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Abstract 

Background: Expression quantitative trait locus (eQTL) analysis aims to detect 
the genetic variants that influence the expression of one or more genes. Gene‑level 
eQTL testing forms a natural grouped‑hypothesis testing strategy with clear biological 
importance. Methods to control family‑wise error rate or false discovery rate for group 
testing have been proposed earlier, but may not be powerful or easily apply to eQTL 
data, for which certain structured alternatives may be defensible and may enable 
the researcher to avoid overly conservative approaches.

Results: In an empirical Bayesian setting, we propose a new method to control 
the false discovery rate (FDR) for grouped hypotheses. Here, each gene forms a group, 
with SNPs annotated to the gene corresponding to individual hypotheses. The hetero‑
geneity of effect sizes in different groups is considered by the introduction of a random 
effects component. Our method, entitled Random Effects model and testing proce‑
dure for Group‑level FDR control (REG‑FDR), assumes a model for alternative hypoth‑
eses for the eQTL data and controls the FDR by adaptive thresholding. As a convenient 
alternate approach, we also propose Z‑REG‑FDR, an approximate version of REG‑FDR, 
that uses only Z‑statistics of association between genotype and expression for each 
gene‑SNP pair. The performance of Z‑REG‑FDR is evaluated using both simulated 
and real data. Simulations demonstrate that Z‑REG‑FDR performs similarly to REG‑FDR, 
but with much improved computational speed.

Conclusion: Our results demonstrate that the Z‑REG‑FDR method performs favorably 
compared to other methods in terms of statistical power and control of FDR. It can 
be of great practical use for grouped hypothesis testing for eQTL analysis or similar 
problems in statistical genomics due to its fast computation and ability to be fit using 
only summary data.
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Background
Expression quantitative trait locus (eQTL) analysis aims to detect genetic loci that are 
associated with the expression of one or more genes [1]. For each gene, expression can 
be considered as a quantitative trait potentially associated with the genotypes at differ-
ent sites in the genome, typically single nucleotide polymorphisms (SNPs) [2]. Although 
there is a substantial literature on both eQTL mapping [3–5] and grouped hypothesis 

*Correspondence:   
prudra@okstate.edu;  
fred_wright@ncsu.edu

1 Department of Statistics, 
Oklahoma State University, 
Stillwater, OK, USA
2 Bioinformatics Research 
Center, Departments of Statistics 
and Biological Sciences, North 
Carolina State University, Raleigh, 
NC, USA
3 Department of Statistics 
and Operations Research, 
University of North Carolina, 
Chapel Hill, NC, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05736-3&domain=pdf


Page 2 of 14Rudra et al. BMC Bioinformatics          (2024) 25:147 

testing [6–8], consideration of the natural gene-level grouping of the SNPs, e.g., SNPs 
local to a gene for a cis-eQTL problem, is comparatively unexplored or requires permu-
tation methods or approximations [9, 10]. Analysis of gene-level eQTLs and meaningful 
consideration of causal SNPs is an important biological problem [11]. Testing whether 
there is any eQTL (local SNP) for an entire gene while controlling the false discovery 
rate (FDR) across the set of all genes may be interesting for various reasons, which has 
been imperfectly addressed in the “e-Gene” concept employed by the GTEx Consortium 
[12].

Local (cis) eQTL testing includes tests of individual SNPs nearby a gene, which leads 
to summaries at the gene level [12]. The natural hierarchical organization would sug-
gest standard methods for group-level testing [6, 13]. However, local eQTL testing can 
include additional structure to be exploited: (i) the number of cis-eQTLs is typically 
large, so that explicit consideration of the proportion and “strength” of alternatives is 
possible; (ii) the conditional analyses of discovered eQTLs suggest that, to a first approx-
imation, most local eQTLs can be considered unique within the region [14]; (iii) correla-
tion of test statistics is driven by regional SNP correlation.

In the following sections, we discuss the structure of eQTL data and how the grouped 
nature can be effectively modeled using a random effects model. We consider the case of 
cis-eQTLs, i.e. local to the gene [14, 15], where the variant affecting the gene expression 
is in the immediate neighborhood of the gene. Our proposed method, entitled Random 
Effects model and testing procedure for Group-level FDR control (REG-FDR), uses an 
empirical Bayes framework to model the eQTL data and controls the FDR by adaptive 
thresholding. We also propose an alternate approach Z-REG-FDR, an approximate ver-
sion of REG-FDR, that uses only the summary measures given by the Z-statistics of asso-
ciation between genotype and expression for each gene-SNP pair. We demonstrate using 
simulations and real data analysis that this approximate version performs well compared 
to other possible approaches while having a much faster computation time.

