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Background
The post-genome era is characterized by increasing availability of large, heteroge-
neous datasets detailing the molecules driving biological systems. These include 
genome-scale datasets encompassing the expression and dynamics of genes and their 
products [1–3], their localization [4, 5], interactions with other biomolecules [6, 7] 
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and organization within pathways [8, 9]. A major challenge is how best to unlock 
the full potential of these rich datasets to advance our understanding of complex 
biological processes. To address this challenge, a variety of computational modeling 
platforms have been developed, capable of exploiting these datasets to simulate the 
dynamics of the underlying systems at the meso-scale, bridging the nanometer scale 
of atoms and the micrometer scale of cellular structures [10–13].

Despite the availability of these platforms, widespread adoption has been limited, 
in part due to barriers concerning the level of computational expertise required for 
their operation. To help overcome these limitations, toolkits such as CellBlender [14], 
have been developed to help with the construction and visualization of models. At the 
same time there is a need for simulation platforms for cell biologists, without skills in 
computing, who nevertheless represent the domain experts and target audience for 
meso-scale simulators. To meet this need, we have developed Cell4D, a robust spatial 
stochastic simulation platform with integrated graphical visualization and a browser-
based editing tool supporting the creation of sophisticated models written in XML 
format, compatible with Linux operating systems and allowing for further feature 
enhancements.

To demonstrate the ability of Cell4D to model a biological system and explore 
hypotheses, we applied it to examine the dynamics of carcinoembryonic antigen-
related cell adhesion molecule 1 (CEACAM1) in T-cell activation [15]. CEACAM 
proteins are glycosylated transmembrane adhesion molecules featuring an N-termi-
nal IgV-like domain together with a variable number of IgC2-like domains, a trans-
membrane domain and a cytoplasmic tail [16–18]. They are widely expressed in many 
cell types and play a role in multiple functions including cell growth, metabolism and 
responding to infection. CEACAM1 is expressed by activated T cells and serves to 
transmit extracellular signals across the cell membrane through intercellular (trans) 
homophilic and heterophilic binding through its transmembrane domain to inhibit 
continued activation [19]. In resting T cells, CEACAM1 largely exists in the form of 
cis-homodimers, incapable of binding extracellular ligands. Clathrin-mediated inter-
nalization further ensures a relatively low concentration at the cell surface. Upon 
binding by active calmodulin, cis-homodimers disassociate facilitating trans-binding 
of the monomeric form of CEACAM1 to other monomers of CEACAM1 on adja-
cent cells [19]. Such binding appears higher in the presence of multiple IgC2 domains, 
suggesting a role for local accumulation (clustering) of CEACAM1 monomers [16, 
20]. Regulation of CEACAM functionality is thought to operate through localized 
concentrations of  Ca2+ [21] as well as phosphorylation of CEACAM1 by Src-family 
kinases such as Lck [22]. Furthermore, it has been hypothesized that regulation may 
also involve the preferential sequestration of CEACAM1 monomers within mem-
brane microdomains [23]. Further details on CEACAM functionality are provided in 
the section Clustering of CEACAM1 at the cell surface indicates a role for lipid rafts in 
regulating signaling and is dependent on calmodulin activation.

Applying Cell4D we examined the dynamics of calmodulin activation through calcium 
binding and subsequently integrated this model to examine the role of calmodulin, Lck 
kinase and membrane microdomains to regulate the formation of local surface clusters 
of monomeric CEACAM1 to promote trans-binding.
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Implementation
Cell4D is written in C++ and is supported to run under Linux (Ubuntu versions 20.04 
and 22.04). To perform simulations, model files are loaded into the simulation environ-
ment which features a graphical interface that allows for real-time visualization of the 
running simulation (Fig. 1A). To help with the generation of model files, a Cell4D Model 
Editor—accessible at https:// comps ysbio. org/ cell4d is provided (Fig.  1B). Simulations 
iterate over a user-defined number of timesteps. Within each timestep, molecular dif-
fusion events are first simulated followed by reaction events (Fig. 1C). For small mol-
ecules represented by local concentrations within a lattice cell (c-voxel), the diffusion 
into neighboring c-voxels are calculated deterministically (Fig.  1D; [24]). C-voxels are 
typically used to represent spaces between 0.01 and 1 µm in length. For molecules and 
complexes represented as point particles, displacement is determined either stochasti-
cally (i.e., Brownian motion e.g. Fig. 1E) or deterministically (i.e. active transport). Full 
Details of the System and Methods are provided in Additional file 8.

