using the Equus genomes; it remains for future work to discover whether 
our machine learning process could be adapted to post-process bwa output, which does 
not include all the currently required features. The machine-learning method provided 
the best performance using transcriptomes, and second and third best using genomes. 
These results indicate that our method is suitable for interspecies hybrids of animals as 
well as plants.

The random forest post-process introduced mild levels of class bias on the Equus data, 
though the direction varied. Positive preference increased when the random forest was 
used with Bowtie2 or HiSat2 but decreased when used with STAR. This indicates that, at 
least on these data, the bias is a computational artifact.

Results summary and generalization

The results on the three interspecies datasets are compared in Fig.  2. For each of the 
Arabidopsis, Brassica, and Equus datasets, the approach that achieved the highest accu-
racy is compared to the other approaches tested with the same aligner. On each data-
set, the random forest accuracy surpassed that of relying on the alignment scores or 
the aligner by itself. On Arabidopsis and Brassica, the maximum accuracy was achieved 
using HiSat2 alignments to the genome reference, plus the random forest. On Equus, 
the maximum machine learning accuracy was achieved using STAR alignments to the 
genome reference, plus the random forest. Since no one approach worked best on all 
three datasets, it may be advantageous to experiment with several aligners, as we have 
done here, when using other datasets.

Fig. 2  Summary of accuracy gains. Bars show the parent-of-origin prediction accuracy on simulated hybrid 
reads. Blue: Read pair origin predicted by aligner’s choice of one best alignment to the concatenation of 
parental references. Orange: Origin predicted by a model trained on one portion of those alignments and 
tested on another portion. In the X-axis labels, Arab = Arabidopsis, Bras = Brassica, and Equu = Equus, while 
Bt = Bowtie2, Hs = HiSat2, and S = STAR. Bowtie2 was used on RNA references, HiSat2 on DNA references, and 
STAR on both. The vertical axis ranges from 50% (guessing) to 100% (perfect)



Page 11 of 21Miller and Adjeroh ﻿BMC Bioinformatics          (2024) 25:109 	

Unlike many machine learning models, random forest models can be interrogated 
for indications of which features were most important. Figure 3 illustrates the top five 
features reported for the three most performant models in this study. See also Addi-
tional file 1: Table S5. The different rankings in this comparison indicate that the feature 
importance varied with the dataset and the aligner. However, the features in the inter-
section of these three lists are Parent (a number indicating the parent with higher align-
ment score) and MAT diff (the P2-P1 difference in matched bases). Also, there was at 
least one HQ feature in each list. Our HQ features count problems (mismatches, inser-
tions, deletions) that involve positions in reads assigned the maximal quality score by the 
sequencing instrument software.

In all the experiments shown so far, each model was trained on one set of read pairs 
and tested on another. However, each test set was carved from the same RNA-seq runs 
as its cognate training set. In an experiment on actual hybrids, the training RNA-seq 
from the parents would come from different sequencing libraries and sequencing runs 
compared to the test RNA-seq from the hybrid. To determine whether our models 
would generalize, we next tested on RNA-seq runs other than those used for training.

We tested the Equus RNA model. Two additional parental RNA-seq runs from the 
same Equus project but for different individuals, i.e., a different horse and a different 
donkey, were aligned to the parental transcriptomes with Bowtie2. The random forest 
model that was trained on the primary runs was used without retraining to make pre-
dictions on the secondary runs. The model achieved 82.5% accuracy, 0.659 MCC, and 

Fig. 3  Alignment Features Ranked by Importance. Top five alignment features, ranked by importance, used 
by the random forest model. The three columns here correspond to those in Fig. 2. The figure indicates that 
different models relied on different features. Labels like “P2 R1” refer to the alignment of read 1 to parent 2. 
Labels with “HQ” count only those events that involve a maximal base call quality score in the read. Labels 
with “diff” include the difference between parent 2 and 1 alignments. Labels with “MM” and “MAT” refer to 
mismatched or matched base counts, respectively. Labels with “INS” or “DEL” refer to bases inserted or deleted 
in the read, respectively. The label “PARENT” indicates a feature that was 1 if P2 had the better combined 
alignment score, or -1 if P1 had the better score, or 0 if they were tied
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91.4% AUROC on the secondary runs (Additional file 1: Table S6). Overall, the model 
performed similarly whether evaluated with the primary or secondary runs. Thus, the 
model was able to generalize and maintain accuracy with RNA-seq runs other than 
those on which it was trained.

