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Abstract 

Background: Next-generation sequencing (NGS) technologies offer fast and inex-
pensive identification of DNA sequences. Somatic sequencing is among the primary 
applications of NGS, where acquired (non-inherited) variants are based on comparing 
diseased and healthy tissues from the same individual. Somatic mutations in genetic 
diseases such as cancer are tightly associated with genomic instability. Genomic insta-
bility increases heterogenity, complicating sequencing efforts further, a task already 
challenged by the presence of short reads and repetitions in human DNA. This leads 
to low concordance among studies and limits reproducibility. This limitation is a sig-
nificant problem since identified mutations in somatic sequencing are major biomark-
ers for diagnosis and the primary input of targeted therapies. Benchmarking studies 
were conducted to assess the error rates and increase reproducibility. Unfortunately, 
the number of somatic benchmarking sets is very limited due to difficulties in validat-
ing true somatic variants. Moreover, most NGS benchmarking studies are based on rel-
atively simpler germline (inherited) sequencing. Recently, a comprehensive somatic 
sequencing benchmarking set was published by Sequencing Quality Control Phase 
2 (SEQC2). We chose this dataset for our experiments because it is a well-validated, 
cancer-focused dataset that includes many tumor/normal biological replicates. Our 
study has two primary goals. First goal is to determine how replicate-based consensus 
approaches can improve the accuracy of somatic variant detection systems. Second 
goal is to develop highly predictive machine learning (ML) models by employing 
replicate-based consensus variants as labels during the training phase.

Results: Ensemble approaches that combine alternative algorithms are relatively com-
mon; here, as an alternative, we study the performance enhancement potential of bio-
logical replicates. We first developed replicate-based consensus approaches that utilize 
the biological replicates available in this study to improve variant calling performance. 
Subsequently, we trained ML models using these biological replicates and achieved 
performance comparable to optimal ML models, those trained using high-confidence 
variants identified in advance.

Conclusions: Our replicate-based consensus approach can be used to improve 
variant calling performance and develop efficient ML models. Given the relative ease 
of obtaining biological replicates, this strategy allows for the development of efficient 
ML models tailored to specific datasets or scenarios.
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Introduction
A DNA sequence consists of an ordered set of nucleotides [1]. It is inherited from par-
ents and establishes the continuity of species [2]. Recent improvements in sequencing 
technologies have enabled detailed profiling of DNA sequences at reduced costs and 
within shorter timeframes [1]. An obvious target for these technologies was the famil-
ial diseases for which the responsible locus was unknown. Today, we know both the 
responsible loci and the molecular mechanisms for many such diseases through ger-
mline sequencing [3].

Cancer is defined as uncontrolled cell growth and is a major threat to human health, 
which causes millions of deaths each year [4]. Conventional methods used to cure can-
cer, like chemotherapy and radiation, not only inflict considerable harm on non-tumor 
cells but also profoundly affect patient’s quality of life [5]. Understanding the molecular 
changes that lead to cancer is crucial to develop efficient targeted therapies [6]. Hetero-
geneity among the patients within a cancer type and among different cancers requires 
detailed profiling of genomic changes for each patient [7]. For many genetic diseases, 
including cancer, both inherited-germline and acquired-somatic variants are important 
[8]. While germline and somatic sequencing share similarities, significant distinctions 
also exist between the two [9]. In germline sequencing, the sequence of target samples is 
compared against the (global) reference genome, while somatic sequencing involves the 
comparison of diseased and non-diseased (healthy) samples from the same individual.