Molecular movement and reactions

Point particle movement is modeled through random walks, while bulk particle move-
ment is modeled using Fick’s laws of diffusion [24] and is simulated using the forward 
Euler method [25]. Reactions are implicitly defined based on the presence of substrates. 
Cell4D allows the definition of unimolecular and bimolecular reactions. For bimo-
lecular reactions involving point particles, Cell4D uses the Andrews-Bray-adjusted 

Fig. 1 Conceptual overview of Cell4D. A Screenshot of the Cell4D graphical interface. For further details 
on the interface see the project GitHub: https:// github. com/ Parki nsonL ab/ cell4d. B Model design interface. 
A web interface for creating and editing Cell4D model files. Custom XML model files can be loaded in by a 
user, or a preset example model can be selected. Once a model is loaded in, parameters of the model will 
automatically fill the text boxes in the interface. Users can edit the model by modifying the text in each 
textbox; real-time error messages will appear to prevent invalid inputs from being added. When the “Save” 
button on the bottom is pressed, if no textboxes have invalid inputs, the information in the text boxes of the 
current active tab will be saved to the loaded model. Users can switch between tabs that contain different 
model information such as modifying compartment spaces, molecular species, and reactions. Once all 
changes are saved on each tab, the user can click “Save model” on the top banner to download the loaded 
model onto their local device. C Simulation set up and flow time cycle logic. Parameters that describe system 
behavior such as how molecules behave within the simulation space as well as the way they interact with 
other molecules are described in an XML input file, which is then used to initialize the simulation space. The 
simulation then cycles through a series of steps until the end condition is met. Output occurs in two forms: 
tab-delimited files (.tsv) of molecule counts at each time step, and particle logs recording the position and 
state information of molecules in the simulation. D Diffusion of bulk molecules shown for a single voxel. At 
each time step, a portion of the bulk molecules for each c-voxel will diffuse into a neighboring c-voxel, based 
on the current concentration and the molecule’s diffusion rate constant. This is calculated for all c-voxels at 
every timestep. (i) an initial setup where a c-voxel contains 100 molecules (orange) with three adjacent voxels 
that contain 5 molecules each (blue). Diffusion of molecules into grey voxels are disabled in this example. 
(ii) bulk molecule diffusion calculation is done for each voxel which depends on the system timestep length 
setting and the concentration of molecules in each voxel. (iii) image shows the concentration of molecules 
in each voxel after one timestep. E Implementation of off-lattice movement of point particles. (i) and (ii) 
show the diffusion path of the reactant (blue) after 1 µs for 0.2 µs and 1 µs timestep systems respectively. In 
(i), using 0.2 µs timesteps, the particle was able to enter the reaction radius of the first reactant (red) which 
would allow a reaction to occur. In (ii), using 1 µs timesteps, although the final diffusion path of the particle 
remains the same, there is no step where the second reactant has an opportunity to react with the first 
reactant.To avoid such cases Cell4D implements the Andrews-Bray-adjustment to artificially increase reaction 
radii of molecules according to the size of the time step (iii and iv) [26]

(See figure on next page.)

https://compsysbio.org/cell4d
https://github.com/ParkinsonLab/cell4d
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Smoluchowski method to reduce the possibility of missing reactions due to insufficient 
time-step resolution (Fig. 1E). For further details see Additional file 8.

Modeled systems

Calmodulin activation

Models used a simulation environment defined as a cube with side length of 8 ×  10–7 m 
(0.08 µm). Calcium ions were defined as bulk molecules and calmodulin was defined as 
point particles with N- and C-terminal bindings sites. For some simulations, the model 
space was divided into a lattice comprising 10 × 10 × 10 c-voxels (0.08 µm side length) 
which were subdivided into five 2 × 10 × 10 cross-sectional compartments (quintiles Q1 
thru Q5). Within Q1, four c-voxels were defined as sites of calcium-release.
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CEACAM1 activation

Models used a simulation environment composed of 6 × 6 × 6 c-voxels of length 0.2 μm, 
subdivided into an outer ‘membrane’, a ‘cytosolic interface’, a ‘cytosol’ and an ‘organelle’. 
For some simulations, within the membrane, microdomains were defined to represent 
lipid rafts. The model features CEACAM1 molecules capable of forming monomers or 
dimers, Lck molecules capable of phosphorylating CEACAM1, calmodulin which can 
dissociate CEACAM1 dimers to monomers and calcium, which can activate calmodulin.