Results: case study

We sought to demonstrate how this computational process could be applied for biology. 
A literature survey was conducted to find a study that had generated public RNA-seq 
datasets consisting of paired-end RNA-seq reads of 100 bases or more, derived from two 
parents plus their hybrid offspring, leading to a list of genes found to be in ASE. The 
closest match found was a study of pluripotent stem cells [51], that generated paired-
end, 2 × 150-base RNA-seq for two horses, two donkeys, and two mules. Unfortunately 
for our application, the animals were not necessarily related, and the RNA source was 
unusual: adult fibroblast cells taken from ear and grown in culture. Also, ASE in these 
cells was not investigated and ASE is not known to occur in these cells. Despite the 
inability to verify any ASE predictions with this resource, three sequencing runs were 
downloaded, yielding 23.3 to 23.8 million read pairs per animal after trimming from 
each of one horse, one donkey, and one mule.

To establish an expectation for accuracy, read pairs from horse and donkey were 
aligned to a concatenation of the horse and donkey transcriptomes, with Bowtie2 choos-
ing one best target per read pair. These read-to-parent assignments were 73% accurate 
with a 56% preference for the horse reference (Additional file 2: Table S12).

Next, the horse, donkey, and mule read pairs were aligned to the horse and donkey 
transcriptomes separately, with Bowtie2 choosing one best horse target, and one best 
donkey target, per pair. Map rates were consistently high: 91.1% of horse pairs, 89.2% of 
donkey pairs, and 89.8% of mule pairs (Additional file 2: Table S12). About 14% of read 
pairs mapped to one reference exclusively, but these maps favored the horse reference by 
78% and were poor indicators of the true parent. Of read pairs that mapped to both ref-
erences, the better alignment score indicated the true parent with 78% accuracy, incor-
porating random tie breaking for 35% of pairs.

Of read pairs that Bowtie2 had mapped to both horse and donkey separately, 1 million 
horse pairs and 1 million donkey pairs were split 80:20 into train and test sets. The model 
trained on the training set had 80% accuracy on the test set, with a 65% horse preference. 
These results indicated that model accuracy (80%) would exceed aligner accuracy (73%) 
and alignment score accuracy (78%) when applied to the mule read pairs. However, the 
model’s horse preference (65%) would have to be incorporated as the baseline.

Next, mule read pairs were mapped to the concatenated references using Bowtie2. The 
accuracy of parent assignment could not be determined, but the horse preference was 
observed to be 57%. Since Bowtie2 showed 56% horse preference on the horse and don-
key reads, this result is consistent with a hypothesis of 49:51 donkey:horse allele origins 
of mule read pairs.

Finally, the model trained on horse and donkey reads was used to predict one parental 
allele for each mule read pair having an alignment to each parental reference. The accu-
racy of these predictions could not be determined, but they showed 66% horse prefer-
ence. Since the model showed 65% horse preference on horse and donkey reads, this 
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result is consistent with the above-stated hypothesis of 49:51 donkey:horse allele ori-
gins of mule read pairs. In summary, though model accuracy on the mule reads remains 
unknown, the model accuracy exceeded aligner accuracy on horse and donkey reads, 
and the level of allelic imbalance was similar between the model’s and the aligner’s 
predictions.

ASE detection relies on statistics and thresholds applied to mapped read counts, 
whether applied at the level of individual transcripts, individual genes, or entire tran-
scriptomes. Our method boosted parent-of-origin accuracy on simulated hybrid data. 
Although we have yet to prove it on real hybrid data, our method has the potential to 
increase the sensitivity of ASE detection by increasing the number of correctly assigned 
read pairs from hybrids.

Discussion
We demonstrated process improvement for one part of pipelines that study allele-spe-
cific expression (ASE) in hybrids. We examined several procedures for classifying paired 
short-read RNA-seq data according to their parent of origin. In most cases, the best 
performance was achieved by a novel process that applies machine-learning to features 
extracted from pairwise sequence alignments. We believe that this is the first application 
of machine learning to the problem of binning RNA-seq reads by parent-of-origin.