Currently, almost all of the sequencing technologies are based on short reads of DNA 
with sizes ranging from fifty to a few thousand nucleotides [10]. These reads are not per-
fect, and error rates increase with read length [10]. These reads are mapped to the global 
reference genome, allowing an imperfect match considering the differences between the 
reference genome and the target sample. Here, the number of possibilities is too high 
to cover considering the size of the genome therefore, heuristics are developed to find 
near-optimal solutions for reasonable time and resources [11]. In addition to read errors, 
frequent repeats and transposable elements in the human genome make mapping more 
difficult. Structural events such as inversions, indels, and copy number changes in cancer 
samples make somatic sequencing even more problematic. Finally, variants are detected 
based on the reference and alternative reads that are mapped to the same locus [12]. For 
germline variants, this is relatively straightforward since variant frequency (portion of 
alternative reads) is expected to be 0.5 (half of the reads) for heterozygous, and 1 (all of 
the reads) for homozygous variants. On the other hand, in somatic variants, contami-
nation and heterogeneity decrease the alternative allele frequencies and make reliable 
detection of complex variants extremely challenging.

These difficulties lead researchers to develop solutions to improve the reliability of 
variant detection. As the ultimate solution, variants can be validated through manually 
targeted approaches such as PCR and Sanger sequencing [13]. Due to its cost and time-
intensive nature, this process can only be feasibly conducted for a limited number of 
variants within each sample. Another approach is using ML to detect reliable variants 
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[14]. ML models require training data from samples with known variants. Ideally, the 
training and test data should closely resemble each other for effective model train-
ing. Unfortunately, the number of such training samples is very limited, especially for 
somatic sequencing [15]. Heterogeneity among cancer datasets makes it very difficult to 
find appropriate training sets. Scientists have developed simulation frameworks to cre-
ate in silico variants to construct training datasets for different conditions such as alter-
native read depth, heterogeneity, and purity levels [16]. Nonetheless, creating realistic 
variants and proving their equivalence to real variants are also very challenging tasks.

Recently, large-scale benchmarking studies have been developed to overcome this 
major problem. Broader use and comparative simplicity made germline sequencing the 
major target of benchmarking and reproducibility studies such as GIAB [17]. Such stud-
ies are scarce for somatic sequencing, even though there is a greater demand for them. 
SEQC2 consortium [18] is an important exception. Their recent publications include 
datasets for detailed profiling of both non-tumor and tumor cell lines that belong to the 
same patient [15, 19]. In addition to raw data with many replicates, which are obtained 
from various centers and platforms, they also include high-confidence regions and high-
confidence variants for benchmarking.

We aimed to enhance variant calling performance and develop ML models using 
different replicate-based variant lists in this study (Fig. 1). To address this question, 

Fig. 1 Overview of the study. This study used 12 somatic fresh SEQC2 T/N (Tumor/Normal) biological 
replicates sequenced at six centers. Three centers have three replicates, and three have one replicate. We 
developed three replicate-based consensus approaches (within-center, cross-center, and all centers) using 
the results of three replicate centers. In the within-center approach, we used replicates from the same center; 
in the cross-center approach, we used replicates from different centers; and in the all centers approach, we 
used the results of all replicates as input. We accepted the declared high-confidence variants as ground truth 
and extracted the precision, recall, and F1 scores of these approaches. In the second part of the study, we 
trained machine learning models based on the results of these approaches (detected somatic variants). We 
used the information on the first five chromosomes in the training set and the remaining chromosomes in 
the test set. We also trained machine learning models based on declared high-confidence variants (instead 
of developed approaches). Finally, we extracted the precision, recall, and F1 score of these trained machine 
learning models by accepting declared high-confidence somatic variants as ground truth



Page 4 of 19Cebeci et al. BMC Bioinformatics          (2024) 25:124 

we examine the effect of combining multiple biological replicates on variant calling 
performance. In pursuit of this goal, we employed the latest datasets from the SEQC2 
consortium. We conducted comparisons to assess the potential gains achieved on var-
iant calling performance by utilizing replicates sourced from the same center as well 
as replicates obtained from different centers. We focused on whole exome sequencing 
(WES) samples, considering the wider use and more straightforward interpretation 
for coding regions. We have processed the available exome samples on two map-
pers (bwa [20], bowtie 2 [21]) and three variant callers (Mutect2 [22], Strelka2 [23], 
and SomaticSniper [24]). Then, we developed replicate-based consensus (multiply-
detected variants) approaches for the pipelines in the following scenarios: (1) among 
replicates in the same center (within-center), (2) among replicates from different 
centers (cross-center), and (3) replicates from all centers (all centers). We compared 
the detected variants with high-confidence variants in high-confidence regions for 
performance evaluation. Finally, we trained ML models using the multiply-detected 
variants as labels in the training set. We performed all ML experiments with the Neu-
Somatic [25] package in ensemble mode. Subsequently, we evaluated the performance 
of these ML models against those trained using previously declared high-confidence 
variants.