Methods
Structure of the eQTL data and the hypotheses

eQTL data can typically be expressed in the form of an expression matrix, consisting 
of N genes along with a genotype matrix which has genotypes (m SNPs) for the same 
n sample units. We denote the expression matrix as YN×n and the genotype subma-
trix corresponding to the ith gene as X (i)

mi×n , i = 1, 2, . . . ,N  , where mi is the number 
of SNPs local to the ith gene. Linear modeling of eQTLs typically includes additional 
covariates, such as expression cofactors [12, 16]. The t-statistics for the partial correla-
tions between Y and X (i)

mi×n , after both are adjusted for covariates, are equivalent to the 

Wald statistics for the X (i)
mi×n when conducting the full linear regression in which Y is 

modeled as a function of X (i)
mi×n and the additional covariates [17, 18]. We assume that 

the sample size n is large enough that the residual degrees of freedom for the t statis-
tic is sufficient to use a standard normal approximation. Thus we can can directly work 
with z-statistics for Y and X (i)

mi×n , where we consider each of these matrices to have been 
covariate-residualized.
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Let H0ij denote the gene-SNP level null hypothesis that there is no eQTL at the jth 
SNP local to the ith gene, j = 1, 2, . . . ,mi, i = 1, 2, . . . ,N  . Therefore there are N

i=1mi 
gene-SNP level tests. These tests can be grouped into N groups corresponding to the N 
genes with mi tests in the ith group. Define H0i to be the gene-level null hypothesis for 
the ith gene that there is no eQTL for the ith gene. Therefore the gene-level null hypoth-
esis H0i can be written as

i.e. the gene-level null requires that all of the corresponding mi gene-SNP level hypoth-
eses be null.

An empirical Bayes model

We adopt an empirical Bayes approach for controlling the gene-level FDR. Empiri-
cal Bayes approaches have been used in many genetic applications, and indeed these 
applications have been a prime motivator for the methods [19, 20]. The advantages 
of using an empirical Bayes approach based on the local false discovery rate (lfdr), 
instead of p-value-based FDR-controlling approaches, has been discussed in [21] and 
[22]. The lfdr corresponding to the gene-level null hypothesis H0i is

Here Yi denotes the ith row of the matrix Y. If we obtain the lfdr �i for each of the gene-
level hypotheses, we can control the FDR at target level α for gene-level testing, using 
the following adaptive thresholding procedure, which has been used extensively in the 
literature [7, 23–25]. 

1. Enumerate the index i1, i2, . . . , iN of the genes such that �i1 ≤ �i2 ≤ · · · ≤ �iN.
2. Reject hypotheses H0i1 , . . . ,H0iL where L is the largest integer such that 

[24] and subsequently [7] showed that the adaptive thresholding procedure is valid in 
the sense that it controls the FDR at target level α for an ‘oracle’ procedure where the 
true parameters of the model are assumed to be known. It is asymptotically valid for 
a ‘data-driven’ procedure when the parameters are consistently estimated from the 
data. [25] proved its validity under further relaxed conditions. The proof makes use of 
the following result (Averaging Theorem, [19]).

Let lfdr(z) = P(H0|z) denote the lfdr for observed data z. Then, for a rejection region 
R , the FDR will be given by

The adaptive thresholding procedure can be used to control the FDR for testing the 
gene-level hypotheses H0i ’s and a similar procedure can be used to test the gene-SNP 

(1)H0i = ∩mi
j=1

H0ij ,

(2)�i(Yi,X
(i)) = P(H0i|Yi,X (i)), i = 1, 2, . . . ,N .

1

L

L
∑

l=1

�il ≤ α.

(3)FDR(R) = P(H0|Z ∈ R) = E(lfdr(Z)|Z ∈ R).
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level hypotheses H0ij’s. However, obtaining the gene-level lfdr’s is a non-trivial problem. 
In the next section, we propose a model which enables us to calculate the lfdr’s.

The random effects model and testing procedure for group‑level FDR control (REG‑FDR)

Here we propose a model to obtain the gene-level lfdr values, that can be subsequently 
used to test the gene-level hypotheses while controlling the FDR using the adaptive 
thresholding method. The model is based on the following assumptions. 

 A1. For any gene i, under the gene-level alternative hypothesis Hc
0i , there exists a single 

causal SNP that influences its expression.
 A2. Each of the mi SNPs has equal probability to be the causal SNP.

First, we note that Assumption (A1) is at best a simplification, but very large eQTL stud-
ies have supported the view that most genes with eQTLs have a primary local eQTL 
[26], with other loci having much smaller effect sizes. We therefore treat A1 as a ‘work-
able condition’ [27–29].

Assumption (A2) could easily be relaxed, and one might use a distributional assump-
tion over the SNPs as a modest modification of our method below (see the Discussion 
section). We note that it is trivial to enforce Assumption (A2) by, for example, randomiz-
ing the SNP identities within gene i prior to analysis.