Details of both systems are provided in Additional file 8.

Results
Cell4D accurately simulates diffusion and reaction events

Cell4D is a spatio-temporal simulation platform that performs simulations within 
a space defined by cubic lattice sites (c-voxels). The simulator features reaction-based 
rules governing molecular interactions, formation and dissolution of protein complexes, 
state changes (e.g., allowing post-translational modifications), enzymatic reactions and 
defined events (e.g., molecule trafficking between compartments). Using a hybrid on/off 
lattice approach, small molecules are represented as concentrations, diffusing via a grid 
pattern dividing the overall model space while larger molecules can be tracked as point 
particles that freely diffuse off-lattice. Within the lattice, multiple compartments can be 
defined (e.g., membranes or other organelles), providing boundaries and allowing the 
definition of compartment-specific rules governing molecule behavior. Compartments 
can contain other compartments and both compartments and the lattice environment 
itself can be trimmed to allow the representation of custom geometries. Molecules can 
be defined to occupy specific compartments (i.e. offering the option to exclude mole-
cules from certain compartments). When a particle encounters the boundary of a disal-
lowed compartment or the edge of the simulation space, its trajectory is deflected, such 
that it continues to move within its original lattice space. In the case of small molecule 
concentrations within a lattice, diffusion is disabled across the interface with restricted 
compartments. Rules may be combined within the same data model without the need 
for additional custom modifications and re-compilation of the C++ code.

In initial simulations we benchmarked the ability of Cell4D to accurately model 
molecular diffusion and reaction events (see Additional file  8). Focusing on diffusion, 
we found that Cell4D accurately models Brownian motion for both point particles and 
bulk molecules as predicted by Fick’s laws (Additional file 1: Fig. S1 and Additional file 2: 
Fig. S2). In terms of reactions, simulated product formation for unimolecular reactions 
matched theoretical yields under all tested conditions (Additional file  3: Fig. S3). For 
bimolecular reactions involving both bulk molecules and point particles, we found that 
while timescale had negligible impact, accuracy increased for simulations with higher 
rates of diffusion (Additional file 4: Fig. S4). Bimolecular reactions involving only point 
particles were found to be sensitive to timescale and reaction rate (Additional file 3: Fig. 
S3B). To correct these errors identified in Additional file 3: Fig. S3B, we implemented 
the Andrews-Bray (AB) adjustment of the Smoluchowski method (Additional file 5: Fig. 
S5), resulting in high accuracy predictions under all conditions except those violating 
the assumption that the main constraint for reaction rates stems from particle collision 
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[26]. Having benchmarked the performance of Cell4D, we next demonstrate the ability 
of Cell4D to simulate a biological system.

Application of Cell4D to investigate mechanisms underlying CEACAM1 mediated T‑cell 

activation

We chose to focus on CEACAM1 mediated T-cell activation to examine two aspects of 
Cell4D’s capacity to model biochemical pathways. First, we use Cell4D to explore the 
dynamics of calcium:calmodulin binding dynamics, a critical step in the activation of 
CEACAM1 signaling. Second, we use Cell4D to examine the hypothesis that CEACAM1 
signaling is regulated through its spatial organization at the cell surface and the underly-
ing mechanisms that compete to determine its local concentration.