Results
SEQC2 exome dataset and somatic pipeline used

SEQC2 exome dataset includes FASTQ files from tumor and normal samples of the 
same individual. These samples were sequenced across six different centers and encom-
passed a total of 12 replicates. Among the centers; European Infrastructure for Transla-
tional Medicine (EA), Loma Linda University (LL), and National Cancer Institute (NC) 
have one replicate, while centers Fudan University (FD), Illumina (IL), and Novartis 
(NV) have three replicates. While the majority of germline variants are at 50% and 100% 
variant frequencies in a given sample, somatic variants may be at lower frequencies due 
to intra-sample heterogeneity. Therefore, coverage is a crucial factor in somatic variant 
detection. Figure 2 shows the number of reads, coverage, and mapped reads of each rep-
licate. The calculations depicted in the figure have been done using the Binary Align-
ment Map (BAM) files generated at the marked duplicates stage in the pipelines.

For each paired tumor-normal FASTQ file, we ran six pipelines (two mappers and 
three variant callers), resulting in a total of 72 pipelines across the 12 replicates in six 
centers. Each pipeline’s F1 score was calculated based on the declared high-confidence 
variants in high-confidence regions, as shown in Fig. 3. Genomic regions (exome and 
high-confidence) and high-confidence variants were taken from the SEQC2 FTP site 
[26]. As anticipated, the centers with higher coverage (NV and IL) exhibited better 
performance, except for SomaticSniper. Although the impact of the mapper is not 
evident in Fig. 3, the influence of variant callers is noticeable. In general, the F1 scores 
of the variant callers rank in the following order: Mutect2 > Strelka2 > SomaticSniper. 
However, there are exceptions that disrupt this trend. For example, the lowest F1 
scores were observed using the bwa_strelka pipeline (mapper is bwa, variant caller is 
Strelka2) on FD and LL data.
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Fig. 2 Read and mapping statistics of 12 SEQC2 exomic replicates for 6 centers. X-axis shows the center 
name, replicate number, and sample type (T: tumor & N: normal) of replicates, separated by underscores. For 
this calculation, the Qualimap bamqc tool was used in the high-confidence exome region of the marked 
duplicates BAM files. For the number of reads and mapped reads, we used their global values in Qualimap, 
while for coverage, we used the mean coverage inside of regions value. Marked duplicates BAM files were 
generated as an input for Qualimap resulting from the following steps in order in the pipeline: trimming, bwa 
mapping, sorting, indexing, and marked duplicates

Fig. 3 F1 scores and distributions of pipelines in replicates. High-confidence exome SNVs were used as 
ground truth in the calculations. a F1 scores of six pipelines for each replicate. X-axis shows the mapper and 
variant caller algorithms used in the somatic pipeline, separated by underscores. b Distribution of F1 scores 
according to variant callers. c Distribution of F1 scores according to mappers. d Distribution of F1 scores 
according to centers
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Multiply‑detected variants of within‑center replicates

Previous research has shown that both consensus and ML approaches have the poten-
tial to enhance the outcomes of individual pipelines [25, 27, 28]. These studies used 
a single mapper, and the primary goal was the utilization of different variant callers.