Under these assumptions, the gene-level lfdr for the ith gene has the following form:

where π0 = P(H0i) is the prior probability of H0i , f0(Yi) is the density of Yi under the null, 
and f1(Yi|X (i)

j ,βij) is the conditional density under the alternative given that the jth SNP 
is causal. Here βij is correlation between the expression of the ith gene and the causal 
SNP j. Note that the marginal density p(X (i)) cancels from numerator and denominator. 
Importantly, this cancellation allows us to bypass the modeling of the dependence struc-
ture of the SNPs, which otherwise might have been difficult to estimate accurately.

We assume that f0(.) is the density of the Nn(0, In) distribution (noting that expression 
data can be normalized), and that f1(.|X (i)

j ,βij) is the density of the Nn(βijX
(i)
j , (1− β2

ij)In) 
distribution, where βij is the correlation between Yi and X (i)

j  . This choice of f1 ensures 
that the unconditional variance of Yi is free of βij . To account for variability across genes, 
we assume βij to be a random effect such that 

√
n− 3 tanh−1(βij) follows a N (0, σ 2) dis-

tribution. As βij is a correlation coefficient, the Fisher transformation is used to ensure 
that the variance does not depend on the mean. Moreover, σ will be estimated from the 
data, and so the apparent dependence on n is not important to the procedure.

Our procedure treats the genotype values as fixed, and assuming the expression of 
genes to be independent, given genotypes, we can estimate π0 and σ using a maxi-
mum likelihood approach and follow with plug-in estimates to obtain estimates 

(4)�i(Yi,X
(i)) = P(H0i|Yi,X (i)) =

P(H0i)P(Yi,X
(i)|H0i)

P(H0i)P(Yi,X (i)|H0i)+ P(H1i)P(Yi,X (i)|H1i)

(5)=
π0f0(Yi)

π0f0(Yi)+ (1− π0)
1
mi

∑mi
j=1

f1(Yi|X (i)
j ,βij)

,
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of �i(Yi,X (i)) from Eq.  5. The assumption that the expression of different genes are 
independent is violated in general, but our approach can be viewed as employing a 
composite likelihood [30], and thus consistent for π0 and σ even under independence 
violations [31]. An EM algorithm is used (see Additional file 1: Section 1) for the max-
imum likelihood estimation. The procedure enables us to use the adaptive threshold-
ing procedure to provide proper gene-level control of the FDR.

The Z‑REG‑FDR model

One computational challenge presented by the REG-FDR model is that the density 
f1(Yi|X (i)

j ) does not have a closed form expression. While it can be expressed as the 
following integral

numeric maximum likelihood estimation is computationally burdensome. We propose 
an alternative model, termed Z-REG-FDR, which avoids this problem. In this approach, 
we consider the Fisher transformed and scaled z-statistics as our data. Thus, for each 
gene i, we have a vector of z-statistics
z(i) = (z

(i)
1 , z

(i)
2 , . . . , z

(i)
mi), i = 1, 2, . . . ,N ,

where z(i)j =
√
n− 3 tanh−1(r

(i)
j ) and r(i)j  is the sample correlation of Yi and X (i)

j .
Fisher transformation and scaling ensures that z(i) is approximately normal and that 

the variance of each component is approximately 1 under both null and alternative. 
Under the null, the mean of z(i) is zero. We treat the component z(i) as if they are inde-
pendent across different genes, again relying on approximate conditional independ-
ence (given genotypes) and a compositie likelihood interpretation.

The Z-REG-FDR procedure is based on an additional assumption to (A1) and (A2) 
above. If the kth SNP is causal, we assume (Assumption (A3)) that the distribution of 
(z

(i)
1 , . . . , z

(i)
k−1

, z
(i)
k+1

, . . . , z
(i)
mi) given z(i)k  under the alternative is same as that under the 

null. In particular, we note that this assumption is true if the components of z(i) have 
a Markov dependence structure with the same serial correlation under null and alter-
native, which is true in the special case that the successive marker correlations are 
zero. In general, this assumption can be violated, but as shown in “Simulations: per-
formance of Z-REG-FDR as an approximate maximum likelihood estimation” section, 
the resultant procedure appears to work well in many circumstances as an approxi-
mate maximum likelihood method even when Assumption (A3) is not satisfied.