Calcium microdomains play a key role in calmodulin activation

To model calmodulin activation we applied a cooperative binding model [27] to con-
firm the importance of calcium microdomains in overcoming cellular buffering in sig-
nal transduction. Details on the cooperative binding kinetics involving the four calcium 
binding domains of calmodulin are provided in Additional file 8. First we examined a 
baseline model to establish that calmodulin binding occurs under physiological cal-
cium concentrations. To compare simulations with theoretical predictions, we initially 
predicted the distribution of the four potential states of calmodulin: CaM_1, CaM_2, 
CaM_3, and CaM_4, representing calmodulin molecules with 1, 2, 3, or 4 binding sites 
occupied with calcium respectively, for 2  µM calmodulin exposed to a range of  Ca2+ 
concentrations (0 to 16  μM) in a volume of 5 ×  10–16 L (0.8  µm side length). Calcula-
tions were performed using the forward Euler method under the well-mixed assump-
tion (see Additional file  8). The same conditions were then reproduced using Cell4D 
by placing the same concentration of molecules distributed randomly in a simulation 
space of 4 × 4 × 4 c-voxels of length 0.2  μm. Results from simulations were similar to 
theoretical predictions and showed that under  Ca2+ concentrations relevant to T cell 
activation (0.1 µM–1.2 µM), the proportion of saturated (activated) calmodulin (CaM_4) 
was negligible (< 1%; Additional file 6: Fig. S6). However, we found that modest activa-
tion of calmodulin (~ 20%) required  Ca2+ concentrations an order of magnitude higher 
(> 10 µM) than observed experimentally [28, 29].

While the average concentration of calcium in a cell is approximately 1–2 µM, local 
concentrations can be significantly higher (of the order 100  µM–1  mM) in regions 
proximal to active calcium channels, which we term microdomains [27]. To explore 
the range and impact of such channels on calmodulin activation, we constructed a 
model composed of five compartments (defined as quintiles, Q1-Q5) each com-
posed of 2 × 10 × 10 c-voxels of 0.08 µm. 1 mM of  Ca2+ was then introduced in Q1 at 
each timestep and allowed to freely diffuse and exit from Q5 (Fig. 2A). To assess the 
potential impact of the spatial organization of  Ca2+ release, three arrangements were 
investigated (see Additional file 8). As expected,  Ca2+ concentrations decreased with 
increasing distance from the source, ranging from 1-10 µM across the five quintiles 
(Fig.  2B). Further, the relative proportion of activated calmodulin (CaM_4) reflects 
the distance from the source of  Ca2+ (from 5–10% to 20–30% for Q5 and Q1 respec-
tively; Fig.  2C). Configuration of calcium channels had minimal impact on either 
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calcium concentrations or activated calmodulin. Interestingly, in Q5, despite the pro-
portion of primed calmodulin (CaM_2) being ~ 75%, activated calmodulin remained 
relatively low (5–10%). This suggests that while elevated background concentrations 
of  Ca2+ are sufficient to maintain a primed population of calmodulin, its activation 
appears transient and likely requires proximity to sources of  Ca2+, a local effect that is 
not well captured in well-mixed models.

Having established the conditions under which elevated  Ca2+ levels lead to calmodulin 
activation, we next consider factors affecting the spatial organization of CEACAM1 in 
response to T-cell activation.
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Clustering of CEACAM1 at the cell surface indicates a role for lipid rafts in regulating signaling 

and is dependent on calmodulin activation

The primary mechanism of CEACAM1 function is to transduce extracellular signals to 
the cytosol through intracellular trans-binding. In resting T cells, CEACAM1 concen-
tration at the cell membrane remains relatively low due to clathrin-mediated internali-
zation, involving the adaptor protein complexes AP1 and AP2. CEACAM1 in resting T 
cells is primarily found in the cis-dimeric form, predicted to be inactive due to steric 
hinderance that prevents access to the ITIM sites in the cytoplasmic tail, blocking SHP1 
recruitment which leads to downstream CEACAM1 inhibitory function (not consid-
ered here). Upon binding with calmodulin, CEACAM1 dimers are converted to their 
monomeric form. Phosphorylation of tyrosine residues in the ITIM sites by Lck, both 
blocks binding to AP1 and AP2 (preventing internalization and resulting in retention 
of CEACAM1 at the cell surface) as well as promote binding to their counterparts on 
adjacent cells in trans (resulting in the suppression of host immune responses). With the 
observation of CEACAM1 clustering at the cell surface, it has further been suggested 
that the CEACAM1 binding dynamics may also be driven, at least in part, by partition-
ing through lipid rafts [16, 21, 23]. Here we are interested in using Cell4D to examine 
potential mechanisms, including interactions involving calcium, calmodulin, Lck kinase 
as well as the involvement of lipid rafts, that drive the accumulation of CEACAM1 at the 
cell surface (Fig. 3A).