The replicate-based consensus approaches were applied to centers with three bio-
logical replicates (FD, IL, and NV), since other centers only had one biological repli-
cate each. In within-center approach, the number of times a variant is detected in the 
replicates of that center is considered for each pipeline. Multiply detected variants 
in the replicates from FD (FD_1, FD_2, FD_3), IL (IL_1, IL_2, IL_3), and NV (NV_1, 
NV_2, NV_3) have been examined. Three possible cases were considered: a variant 
being detected at least once (m ≥ 1), being detected in at least two out of three repli-
cates ( m ≥ 2 ), and being detected in all three replicates ( m ≥ 3 ), where “m” is defined 
as the corresponding number of detections.

For FD samples, true positive (TP), false positive (FP), false negative (FN), preci-
sion, recall, and F1 scores are shown in Table 1. As m increases, precision increases, 
and recall decreases, which is consistent with the expectations (illustrated in Table 1 
and Fig. 4). For FD scenarios, the best F1 scores were obtained with two or more rep-
licates ( m ≥ 2 ), where precision and recall are balanced. Similarly, for IL and NV, the 
best F1 score for bwa_mutect, bowtie_mutect, bwa_strelka, and bowtie_strelka pipe-
lines was obtained by using the variants detected in two or more replicates ( m ≥ 2 ). 
In these centers, SomaticSniper (ss) pipelines achieved the best results with the var-
iants detected in all replicate ( m ≥ 3 ). Variants detected in two or more replicates 
consistently exhibited superior F1 score compared to individual replicates (e.g., FD_2) 
across all centers and pipelines.

Table 1 Performance scores of the within-center approach for center replicates of FD

The notation "m" is used for multiple detection results. It indicates how many times a variant has been captured in pipelines 
generated using data from FD replicates. For example, "FD_bwa_mutect_m ≥ 2" indicates the scores of the variants 
detected in two or more bwa_mutect pipelines in FD replicates

TP FP FN Precision Recall F1

FD_bwa_mutect_m ≥ 1 1003 525 156 0.656 0.865 0.747

FD_bwa_mutect_m ≥ 2 900 2 259 0.998 0.777 0.873

FD_bwa_mutect_m ≥ 3 749 0 410 1.000 0.646 0.785

FD_bowtie_mutect_m ≥ 1 988 565 171 0.636 0.852 0.729

FD_bowtie_mutect_m ≥ 2 875 2 284 0.998 0.755 0.860

FD_bowtie_mutect_m ≥ 3 727 0 432 1.000 0.627 0.771

FD_bwa_strelka_m ≥ 1 1037 2808 122 0.270 0.895 0.414

FD_bwa_strelka_m ≥ 2 927 20 232 0.979 0.800 0.880

FD_bwa_strelka_m ≥ 3 785 3 374 0.996 0.677 0.806

FD_bowtie_strelka_m ≥ 1 937 539 222 0.635 0.808 0.711

FD_bowtie_strelka_m ≥ 2 792 5 367 0.994 0.683 0.810

FD_bowtie_strelka_m ≥ 3 643 3 516 0.995 0.555 0.712

FD_bwa_ss_m ≥ 1 948 1013 211 0.483 0.818 0.608

FD_bwa_ss_m ≥ 2 816 96 343 0.895 0.704 0.788

FD_bwa_ss_m ≥ 3 677 9 482 0.987 0.584 0.734

FD_bowtie_ss_m ≥ 1 918 1009 241 0.476 0.792 0.595

FD_bowtie_ss_m ≥ 2 793 97 366 0.891 0.684 0.774

FD_bowtie_ss_m ≥ 3 661 15 498 0.978 0.570 0.720



Page 7 of 19Cebeci et al. BMC Bioinformatics          (2024) 25:124  

Additionally, to assess the performance of having only two replicates; we performed pair-
wise combination (intersection) analyses for the within-center approach using the same 
replicates (Additional file  1: Fig. S3). This investigation focused on identifying somatic 
variants that were concurrently detected in pairwise subsets of the triple replicates. The 
F1 scores of the pairwise combinations and the consensus approach for m ≥ 2 cases are 
similar in the within-center replicates. However, the F1 scores of the FD center’s consensus 
approach for m ≥ 2 cases are notably higher than the pairwise F1 score of the same center. 
Consensus approaches use variants that are detected by all the replicates, as well as vari-
ants that are detected by the majority of the replicates. This consensus prediction power is 
anticipated to be more effective, especially for replicates less than 100× (FD).