Under the above assumptions, we can write the joint distribution of the random 
vector z(i) = (z

(i)
1 , z

(i)
2 , . . . , z

(i)
mi) as

under the null, and

(6)f1(Yi|X (i)
j ) =

∫ 1

−1

f1(Yi|X (i)
j ,β)

√
n− 3

√
2πσ(1− β2)

e
− n−3

2σ2
{tanh−1(β)}2

dβ ,

(7)f0(z
(i)
1 , z

(i)
2 , . . . , z(i)mi

) = p0(z
(i)
k )f0|k(z

(i)
1 , . . . , z

(i)
k−1

, z
(i)
k+1

, . . . , z(i)mi
)

(8)f1(z
(i)
1 , z

(i)
2 , . . . , z(i)mi

) = p1(z
(i)
k )f0|k(z

(i)
1 , . . . , z

(i)
k−1

, z
(i)
k+1

, . . . , z(i)mi
)
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under the alternative. We assume p0(.) to be N(0, 1) and p1(.) to be N (µ, 1) , where µ is 
assumed to be random with a N (0, σ 2) distribution. We do not assume anything about 
the form of f0|k except that it does not involve the parameters π0 and σ . Under these 
assumptions, the gene-level lfdr for this model reduces to

This follows from the cancellation of f0|k(z
(i)
1 , . . . , z

(i)
k−1

, z
(i)
k+1

, . . . , z
(i)
mi) in the numerator 

and denominator. While estimating π0 and σ , a similar cancellation helps us bypass max-
imizing the full (approximate) likelihood

Instead, we maximize

This is equivalent to the maximum likelihood estimation under the assumption that f0|k 
does not involve the parameters π0 and σ . Note that we need to estimate only the param-
eters π0 and σ to obtain the gene-level lfdr using Eq. 9.

When the required assumptions are not satisfied, this method still has value as an 
approximate maximum likelihood approach. For instance, when the X (i)

j  ’s are related 
by an AR(1) structure, it can be shown that the correlation between the z-statistics 
depends on the effect size, i.e. the correlation between Yi and the causal SNP, hence 
violating Assumption (A3). Additional file  1: Lemma 1 and Additional file  1: Fig-
ures 1 and 2 show the extent to which the conditional distribution f0|k might depend 
on the effect size for any correlation structure among normally distributed SNPs. 
However, our results in “Simulations: performance of Z-REG-FDR as an approxi-
mate maximum likelihood estimation” section demonstrate that it does not have a 
significant adverse effect on the performance of the estimation and control of false 
discovery.

Results
Simulations: performance of Z‑REG‑FDR when all assumptions are satisfied

First, we conducted a simulation study to explore the performance of Z-REG-FDR 
under the ideal situation where all assumptions are satisfied. Table  1 shows the 
results for simulated datasets (1000 simulations of datasets with 10,000 genes and 
200 samples) where z’s are directly simulated from an autoregressive structure, and 
therefore Assumption (A3) is also satisfied. The estimates are accurate to within 
about 15% when the true σ is at least 2.0. The control of the FDR is also satisfactory 
for σ > 2 . However, the performance is not as good for small σ , which is due to the 
fact that it is difficult to separate the null and alternative cases when the effect sizes 

(9)
P(H0i|z(i)) =

1

1+ 1−π0
π0

1
mi

∑mi

k=1

p1(z
(i)
k )

p0(z
(i)
k )

, i = 1, 2, . . . ,N .

N
∏

i=1

(π0f0(z
(i))+ (1− π0)f1(z

(i))).

N
∏

i=1

π0f0(z
(i))+ (1− π0)f1(z

(i))

f0(z(i))
=

N
∏

i=1

{

π0 + (1− π0)
1

mi

mi
∑

k=1

p1(z
(i)
k )

p0(z
(i)
k )

}

.
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are small; this is true even when all the assumptions are satisfied. This is a property 
of the two group mixture model in the empirical Bayes set up, and not a limitation 
due to the approximate nature of Z-REG-FDR.

Simulations: performance of Z‑REG‑FDR as an approximate maximum likelihood estimation

We wished to study the accuracy of the estimation under the approximations employed 
and for a relatively small sample size, in order to ensure that the approach can work 
in this challenging situation. Accordingly, we simulated data that uses the covariate 
adjusted genotype matrix of a real dataset from the GTEx project (V3) [12]. The gen-
otype matrix corresponding to the tissue ‘heart’, which had 83 samples, was selected 
for analysis. For computational purposes, 10,000 genes were chosen randomly from 
28,991 genes. Use of genotype matrices from real data ensures that we are not enforcing 
Assumption (A3) while simulating, and our choice of f0|k for the simulation is obtained 
from the data. We simulate the Yi ’s (1,000 simulations) using the following scheme. 

1. For each gene, decide whether it has an eQTL using a Bernoulli(π0 ) distribution.
2. If the gene has an eQTL, pick a causal SNP using a discrete uniform distribution over 

the mi SNPs. Let it be the kth SNP.
3. If the gene has an eQTL, simulate each element of Yi from N (βijX

(i)
k , 1− β2

ij) with √
n− 3 tanh−1(βij) simulated from a N (0, σ 2) distribution. If the gene doesn’t have 

an eQTL, simulate each element of Yi from N(0, 1).