To examine the impact of lipid rafts, we constructed two models (raft and no-raft 
models). Both models involve an environment composed of 6 × 6 × 6 voxels of length 
0.2 μm sub-divided into four compartments representing the cell membrane, a region 
of cytosol immediately adjacent to the membrane, the rest of the cytosol and an orga-
nelle (see Additional file  8). Particles in the membrane were restricted to diffusion 
in 2-dimensions only. Calmodulin was confined to the cytosolic interface with the 

Fig. 3 Modeling CEACAM1 signaling. A Schematic of reactions used in the model. CEACAM1 dimers 
are transported between the membrane and cytosol compartments. Within the membrane, CEACAM1 
dimers disassociate to monomers based on interactions with activated calmodulin. Src-family kinases (Lck) 
phosphorylate the ITIM regions of the CEACAM1 cytoplasmic tail, preventing its transport back to the cytosol 
and shifting the equilibrium of CEACAM1 localization to the membrane. The membrane region can be 
defined into lipid-ordered (lipid rafts) and lipid-disordered regions. CEACAM1 preferentially associates with 
these regions based on its oligomeric state, as shown by the solid and dashed orange arrows between the 
two membrane regions that indicate transport. The end state of the activated T cell consists of the clustering 
of CEACAM1 monomers within lipid rafts. B Representation of a 2D membrane compartment with lipid raft 
sub-compartments. CEACAM1 dimers (green) are generally localized outside of lipid raft regions (indicated in 
dark yellow), while CEACAM1 monomers (blue) preferentially localize within lipid raft compartments. C The 
lipid raft CEACAM1 model was tested using 0, 10, 20 molecules of Lck and 0, 2, 5, 10, 20 molecules of active 
calmodulin to examine the effects of both proteins on CEACAM1 surface expression. Error bars represent 
standard deviation for 6 replicates. Results show that CEACAM1 surface concentration is dependent on the 
concentration of activated calmodulin, but not Lck. D Impact of trans-binding rate constants (i.e. unbound 
monomer to trans-bound (immobilized) monomer) on CEACAM clustering. Simulations were performed 
for both the lipid raft model (left) and the no-raft model (right). The binding rate constant shows a positive 
correlation with the total count of trans-bound (clustered) CEACAM1 monomers. For low binding constant 
conditions in the presence of Lck and CaM in the no-raft model, there appears to be a threshold effect where 
the rate of cluster formation is slow in the beginning of the simulation, but accelerates after a certain point. 
For the no-raft Lck-absent models, low calmodulin levels did not lead to a significant clustered CEACAM1 
population, while high calmodulin only produced an increased surface CEACAM1 concentration at the 
highest binding rate constant

(See figure on next page.)
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membrane while particles representing CEACAM1 could move between compart-
ments through defined transport events (representing clathrin-mediated internali-
zation and export to the membrane). In the raft model, CEACAM1 monomers are 
preferentially enriched in membrane microdomains, while CEACAM1 dimers are 
preferentially excluded. Further, Lck kinases, previously shown to be enriched and 
functionally segregated in lipid rafts [30], were constrained within microdomains, 
representing rafts, defined within the membrane (Fig.  3B). Thus, in this model, Lck 
is only able to phosphorylate CEACAM1 (through its ITIM domain) located within 
the lipid rafts. Simulations were performed for 200,000 timesteps of 50 μs (10 s total) 
and explored the impact of different concentrations of Lck and  Ca2+-activated calmo-
dulin, on the concentration and distribution of CEACAM1. Models initiated with no 
calmodulin or Lck represent the T cell model at rest, while the T cell activated state 
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was modeled through the inclusion of 20 molecules of activated calmodulin and Lck 
(0.1 μM).

For both raft and no-raft models, surface clustering of CEACAM1, representing trans 
bound CEACAM1, was found to depend on the availability of activated calmodulin 
(CaM_4; Fig. 3C). However, counter-intuitively, in the absence of rafts, the total amount 
of CEACAM1 localized to the membrane exceeded that of the raft model (Additional 
file 7: Fig. S7). One possible explanation is that the preferential accumulation of mon-
omeric CEACAM1 in the rafts may increase the relative concentration and promote 
self-association into homodimers, thus reducing the amount of monomeric CEACAM1 
available for phosphorylation by Lck. Where such unexpected behaviors emerge, there 
is an opportunity to question the model and its assumptions. Here, possible refinements 
could include changes in the relative rates of CEACAM transport, trans-binding or, the 
incorporation of additional components modeling the activation and partitioning of Lck 
into lipid rafts.