Fig. 4 Performance scores of individual replicates and consensus cases of the within-center approach. 
Calculation of multiple detection cases is based on the number of times variants are detected in the same 
pipeline replicates within the same center. The first three values on X-axis represent the biological replicates 
of the corresponding center, while the next three values represent the multiple detection cases. Markers 
represent the pipelines used
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Multiply‑detected variants of cross‑center replicates

To measure the potential gain from the replicates from different centers, replicates with 
the same replicate number were combined. Comparison groups were defined as the first 
replicates (FD_1, IL_1, NV_1), the second replicates (FD_2, IL_2, NV_2), and the third 
replicates (FD_3, IL_3, NV_3). As it would be easier for clarity, we combined replicates 
with the same number.

Figure  5 displays the F1 scores for each pipeline, focusing on the first, second, and 
third replicates, as well as the individual replicates, considering various multiple detec-
tion scenarios. The variants detected in two or more cases ( m ≥ 2 ) have achieved the 

Fig. 5 Performance scores of individual replicates and consensus cases of the cross-center approach. 
Calculation of multiple detection cases based on the detection of variants in the same pipeline replicates 
with the identical numbers across different centers. The first three values on X-axis represent the biological 
replicates of the corresponding center, while the next three values represent the multiple detection cases. 
Markers represent the pipelines used
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highest performance among all multiple detection cases. However, in some pipelines, 
the performance is only slightly inferior to the best individual result. Interestingly, the 
replicates from the same center (previous section) has a better performance compared 
to the approach where replicates from different centers are combined.

We also conducted analyses of pairwise combinations (intersections) across centers 
using the same replicates (Additional file 1: Fig. S4). In this case, we analyzed pairwise 
subsets of triple replicates that shared the same ID number. Recall scores for the subset 
containing FD were lower compared with the remaining subsets. Therefore, F1 scores 
for the FD subset were found to be low.

Fig. 6 Performance scores of individual replicates and consensus cases of the all centers approach. 
Calculation of multiple detection cases is based on the number of times variants are detected in the same 
pipeline replicates in all centers. The first nine values on X-axis represent the biological replicates of the 
corresponding center, while the next nine values represent the multiple detection cases. Markers represent 
the pipelines used
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Multiply‑detected variants of all replicates

By merging within- and cross-center replicates, a total of nine scenarios (3 × 3) were cre-
ated to evaluate the overall effect of large replicate counts. F1 scores of the pipelines cre-
ated using all replicates from all centers, along with the individual pipelines, are shown 
in Fig. 6. It has been clearly observed that as the required number of multiply-detected 
variants increases, precision increases while recall decreases. Optimal precision-recall 
balance is achieved around three detections. Compared to the alternative methods men-
tioned in previous sections (within-center and cross-center), the F1 score performance 
of this method lies in between. When all approaches are compared, the best result is 
obtained with the “variants detected in two or more replicates ( m ≥ 2 ) within-center” 
approach.

Machine learning models labeled with multiply‑detected variants in the replicates

There are very few sequencing datasets that include declared ground truth (gt) somatic 
variants. This situation makes it difficult to develop machine learning models as labeled 
data is required during the training phase, and training-test sets should be similar for 
good performance. To address this problem, we trained NeuSomatic [25] machine learn-
ing models based on the results of multiply-detected approaches. NeuSomatic machine 
learning models have been developed in ensemble mode with default parameters. We 
chose the ensemble mode, which leverages results from other variant callers, because 
initial experiments conducted with the standalone mode yielded relatively low perfor-
mance (with an F1 score of 0.7).