Using public data representing seven species in four genera, we trained classifiers to 
bin RNA-seq read pairs by their parent of origin. The reason for training on parental 
reads was that their true parent of origin was known in all cases. For evaluation, we used 
combinations of parental reads, again because their true parent of origin was known. 
Thus, the evaluations were conducted on simulated hybrid datasets composed of mix-
tures of real RNA-seq data.

We tested with one transcript aligner, one genome aligner, and one aligner that worked 
with transcripts or genomes. For each aligner, we evaluated three configurations: relying 
on the aligner to choose the parent of origin, or by choosing a parent based on the better 
alignment score, or by feeding alignment features into a machine-learning post-proces-
sor. In all our experiments, the post-processor boosted the performance of the aligner.

For machine learning, we used random forest models and interrogated them for fea-
ture importance. The top five features per model included one based on alignment scores 
and two that are independent of alignment scores. It appears that the models learned 
to rely on complementary features. The features that we extracted from alignments 
included imperfection counts (mismatches, indels), differences in imperfection counts, 
and the difference in match counts. The models were not given the actual match counts, 
read lengths, or alignment spans, because these might allow models to distinguish reads 
by their RNA-seq library or sequencing run. If models had focused on library-specific 
or run-specific features, they would not generalize to other RNA-seq data. We saw con-
firmation that our models could generalize when we trained and tested a model on one 
Equus RNA-seq dataset and then tested the trained model on another RNA-seq dataset. 
The model achieved similar performance on the second dataset.

We relied on simulations by combining real RNA-seq from two potential parents of 
a hybrid. Here we speculate on ways our simulated data might differ from real hybrid 
RNA-seq. First, real hybrid individuals inherit only one allele per gene per parent, but 
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our simulated hybrid data represented up to four parental alleles per gene. Second, a 
real hybrid individual might express an allele or isoform not expressed in either parent. 
Third, RNA-seq from real hybrids may reflect novel genes generated, for example, by a 
mid-gene crossing-over event during meiosis in either parent’s germ cell. Any of these 
cases could have escaped our notice in our case study with real hybrid RNA-seq.

The fact that machine learning could improve on aligner accuracy should not be taken 
as criticism of aligners, which are general-purpose tools that have enabled many bio-
logical discoveries. We employed aligners for one specific task, parent-of-origin assign-
ment, and used millions of training samples from each parent. We explored the use of 
machine learning as a post-process. It may be possible to tune or parameterize aligners 
for the specific task, as has been explored for other tasks [52, 53]. We did not find that 
any one aligner was best for all situations. Our experiments suggest that ASE investi-
gators should test several aligners, then possibly select one whose alignments yield the 
highest accuracy among trained models.

In ASE studies, accurate quantification is key. Meta-analyses of published lists of ASE 
genes in Arabidopsis have noted little overlap between the lists [33, 54]. Other meta-
analyses have called into question published claims of weak imprinting in humans and 
mice [55]. Simulations have shown that ASE discoveries are sensitive to underlying map 
bias [56] and read trimming [57]. Our method appears to increase the portions of RNA-
seq reads assigned to the correct parent of a hybrid organism. This improvement could 
lead to improved sensitivity and specificity and thus higher confidence in ASE detection.

Map bias was seen in all our experiments. Map bias may result from different levels 
of completeness or quality between the two references, and from different degrees of 
sequence similarity between the references and the sequenced individuals. Algorithmic 
factors may also contribute, as indicated by differences between our results using dif-
ferent aligners on the same data. Regardless of its cause, map bias can induce false con-
clusions about ASE [56]. Ideally, our models would learn to overcome any bias in the 
aligner outputs. In fact, our models often reduced the bias but sometimes exacerbated 
it. We demonstrated how to measure the bias and incorporate it into ASE detection. In 
our mule experiment, where the bias was the most extreme, we simulated parental reads 
in 50:50 proportion but observed parental assignments in 35:65 proportion. Therefore, 
we used 35:65 as the baseline for ASE detection. Observing mule results close to this 
baseline, we accepted the null hypothesis of no ASE. Our mule analysis was performed 
at the whole transcriptome level, but it could be repeated at the level of individual genes 
or transcripts, and it could be enhanced by employing biological replicates and statistics.