To further explore this behavior, we examined the impact of CEACAM1 dimerization 
rate constants in both the raft and no raft models, on CEACAM1 clustering (Fig. 3D). 
For most simulations, the number of clustered CEACAM1 molecules (defined as mono-
mers of CEACAM1 that have been transiently and reversibly immobilized on the mem-
brane—mimicking trans-binding) increased over the course of the simulation. Unlike 
the no raft model in which clustering of CEACAM1 was sensitive to the dimerization 
rate constants, such constants had minimal impact in the raft model. This suggests that 
for CEACAM1 signaling, in addition to regulating local concentrations of Lck, lipid rafts 
may also play an important role in modulating the ability of CEACAM1 to form clusters, 
reducing its sensitivity to reaction kinetics.

Discussion
We present Cell4D, a novel tool for the spatiotemporal simulation of biological pro-
cesses and pathways. Combining deterministic, cellular automata for the efficient dif-
fusion of small molecules (as concentrations within a virtual lattice), with probabilistic 
Brownian motion of discrete molecules, Cell4D is a feature-rich and flexible program 
that can accurately simulate a variety of biological pathways. Cell4D is among the few 
cell simulation programs that can produce biologically accurate simulations while pro-
viding a graphical output of the model which we consider to be an essential feature in a 
tool designed to be used by non-computational, biological domain experts for hypoth-
esis generation. Alternative, popular simulators in this space include Smoldyn [10] and 
VCell [31]. Smoldyn is more established, currently offering a wider variety of modeling 
options than Cell4D, but this comes at the expense of usability. Compared to Cell4D’s 
graphic model building tool and underlying user readable XML model files, Smoldyn 
data models are formatted in plain text using a syntax that may be unintuitive for users 
inexperienced with programming. Also, Smoldyn simulation outputs are not enabled 
by default. Rather, it is up to the user to define the data they are interested in analyz-
ing, then create an output format so that it can be processed and analyzed downstream. 
VCell is also feature-rich, offering a variety of model types and a graphic interface for 
model building making it a friendly choice for beginning modelers. However, spatial-
stochastic models do not produce simulation data output, a crucial feature for users who 
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are ultimately interested in quantitative analysis of their model systems. Cell4D bridges 
this gap by providing both graphical and non-graphical modes, the latter capable of gen-
erating quantitative results in the absence of graphical overhead. Documentation is also 
provided for advanced users who wish to use Cell4D in parallel on high performance 
computing clusters.

In our initial simulations, we validated the ability of Cell4D to accurately model molec-
ular diffusion and reactions, the latter exploiting the Andrews-Bray (AB) adjustment of 
the Smoluchowski method [26]. Next, we applied Cell4D to model two complementary 
aspects of CEACAM1-mediated signaling: a calcium-calmodulin interaction model 
and a CEACAM1 localization model. Previously it has been suggested that monomeric 
CEACAM1 cluster at the cell surface to help amplify CEACAM1-mediated signaling, 
potentially through the formation of a lattice-like arrangement of trans-dimers involving 
CEACAM1 monomers on neighbouring cells[16, 21, 23]. Our simulations support the 
requirement for local and transient spikes in  [Ca2+] to activate primed calmodulin, and 
subsequently predict a dependence of CEACAM1 cluster size and surface concentra-
tion on active calmodulin. Furthermore, we showed that competing mechanisms have 
the potential to influence CEACAM1 clustering including the sequestration of Lck and 
CEACAM1 within lipid rafts, which at the same time may require a threshold amount 
of CEACAM1 to maintain the formation of clusters. In addition to representing an 
important biological process, with the involvement of molecular diffusion, spatial com-
partmentalization, active transport, reactions and state changes, CEACAM1 signaling 
represents a suitably complex system to test the functional capabilities of Cell4D.

It has been previously shown that CEACAM1 clusters in lipid raft regions are pre-
dominantly monomeric, while CEACAM1 outside of lipid rafts primarily exists in a 
dimeric state [32]. To replicate this behavior in Cell4D, we defined microdomains, rep-
resenting lipid rafts, to preferentially accumulate monomeric CEACAM1 (and Lck) and 
exclude dimeric CEACAM1. Furthermore, in our model CEACAM1 monomers have a 
low probability of spontaneously becoming immobilized (representing a trans-binding 
event). This combination of accumulation and immobilization amplifies the localization 
of monomers within lipid-rafts. Furthermore, through increasing the local concentra-
tion of CEACAM1 monomers, clustering is promoted. Thus, the presence of lipid raft 
regions in the Cell4D models creates a spatial dynamic that matches the known observa-
tion of CEACAM1 clusters being primarily monomeric within lipid rafts, and dimeric 
CEACAM1 being localized in lipid-disordered regions outside of rafts [33].