The input to the NeuSomatic Ensemble models were the features of the first rep-
licate and declared high-confidence region files. The features of the first replicate 
are recalibrated bwa Tumor/Normal BAM files and Variant Call Format (VCF) files 
(bwa_mutect, bwa_strelka, bwa_ss). The training set uses the data in the first five 
chromosome regions, and the test set uses the data in the remaining chromosome 
regions. Since the dataset consists of biological replicates of one sample, chromosome 
region separation was performed in this manner to avoid overfitting. When training 
these models, the results of the multiply-detected approaches and declared high-
confidence variants were used for labeling. By accepting high-confidence variants as 
ground truth, the performance of the trained models was measured on the test set.

For center-specific experiments, within-center approach consensus results were 
used for labeling in NeuSomatic Ensemble models in the training stage. The within-
center approach was applied to centers with three biological replicates. Therefore, 
each center-specific experiment used three biological replicates for labeling. Recali-
brated bwa BAM files, generated from the first replicate of each center, were used 
as a BAM input in the training and test sets. For example, the FD_1 bwa BAM file 
was used as an input in NeuSomatic Ensemble models for FD center data. Since Neu-
Somatic models were trained in ensemble mode, variant caller VCF files are also 
required as input. VCF files (bwa_mutect, bwa_strelka, and bwa_ss) of the first rep-
licates (i.e., FD_1) were used as input to NeuSomatic Ensemble models. The perfor-
mance scores of NeuSomatic Ensemble models trained with within-center approach 
consensus results and declared high-confidence (gt) variants are as shown in Fig. 7. 
It has been observed in NeuSomatic Ensemble models; as the required number of 
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detected variants increases, the precision decreases, and the recall increases, simi-
lar to the consensus approaches. Especially, NeuSomatic Ensemble models trained 
by training sets labeled with two or more detected variants ( m ≥ 2 ) have provided 
results close to the ground truth-trained model.

For all replicates experiments, all nine biological replicates were used for labeling in 
NeuSomatic Ensemble models. Recalibrated FD_1 bwa BAM files were employed as 
the input for all the training and test sets. Additionally, bwa_mutect, bwa_strelka, and 
bwa_ss VCF files of FD_1 were given as the input for the ensemble machine learning 
models. The performance scores of NeuSomatic Ensemble models trained with multi-
ply-detected variants and ground truth (gt) are shown in Fig. 8. The outcomes imply that 

Fig. 7 Performance scores of NeuSomatic Ensemble models labeled with within-center approach consensus 
results and ground truth (gt). Markers indicate which pipeline results are used in the multiple detection cases. 
X-axis indicates which labeled data is used in training. "gt" indicates ground truth labeled-data is used, and 
the numbers indicate which multiple detected variants are being used in training
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as the required number of variant detections increases, precision increases and recall 
decreases. However, it should be noted that this pattern was not consistently observed, 
especially in m ≥ 5 and m ≥ 6 cases. The reason for this exception may be due to the fact 
that for these cases, the number of true positives does not vary significantly compared to 
the alternatives. The model trained with multiply-detected variants and the one trained 
with the ground truth performed similarly in some cases.

Machine learning models trained using replicate-based SomaticSniper pipeline results 
generally yielded better results than SomaticSniper’s replicate-based consensus results 
(Figs. 4, 5 and 6 vs. Figs. 7 and 8). In fact, they achieved results similar to those trained 
using Mutect2 and Strelka2 pipeline results. This may be because machine learning 

Fig. 8 Performance scores of NeuSomatic Ensemble models labeled all centers approach consensus results 
and ground truth (gt). Markers indicate which pipeline results are used in the multiple detection cases. X-axis 
indicates which labeled data is used in training. "gt" indicates ground truth labeled-data is used, and the 
numbers indicate which multiple detected variants are being used in training
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models utilize Mutect2 and Strelka2 results as features in the training stage. Further-
more, ML models trained with replicate-based consensus approaches performed simi-
larly to those trained with declared high-confidence variants.

Discussion
In this work, we used the SEQC2-WES dataset, which is based on non-tumor and tumor 
cell lines from a single patient [15]. Using only a single tumor is a limitation for us and 
for many benchmarking studies. Unfortunately, obtaining detailed profiling for even a 
few samples is extremely expensive. Typically, it involves a combination of long reads 
and deep sequencing. As an alternative, less demanding approach, the proposed repli-
cate-based consensus variant calling has achieved similar results to the ground truth for 
machine learning training.