Table 2 shows the results for this data, indicating that the estimates are still accurate and 
control of FDR is satisfactory unless σ is very small. Large eQTL studies have observed 
large effect sizes for cis-eQTL analysis [15, 32] which implies that σ is not expected to be 
very small. Thus our numerical results indicate that the Z-REG-FDR method has valid 
applications for eQTL data.

Figure  1 shows the plot of REG-FDR estimates against the Z-REG-FDR estimates 
for 500 simulated datasets using the simulation scheme described above. It is clear 

Table 1 Summary of the simulation studies with directly simulated z from an AR(1) model with 
correlation ρ

The last two columns show the FDR control performance of the Z-REG-FDR method when the target FDR is 5% and 10%, 
respectively

True π0 True σ True ρ Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized Realized

FDR (5%) FDR (10%)

0.20 1 0.10 0.2030 0.9964 0.1841 0.0823 0.0954 0.1236

0.20 2 0.10 0.1865 1.9660 0.0469 0.0374 0.0576 0.1136

0.20 5 0.10 0.1977 4.9383 0.0094 0.0306 0.0507 0.1014

0.20 1 0.50 0.1932 0.9919 0.1613 0.0757 0.0922 0.1252

0.20 2 0.50 0.1873 1.9663 0.0417 0.0352 0.0565 0.1121

0.20 5 0.50 0.1977 4.9383 0.0092 0.0303 0.0508 0.1013

0.20 1 0.80 0.1857 0.9875 0.1308 0.0664 0.0882 0.1245

0.20 2 0.80 0.1894 1.9673 0.0325 0.0317 0.0545 0.1090

0.20 5 0.80 0.1979 4.9388 0.0085 0.0292 0.0507 0.1012
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from the plot that the two methods agree with each other (with correlations 0.906 
and 0.952 for π0 and σ , respectively) and largely fall near the unit line. These results 
suggest that the approximate maximum likelihood method in Z-REG-FDR is quite 
effective in controlling the FDR, with a much improved computation speed—a few 
minutes on a single computer for a dataset with 10,000 genes and 100–200 samples 

Table 2 Summary of the simulation studies using the SNP matrix from real data. The last two 
columns show the FDR control performance of the Z‑REG‑FDR method when the target FDR is 5% 
and 10%, respectively

True π0 True σ Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized Realized

FDR (5%) FDR (10%)

0.10 1 0.1665 1.0771 0.0829 0.0479 0.0415 0.0659

0.10 2 0.0871 2.0443 0.0234 0.0234 0.0616 0.0964

0.10 5 0.0994 5.1088 0.0073 0.0221 0.0509 0.0974

0.20 1 0.2599 1.0802 0.0846 0.0534 0.0512 0.0903

0.20 2 0.1864 2.0437 0.0237 0.0263 0.0568 0.1106

0.20 5 0.1986 5.1075 0.0080 0.0275 0.0518 0.1017

Fig. 1 Comparison of the parameter estimates using REG-FDR and Z-REG-FDR. Except a small number of 
cases, the two estimates agree with each other. The blue lines show the true values of the parameters

Fig. 2 A. Estimated lfdr and B. estimated FDR for REG-FDR and Z-REG-FDR 
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as opposed to more than a day for REG-FDR. A comparison of the estimated lfdr and 
estimated FDR of the two methods is shown in Fig. 2. It is evident that the slight over-
estimation of π0 and the slight underestimation of σ by Z-REG-FDR work in opposite 
directions, which leads to similar lfdr values when compared to REG-FDR. The corre-
lation between the estimated FDR based on the true values of the parameters and that 
based on REG-FDR or Z-REG-FDR are also very high (see Additional file 1: Figure 3).

Behavior of the expected pseudo‑log‑likelihood of Z‑REG‑FDR

It is a standard result that the expected log-likelihood is maximized at the true value 
of the parameter under standard regularity conditions [33]. Since REG-FDR is the true 
maximum likelihood method for the proposed model, it is expected to satisfy this prop-
erty. If Assumption (A3) is not satisfied then Z-REG-FDR is an approximate maximum 
likelihood method, and as such, its pseudo-log-likelihood need not be maximized at 
the true value of the parameter. We explored several realistic combinations of the true 
parameters and observed that the pseudo-log-likelihood of Z-REG-FDR is maximized 
very near the true parameter value. It is a difficult task to analytically compute the 
expected pseudo-log-likelihood, and so Monte-Carlo integration was used for this task. 
Figure 3 shows the expected pseudo-log-likelihood surface of Z-REG-FDR for π0 = 0.2 
and σ = 3 . A contour plot also confirms the fact the surface peaks near the true values of 
the parameters.