We acknowledge that our models are based on hypothesized mechanisms as well as 
being subject to inevitable modeling constraints. For example, since calcium ions dif-
fuse quickly and interact with calmodulin at fast kinetic rates  (107 to  1010  M−1  s−1), the 
system resolves quickly requiring less simulation time. However, these kinetic rates 
necessitate a high-resolution time scale to avoid missing reactions between timesteps. 
In comparison, the localization model involving CEACAM1 transport, with molecular 
species that have slower diffusion rates and slower reaction rates  (104 to  107   M−1   s−1), 
require more simulation time to reach equilibrium. The solution was the creation of 
separate, complimentary models, which apart from demonstrating Cell4D’s modeling 
flexibility, allowed each part of the pathway to be simulated with appropriate simulation 
time and space scales.
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We further note that the simulation of vesicle formation and transport of 
CEACAM1 between compartments was simplified using a single, probabilistic 
transport event. Future modifications of Cell4D are anticipated to support dynamic 
compartments (i.e., compartments which move, merge with, or bud from other com-
partments). In initial experiments, we examined the inclusion of clathrin adaptor 
protein complexes, AP1 and AP2, as discrete point particles in the cytoplasmic and 
cytosolic interface regions. However, the approach of modeling clathrin adaptor bind-
ing as bimolecular reactions had two major limitations. First, binding of an adaptor 
to CEACAM1 does not directly transport the molecule to its destination. Instead, 
transport requires a host of additional proteins to recruit clathrin and promote the 
formation of vesicles containing multiple copies of CEACAM1 [34]. Second, fol-
lowing assumptions for Smoluchowski reactions, reactions in Cell4D occur at rates 
that are diffusion-limited. Given that vesicles form over a timescale of the order of 
seconds, their formation violates this assumption. Although Cell4D could simulate 
sufficient CCV transport events to reach system equilibrium, an implementation of 
these events would require simulations lengths of hundreds of millions of timesteps, 
requiring extended computational run-times. As an example, the CEACAM1 lipid 
raft model described above were performed for 200,000 timesteps, taking approxi-
mately 5 h on a single Intel 80-thread CPU running at 2.4 GHz.

Computational models can be a powerful tool for understanding biological systems. 
Ideally, models maintain a balance where details that have a low impact on system 
behavior are ignored or abstracted away, while more critical aspects are preserved, 
producing models robust to input parameters and capable of emergent behaviors that 
provide novel insights and testable hypotheses. Such tools, we argue, are best con-
structed and interpreted by cell biologists who are the domain experts. For this we 
built Cell4D to be a user-friendly, feature-rich, and flexible framework for users to 
develop complex pathway models and generate large amounts of simulation data. Fur-
ther, we developed a graphic interface to allow visualization of Cell4D simulations 
in real time. Such visualizations enhance a user’s understanding of the system being 
modeled which is especially useful when observing the impact of changing param-
eters. For example, visualization of our CEACAM1 system allows users to see how 
increasing concentrations of calmodulin result in increased surface accumulation of 
CEACAM1. Examples of simulation visualizations are provided as movies on the pro-
ject GitHub site: https:// github. com/ Parki nsonL ab/ cell4d.

The current Cell4D modeling environment is implemented through collections of 
c-voxels allowing the definition of arbitrary shapes representing different e.g. com-
partments. In the future, we hope to expand on this capability by providing a sculpt-
ing tool to make the process of defining biologically shaped compartments more 
practical. Beyond this, we suggest that the most significant improvements to be made 
in terms of simulating a ‘real biology environment’ within this modeling paradigm 
will involve improving efficient use of memory and compute resource, enabling the 
simulation of models that are larger and/or higher resolution. Nevertheless, we stress 
that simulations need only be sufficiently detailed to observe a given phenomenon in 
order to have empirical benefit (Additional file 8).

https://github.com/ParkinsonLab/cell4d
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