It may be possible to reduce model bias by incorporating prior class weights to a 
model’s loss function. One such heuristic has been described by King and Zeng [58] and 
incorporated as an option in the fit function of scikit-learn models.

To put our approach into practice on a real hybrid organism, an experimenter would 
need to sequence RNA from one or more hybrids plus both of its parents, then align 
all the RNA-seq data to both parental references. Either two genome references or two 
transcriptome references could be used. (For organisms lacking trusted references, a ref-
erence transcriptome could be generated by de novo assembly of either parental RNA-
seq dataset using e.g., Trinity [32], with the limitation that this ad hoc reference would 
only reflect genes expressed by the parent.) The experimenter could choose one aligner 
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from several by comparing their parent-of-origin accuracy on parental read pairs, as we 
have done. The experimenter would train and test a classifier on the parental RNA-seq 
alignments, then apply the trained classifier to the hybrid RNA-seq alignments, as in our 
mule case study. The experimenter would infer the allele of origin per hybrid RNA-seq 
read pair using its alignment to the parental reference predicted by the classifier. The 
counts per allele per gene could be given to any differential expression analysis pipeline 
for ASE detection. Implementation of such a pipeline is left for future work.

Our approach assigns the parent-of-origin and gene in one step. It seems common 
practice to assign the gene first, based on alignments, and the parental allele second, 
based on sequence variants. Comparisons are left for future work, but our approach of 
deciding the parent first allows for the creation of labeled training sets and the injection 
of machine learning.

Conclusion
Random forest models were trained on alignment features extracted from RNA-seq 
paired-end reads aligned to reference transcriptomes or genomes. For each aligner 
tested, the model provided higher accuracy at parent-of-origin classification than the 
aligner by itself. This study establishes that machine learning can play a role in RNA-seq 
analysis of allele-specific gene expression in hybrids.

Methods
All mapping software ran under Linux (Rocky 9.1) on the Saga computing cluster in 
Norway. Alignment files in SAM/BAM format were manipulated with samtools [46] ver-
sion 1.16.1. Software compilations used GCC 11.3.0. The machine learning software ran 
inside Jupyter notebooks on Google CoLab Pro virtual computers with one CPU and 
12 GB RAM.

Reference genome files were downloaded in FASTA format from Ensembl [59]. 
Ensembl provides a “primary_assembly” file when chromosome sequences are available. 
All the assemblies used here, except mouse b6, lacked chromosome assignments. For 
consistency, the “toplevel” files of scaffolds were used in all cases. Reference transcript 
files were downloaded from the cDNA directories corresponding to these genomes. The 
cDNA files contain intron-free transcript references. RNA-seq files were downloaded 
from NCBI SRA [60]. In every case, the SRA normalized file was selected to obtain orig-
inal base call quality values. SRA files were processed with ‘fastq-dump –split-3’ from 
the SRA-Toolkit version 3.0.3 to create FASTQ files. Where two database accessions are 
given below, the first is a general one given in the publication and the second indicates 
the data subset used here. See also Additional file 2: Table S7.

1	 Arabidopsis. We used the A. halleri reference with accession GCA_900078215 (no 
publication) and the A. lyrata reference with accession GCA_000004255.1 [61]. 
(Newer references for A. lyrata became available recently [62] but too late for inclu-
sion here.) All the RNA-seq data came from a study of RNA editing across Arabidop-
sis species [63] in which total leaf RNA samples were subjected to rRNA depletion 
and 2 × 100 Illumina sequencing. The A. lyrata and A. halleri RNA-seq datasets have 
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DDJB accessions DRA007657 and DRA007658 and SRA accessions DRR161380 and 
DRR161381, respectively.