Simulations: comparison of Z‑REG‑FDR with other methods

It is possible to use other methodologies to control the FDR in grouped hypothesis 
testing problem for eQTL data. A conservative approach is to obtain the Bonferroni 
adjusted p-values for each gene, where the p-value for each gene-SNP pair is computed 
based on the usual t-test or z-test, and then use an FDR controlling approach [eg 34, 

Fig. 3 Demonstration of the optimization of log‑likelihood properties using Z-REG-FDR method. A. Surface 
plot and B. Contour plot of expected pseudo‑log‑likelihood surface for the Z-REG-FDR method. True π0 and σ 
are 0.2 and 3 respectively
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35, 36] to assess the conservative p-values. [29] used a permutation based (“eGene”) 
approach in their analysis of the GTEx data. The method uses the smallest gene-SNP 
p-value for a gene as the test statistic and computes its distribution by permuting the 
expression values. Such a distribution can be used to obtain p-values for each gene, 
which can subsequently be used to control the FDR by using methods such as Storey’s 
q-value method [35].

The Bonferroni method is typically conservative and hence less powerful. The permu-
tation method, while correctly controlling false positives, can suffer from lack of power 
to detect genes having an eQTL since it uses an extreme value statistic (not based on 
likelihood). Our model, on the other hand, utilizes more information through its use of 
approximate likelihood. We carried out a simulation study to compare the performance 
of the methods in terms of their power. The simulations were performed using the sim-
ulation scheme described in “Simulations: performance of Z-REG-FDR as an approxi-
mate maximum likelihood estimation” section and statistical power was obtained using 
an FDR threshold of 0.05. The results are shown in Fig. 4. As expected, the Bonferroni 
method turned out to have very low power and is not shown in Fig. 4. The permuta-
tion approach with Storey’s q-value method [35] was conservative and less powerful in 
comparison with Z-REG-FDR. To address the possible concern that Z-REG-FDR can be 
slightly anti-conservative, and therefore the comparison with the permutation method is 
unfair, we also included an adjusted version of the Z-REG-FDR method where a slightly 
lower FDR threshold was chosen based on the simulations in such a way that the esti-
mated FDR was exactly 0.05. This adjusted version had slightly less power compared to 
unadjusted Z-REG-FDR, but was more powerful than the permutation method.

Analysis of real data

Finally, we also applied the Z-REG-FDR on a real dataset obtained from GTEx (V6) [12]. 
Besides Z-REG-FDR, we also used the permutation method and Simes method [37], 
which is expected to be more powerful than the Bonferroni method although it may not 
control the FDR for all types of correlation structures. We applied each method on the 
GTEx data for 44 tissues, separately for each tissue.

For each tissue, the normalized gene expression data and SNP genotype data were 
separately residualized after adjusting for covariates provided by GTEx. We fit a linear 
regression model with individuals’ gene expression or SNP genotype as the response 
variable and covariates as the explanatory variables. Then we extracted the model resid-
uals to obtain “covariate-corrected” gene expression and SNP genotypes.

Fig. 4 Power curves of different methods for varying combinations of the true parameter values
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Figure 5 shows a comparison of the number of significant genes found by Z-REG-
FDR and the permutation method employed by [12]. A complete list of the sample 
sizes and the number of significant genes discovered for the 44 tissues is provided 
in Additional file 1: Table 2. The methods agree with each other to some extent in 
terms of number of discoveries. The Z-REG-FDR method has higher number of dis-
coveries compared to the Permutation method and the Simes method in most cases. 
The parameter estimates for each tissue using Z-REG-FDR are shown in Fig. 6.

Fig. 5 Comparison of Z-REG-FDR and the permutation method for GTEx data

Fig. 6 Parameter estimates using Z-REG-FDR for the GTEx data
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Discussion
We have introduced a principled procedure to perform gene-level FDR test, most appro-
priate and useful in the eQTL setting. A major advantage of Z-REG-FDR is its computa-
tional efficiency. While other methods such as the permutation method or our REG-FDR 
method can take days on a single PC to complete the analysis of a real eQTL dataset, 
Z-REG-FDR can do the same in a few minutes. For instance, it takes approximately two 
minutes to fit the model and find significant genes by Z-REG-FDR for a data set with 
4.5 million SNPs grouped as local SNPs for 10, 000 genes. REG-FDR takes about a day, 
and the permutation method (for 10, 000 permutations) takes about 6 hours to analyze 
the same data. Since there are thousands of simultaneous tests, even 10, 000 permuta-
tions may not be enough to provide sufficient p-value resolution. While the Bonferroni 
method is very fast, it has little power to detect the genes having true eQTLs.
Z-REG-FDR has additional advantages. One important feature of the method is 

that it does not require access to the full data. In fact, the symmetry of the distribu-
tions involved in the Z-REG-FDR pseudo-likelihood ensure that only the gene-SNP level 
p-values (or equivalently the absolute z-values) are needed to fit the model. Z-REG-FDR 
does not model the correlation structure of the SNPs, and therefore does not require 
access to that data. This might be very useful since, in many genetic applications, data 
are found in the form of summary measures.
Z-REG-FDR can be slightly anti-conservative depending on the true values of the 

parameters. Various simulations show that if σ is large, which appears to often be the 
case for eQTL data, the control of FDR is satisfactory. The fact that Assumption (A3) 
is not satisfied does not significantly affect the FDR control. Therefore the assumption 
can be thought of as a means to reduce computational burden, rather than a necessary 
assumption for the practical workability of the model.