We focused on the exome sequencing of somatic samples, considering the wide use of 
WES in tumor sequencing [29]. For clinical WES, coverage is known to be an important 
predictor of variant calling performance [30]. The relatively lower success of FD pipe-
lines is likely due to the low coverage of the FD samples. Interestingly, IL-2 replicate had 
similar performance to NV replicates, despite having significantly higher coverage than 
them. Our results suggest that obtaining multiple replicates with moderate coverage, 
such as NV replicates, instead of obtaining a single high-coverage sample like IL_2, may 
yield superior performance.

In the future, we plan to extend our analyses to germline and whole genome bench-
marking datasets to check the validity of findings across a broader spectrum. In our 
analysis, we focused on declared high-confidence regions to be able to make legitimate 
comparisons with the declared high-confidence variants. We also did not differentiate 
regions in DNA; in the future, we plan to consider mapping quality, repetition level, and 
base quality as additional analyses. In our ML models, we focused on ideal models where 
profiles and labels are obtained from the same or similar samples to see the maximum 
gain potential using replicates. Trying distant (unrelated) training-test profiles for more 
realistic scenarios is an important next step we consider.

Conclusions
Recent sequencing technologies offer rapid and inexpensive identification of genomic 
profiles [1]. This leads to their wide usage in research and clinics. Variant identification is 
a non-trivial and error-prone task, and establishing the reliability of detected variants is 
critical for the efficient use of these technologies [12]. Sequencing of replicates or related 
variants (such as multi-region sequencing in tumors) is a common practice [31]. In this 
work, we have studied a potential variant detection improvement by using multiply-
detected variants in replicates. We demonstrated that; via consensus approaches, pre-
cision and recall can be  substantially improved by using replicates. More importantly, 
multiply-detected variants can be used to train highly predictive ML models.
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Methods
SEQC2 dataset for benchmarking somatic mutation calling

SEQC2 dataset includes samples from both Whole Exome Sequencing (WES) and Whole 
Genome Sequencing (WGS). It was primarily generated by sequencing the tumor-normal 
samples, which are triple-negative breast cancer (TNBC) cell line (HCC1395) and a B lym-
phocyte-derived normal cell line (HCC1395BL) from the same donor from the American 
Type Culture Collection (ATCC). This dataset contains multiple biological replicates pre-
pared in different centers with different libraries. To detect somatic variants, results from 
machine learning models, long-read sequencing and high coverage data sequencing were 
analyzed. Detected variants were classified into four confidence levels: HighConf, Med-
Conf, LowConf, and Unclassified. All detected somatic variants have been shared accord-
ing to their confidence level for WGS in VCF format [26]. Since we used WES data in our 
study, this VCF file was BED-processed using the exome target BED file [32] by vcftools 
[33]. Genome Analysis Toolkit (GATK) CallableLoci was used to identify callable regions 
with “8 × the average coverage for each sample”, and “minimum mapping quality is 20” 
parameters. Additionally, this VCF file was also BED-processed with the high-confidence 
region file [34]. After these filtering operations, a total of 1159 high-confidence somatic 
single nucleotide variants (SNVs) remained for high-confidence exome regions for our 
evaluations.

Exome data from the SEQC2 dataset was used in this study, consisting of 12 repli-
cates. These replicates were sequenced using two mappers and three variant callers. 
Venn diagrams of the resulting pipelines were generated to assess their similarities and 
differences (Additional file  1: Fig. S2). It was observed that the percentage of variants 
commonly identified by all pipelines ranged approximately from 33 to 53%. The per-
centage of variants uniquely detected by a single pipeline varied between approximately 