2	 Brassica. We used the B. rapa reference with accession GCA_000309985.1 [64, 
65] and the B. oleracea reference with accession GCA_000695525.1 [66]. The B. 
rapa RNA-seq came from a study of heterosis in Chinese cabbage hybrids, Project 
PRJNA876066 [67]. The RNA-seq used here was from one of the inbred, non-hybrid 
parents, C-1 SRR21735970. The B. oleracea RNA-seq derived from a study of a Chi-
nese kale allotetraploid, Project PRJNA885390 [68]. The RNA-seq used here was 
from the diploid parent, CC SRR21778809. Both RNA-seq datasets reflect 2 × 150 
Illumina sequencing.

3	 Mus. We used the M. musculus (mouse) C57BL/6  J (‘B6’) reference with accession 
GCA_000001635.9 [69] and the DBA/2  J (‘D2’) reference with GCA_001624505.1 
[70]. All the RNA-seq was 2 × 100 Illumina from a study of gene expression in the 
retinas of the two mouse strains [71]. We used RNA-seq with accessions SRR8690244 
and SRR8690250.

4	 Equus. We used the E. caballus (horse) reference with accession GCA_002863925.1 
[72] and the E. asinus (donkey) reference GCA_016077325.2 [50]. Training used 
2 × 151 Illumina RNA-seq runs with accessions SRR23724220 and SRR24443170. 
Validation used data from different individuals that were parts of the same studies, 
accessions SRR23724221 and SRR24443174. The evaluation on real hybrid data used 
RNA-seq from a study of pluripotent stem cells [51]: SRR18906505, SRR18906499, 
SRR18906511.

Raw reads were end-trimmed to remove adapter, low-quality bases, and N base 
calls using Trim Galore [73] version 0.6.10 using command line ‘trim_galore –cores 
4 –trim-n –paired’ plus read 1 and 2 filenames. The read sets were not subjected to 
duplicate removal, which can be unhelpful unless universal molecular identifiers are 
present [74].

The mappers selected were ones compared in [10]. The mappers selected use a range 
of algorithmic approaches including hash tables of k-mer to position in Salmon [4], the 
FM-index [75, 76] and Burrows-Wheeler transform [77, 78] in Bowtie2 [6, 7], and a suf-
fix array [79] in STAR [8, 9]. Some other mappers had to be excluded because their out-
put formats did not fully support our alignment feature extraction. This included DART 
[11], Kallisto [5], GSNAP [80], and bwa-mem [47]. The bwa software was not used 
because its output lacks the XO and XG tags, both optional for SAM files. When used 
for comparisons, it ran with flag ‘-a bwtsw’ to index the equine genomes and ‘-a is’ to 
index the smaller references, and with flag ‘-M’ to request a single maximal alignment.

Using Bowtie2 [6, 7] version 2.4.5, references were indexed with default parameters. 
Read pairs were aligned with command line ‘bowtie2 –no-unal –no-mixed –no-dis-
cordant –sensitive –end-to-end –threads 4’ plus options to specify the target sequence 
filename, the R1 and R2 filenames, and the output filename. We extracted the primary 
alignment per read pair using SAM/BAM flags. Although Bowtie2 has an option to 
report multiple alignments per read, the option was not used because the documenta-
tion says these alignments are not necessarily the best. HiSat2 [18, 19] version 2.2.1 was 
used to align RNA paired reads to genomic DNA using all the same options as Bowtie2.
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Using STAR [8, 9] version 2.7.10b, references were indexed with command line ‘STAR 
–runThreadN 4 –runMode genomeGenerate’, plus options to specify the target directory 
and read filenames. Read pairs were aligned with command line ‘STAR –runThreadN 4 –
outSAMattributes NH AS nM NM MD –outSAMtype BAM Unsorted –readFilesCom-
mand gunzip -c’ plus options to specify the index directory and read 1 and 2 filenames. 
If any process issued recommendations for larger values, such as for parameters lim-
itGenomeGenerateRAM or genomeSAindexNbases, then the program was re-run with 
the recommended values. For alignments to transcripts, the options ‘–alignIntronMin 
100000 –alignIntronMax 0’ were added to preclude splicing. We extracted the primary 
alignment per read using SAM/BAM flags. Although STAR has an option to report mul-
tiple primary alignments, the option was not used because the documentation says no 
alignments would be reported if the observed number exceeded the given number.