Assumptions (A1) and (A2) also have the potential to be relaxed, although we consider 
that to be beyond the scope of this paper. For example, the method can be extended by 
relaxing Assumption (A2) and incorporating a non-uniform prior for the causal loca-
tion. If a well-grounded prior exists, then it can be incorporated into our method in a 
straightforward manner using weighted versions of our statistics. We have included 
an example in the Additional file 1 to demonstrate empirical evidence that the method 
remains valid even for more than one causal SNPs under certain conditions.

Our use of the lfdr statistics, while valid, does not utilize gene-level local correlation 
structures [38–41] that might provide additional power. Implementation of such meth-
ods would require sensitive estimation of gene-level correlations, and a possible direc-
tion of future effort.

With the continuous increase in the size of genomic data sets, and with the possibil-
ity of further extensions of our approach, we strongly believe that the approximate like-
lihood approach of the Z-REG-FDR method can be of great practical use for grouped 
hypothesis testing for eQTL analysis or similar problems in statistical genomics.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 024‑ 05736‑3.

Additional file 1: Supplementary Materials.

https://doi.org/10.1186/s12859-024-05736-3


Page 13 of 14Rudra et al. BMC Bioinformatics          (2024) 25:147  

Acknowledgements
Not applicable.

Author contributions
PR constructed the models and performed the statistical analyses of simulated and real data. YZ conducted pre‑process‑
ing and covariate adjustment for the real data. FAW and AN supervised the modeling and analysis. All authors have read 
and approved the final version of this manuscript.

Funding
Supported in part by R01ES033243 and R01ES029911.

Availability of data and materials
Supplementary material is available in the file Supplementary.pdf. Software in the form of R code and documentation is 
available at https:// doi. org/ 10. 5281/ zenodo. 83317 34.

Declarations

 Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare no competing interests.

Received: 18 August 2023   Accepted: 8 March 2024

References
 1. Rockman MV, Kruglyak L. Genetics of global gene expression. Nat Rev Genet. 2006;7(11):862–72.
 2. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, et al. The genotype‑

tissue expression (gtex) project. Nat Genet. 2013;45(6):580–5.
 3. Palowitch J, Shabalin A, Zhou Y‑H, Nobel AB, Wright FA. Estimation of cis‑eqtl effect sizes using a log of linear model. 

Biometrics. 2018;74(2):616–25.
 4. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc B Biol Sci. 

2013;368(1620):20120362.
 5. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. 

Nat Rev Genet. 2009;10(3):184–94.
 6. James X H, Zhao H, Zhou HH. False discovery rate control with groups. J Am Stat Assoc. 2010;105(491):1215–27.
 7. TTony Cai and Wenguang Sun. Simultaneous testing of grouped hypotheses: finding needles in multiple haystacks. 

J Am Stat Assoc. 2009;104(488):1467–81.
 8. Zhao H, Zhang J. Weighted p‑value procedures for controlling fdr of grouped hypotheses. J Stat Plan Inference. 

2014;151:90–106.
 9. Huang QQ, Ritchie SC, Brozynska M, Inouye M. Power, false discovery rate and winner’s curse in eqtl studies. Nucleic 

Acids Res. 2018;46(22):e133–e133.
 10. Sul JH, Raj T, De Jong S, De Bakker PIW, Raychaudhuri S, Ophoff RA, Stranger BE, Eskin E, Han B. Accurate and fast 

multiple‑testing correction in eQTL studies. Am J Hum Genet 2015;96(6):857–868.
 11. Westra H‑J. From genome to function by studying eqtls. Biochimica et Biophysica Acta (BBA)‑Molecular Basis of 

Disease. 2014;1842(10):1896–902.
 12. and GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204.
 13. Peterson CB, Bogomolov M, Benjamini Y, Sabatti C. Many phenotypes without many false discoveries: error control‑

ling strategies for multitrait association studies. Genet Epidemiol. 2016;40(1):45–56.
 14. and GTEx Consortium. The gtex consortium atlas of genetic regulatory effects across human tissues. Science. 