Using Salmon [4] 1.9.0 in mapper mode (i.e. not in conjunction with an aligner), refer-
ences were indexed with command line ‘salmon index’ and mapped with command line 
‘salmon quant –index < index_dir > –libType A –threads 4 –output salmon_out –write-
Mappings = Aligned.sam’ plus options to specify the read filenames. Recent versions of 
Salmon recommend using ‘decoys’ to allow Salmon to identify RNA-seq from isoforms 
missing from the transcriptome, but decoys were not generated or used here. Salmon 
outputs were not subjected to machine learning because they lacked alignment fields 
required by our process.

The SAM/BAM format output files were rendered with samtools view [46] and filtered 
with the flags -f 2 (reads mapped in proper pair), -F 256 (primary alignment per read 
pair), and -q 1 (minimum map quality 1). Additional file 2: Table S11 shows the effects 
of filtering. BAM files were parsed by a custom Python script for feature extraction. The 
script used only read pairs with an alignment to both references. The script relied on the 
following fields which are optional in BAM files: AS, XM, XO, XG, NM, MD. The script 
counted events such as mismatches and indels by parsing the CIGAR and MD strings. 
The script distinguished between such events by whether their base call quality score 
was maximal. The script accepted the maximum base call quality score encoding (e.g., 
‘F’ or ‘K’) as a parameter, and the parameter value was selected by visual inspection of 
scores in the BAM files in each read set. The feature extractor ignored soft clipping; a 
cigar string like ‘1S99M’ with one soft-clipped base was treated as 100 aligned bases. 
Thus, the script could report more mismatches than given in the ‘NM’ field of the BAM 
file. Alignment spans and read lengths were not used as features since their distributions 
could be specific to an RNA-seq library or run.

Traditional machine learning was implemented with scikit-learn [81] version 1.2.2. 
The RandomForestClassifier class was used for random forest models [48]. Feature rank-
ing used the mean decrease in impurity (MDI) method. The GradientBoostingClassifier 
class was used as a gradient boosting model [82]. The SVC class was used as a support 
vector machine [83]. The multi-layer perceptron was built with Keras [84].

Read pairs were aligned in the order they appeared in the FASTQ files, which is 
essentially random. Models were trained using the first N read pairs that aligned to 
both parent references, with the first 80% used for training and the remaining 20% 
used for evaluation. Each experiment used one pair of RNA-seq FASTQ files, and N 
was adjusted according to data availability. N was two million for Equus where reads 
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were most copious; N was one million for Arabidopsis, Brassica, and Mus; N had to 
be reduced to 400,000 for the one case where STAR aligned few reads to the Brassica 
genomes for unknown reasons. During training, models saw equal numbers of align-
ments from each parent, and alignments were interleaved such that even and odd 
samples came from different parents.

We employ several statistics to measure performance. Let TP, FP, TN, and FN repre-
sent true positive, false positive, true negative, and false negative rates. For the case of 
tied alignment scores, one parent was selected randomly. Accuracy = 100*(TP + TN)/
(TP + FP + TN + FN) is the most intuitive statistic but it can be misleading for cases 
of class imbalance. We measure accuracy on class-balanced sets, but nevertheless, 
we also report sensitivity = 100*TP/(TP + FN), specificity = 100*TN/(TN + FP), 
F1 = 200*TP/(2*TP + FP + FN), precision = 100*TP/(TP + FP), and Matthews cor-
relation coefficient or MCC = (TP*TN-FP*FN)/sqrt((TP + FP)*(TP + FN)*(TN + FP
)*(TN + FN)). AUPRC is the area under the precision-recall curve, a plot of preci-
sion vs recall as the classifier’s score threshold varies from 0 to 1. AUROC is the area 
under the receiver-operator characteristic, a plot of sensitivity vs 1-specificity as the 
threshold varies. For all these statistics, a higher value is better. We show the map bias 
as preference for the positive class, “Pos Pref ” = (TP + FP)/(TP + FP + TN + FN), for 
which 50% means no bias. Only the alignment score comparisons generated ties. The 
number of ties was reported, but the ties were broken randomly for the purpose of 
generating comparable statistics.
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