2020;369(6509):1318–30.
 15. Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, Madar V, Jansen R, Chung W, Zhou Y‑H, et al. Heritability and 

genomics of gene expression in peripheral blood. Nat Genet. 2014;46(5):430–7.
 16. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (peer) to obtain 

increased power and interpretability of gene expression analyses. Nat Protoc. 2012;7(3):500–7.
 17. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28(10):1353–8.
 18. Zhou HJ, Li L, Li Y, Li W, Li JJ. PCA outperforms popular hidden variable inference methods for molecular QTL map‑

ping. Genome Biol. 2022;23(1):1–17.
 19. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genet Epidemiol. 

2002;23(1):70–86.
 20. Ferkingstad E, Frigessi A, Rue H, Thorleifsson G, Kong A. Unsupervised empirical Bayesian multiple testing with 

external covariates. Ann Appl Stat. 2008;2(2):714–35.
 21. Efron B, Storey JD, Tibshirani R. Microarrays, empirical Bayes methods, and false discovery rates. Genet. Epidemiol. 

Citeseer;2001.

https://doi.org/10.5281/zenodo.8331734


Page 14 of 14Rudra et al. BMC Bioinformatics          (2024) 25:147 

 22. Kendziorski CM, Newton MA, Lan H, Gould MN. On parametric empirical bayes methods for comparing multiple 
groups using replicated gene expression profiles. Stat Med. 2003;22(24):3899–914.

 23. Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchi‑
cal mixture method. Biostatistics. 2004;5(2):155–76.

 24. Wenguang Sun and T Tony Cai. Oracle and adaptive compound decision rules for false discovery rate control. J Am 
Stat Assoc. 2007;102(479):901–12.

 25. Li G, Shabalin AA, Rusyn I, Wright FA, Nobel AB. An empirical bayes approach for multiple tissue eQTL analysis. 
Biostatistics. 2018;19(3):391–406.

 26. Jansen R, Hottenga J‑J, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, Wright FA, Penninx BWJH, Boomsma DI. 
Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet. 2017;26(8):1444–51.

 27. Kendziorski CM, Chen M, Yuan M, Lan H, Attie AD. Statistical methods for expression quantitative trait loci (eQTL) 
mapping. Biometrics. 2006;62(1):19–27.

 28. Gelfond JAL, Ibrahim JG, Zou F. Proximity model for expression quantitative trait loci (eQTL) detection. Biometrics. 
2007;63(4):1108–16.

 29. Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, Tukiainen T, Lek M, 
et al. The genotype‑tissue expression (gtex) pilot analysis: multitissue gene regulation in humans. Science. 
2015;348(6235):648–60.

 30. Varin C, Reid N, Firth D. An overview of composite likelihood methods. Stat Sin. 2011;21(1):5–42.
 31. Ximing X, Reid N. On the robustness of maximum composite likelihood estimate. J Stat Plan Inference. 

2011;141(9):3047–54.
 32. Joehanes R, Zhang X, Huan T, Yao C, Ying S, Nguyen QT, Demirkale CY, Feolo ML, Sharopova NR, Sturcke A, et al. Inte‑

grated genome‑wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. 
Genome Biol. 2017;18(1):1–24.

 33. Cox DR, Hinkley DV. Theoretical statistics. CRC Press;1979.
 34. Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to 

multiple testing. J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.
 35. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B (Stat Methodol). 2002;64(3):479–98.
 36. Strimmer K. A unified approach to false discovery rate estimation. BMC Bioinf. 2008;9(1):303.
 37. John Simes R. An improved bonferroni procedure for multiple tests of significance. Biometrika. 1986;73(3):751–4.
 38. Wei Z, Li H. A Markov random field model for network‑based analysis of genomic data. Bioinformatics. 

2007;23(12):1537–44.
 39. Sun W, Tony Cai T. Large‑scale multiple testing under dependence. J R Stat Soc Ser B (Stat Methodol). 

2009;71(2):393–424.
 40. Wei Z, Sun W, Wang K, Hakonarson H. Multiple testing in genome‑wide association studies via hidden Markov 

models. Bioinformatics. 2009;25(21):2802–8.
 41. Xiao J, Zhu W, Guo J. Large‑scale multiple testing in genome‑wide association studies via region‑specific hidden 

Markov models. BMC Bioinf. 2013;14:1–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Control of false discoveries in grouped hypothesis testing for eQTL data
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	Structure of the eQTL data and the hypotheses
	An empirical Bayes model
	The random effects model and testing procedure for group-level FDR control (REG-FDR)
	The Z-REG-FDR model

	Results
	Simulations: performance of Z-REG-FDR when all assumptions are satisfied
	Simulations: performance of Z-REG-FDR as an approximate maximum likelihood estimation
	Behavior of the expected pseudo-log-likelihood of Z-REG-FDR
	Simulations: comparison of Z-REG-FDR with other methods
	Analysis of real data

	Discussion
	Acknowledgements
	References