Table 2 Used tools and their versions in NGS somatic pipelines

Trimmomatic was used for trimming. bwa and bowtie2 were used in mapping. SAMtools were used for converting SAM 
to BAM, indexing, and sorting. Picard was used to add readgroups and mark duplicates. The GATK4 tools used were 
BaseRecalibrator, ApplyBQSR, Mutect2, and SelectVariants. NeuSomatic and SomaticSeq were used for machine learning

Tool and algorithm Version

Trimmomatic 0.3

Reference Genome GRCh38.d1.vd1

bwa 0.7.15

bowtie2 2.3.5.1

SAMtools 1.8

Picard 2.17.11

Qualimap 2.2.2a

GATK4 4.3.0.0

Strelka2 2.9.10

SomaticSniper 1.0.5.0

vcftools 0.1.16

bcftools 1.9

PyVCF 0.6.8

NeuSomatic 0.2.1

SomaticSeq 2.7.2
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1.77–46.75%. Furthermore, the number and ratio of common and uniquely detected var-
iants by the pipelines showed variations from one replicate to another.

NGS somatic sequencing

The tools and their versions used for processing NGS data are as shown in Table 2.

Trimming

Low-quality base reads and adapters were trimmed using Trimmomatic [35]with PE 
options. Trimmomatic runs with the following parameters in 24 threads:

-phred 33 ILLUMINACLIP: TruSeq3-PE.fa:2:36:10 LEADING:10 TRAILING:10 
MAXINFO:50:0.97 MINLEN:20

“TruSeq3-PE.fa” file can be accessed from the “adapters” folder inside the Trimmo-
matic directory.

Mapping

After trimming the reads, they were mapped to the reference genome using bwa and bow-
tie 2 with 24 threads. Instead of using pre-built index files for the mapping algorithms, the 
tools were also run in index mode using the reference genome (GRCh38.d1.vd1.fa) file to 
create the index files. Additionally, bwa mem runs with the “-M” option, and for bowtie 2, 
the “-x” option is used along with “-1” and “-2” to specify the trimmed_fastq files to be used.

Pre‑processing

Sequence Alignment Map (SAM) files generated from the mapping stage were converted 
to BAM format using SAMtools [36] view with “-bS” parameters. SAMtools were also 
used for indexing and sorting with default parameters.

Subsequently, read group information added using Picard with the parameters “CRE-
ATE_INDEX = True VERBOSITY = INFO QUIET = false VALIDATION_STRIN-
GENCY = LENIENT COMPRESSION_LEVEL = 5” to the generated BAM files. 
Afterwards, Picard MarkDuplicates was executed with the parameters “CREATE_
INDEX = true ASSUME_SORTED = true MAX_FILE_HANDLES_FOR_READ_ENDS_
MAP = 1000 VALIDATION_STRINGENCY = LENIENT”.

Finally, GATK’s [37] BaseRecalibrator and ApplyBQSR tools were run to the generated 
BAM files sequentially. In BaseRecalibrator, three --known-sites arguments were used 
(db_snp file (hg38_v0_Homo_sapiens_assembly38.dbsnp138.vcf ), Mills and 1000G gold 
standard file (Mills_and_1000G_gold_standard.indels.hg38.vcf.gz) and 1000G phase1 
snps file (1000G_phase1.snps.high_confidence.hg38.vcf.gz)). These files can be obtained 
from the GATK resource bundle [38]. Lastly, GATK’s ApplyBQSR tool was run with--
bqsr-recal-file argument (generated in the BaseRecalibrator step).

Variant calling

After creating the tumor-normal recalibrated BAM files, three variant callers were exe-
cuted. These variant callers were Mutect2, Strelka2, and SomaticSniper. If there was a 
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ploidy issue in the resulting variant caller files, it was corrected using bcftools fixploidy 
tool. Additionally, the outputs of all variant callers were BED-processed using vcftools 
with the high-confidence region and exome target BED files. This ensured that the vari-
ants detected in the exome high-confidence region were used in the calculations.

Mutect2 runs with “-normal” parameters with 24 threads. The detected variants (vcf 
file) were filtered using GATK’s FilterMutectCalls tool. Finally, GATK SelectVariants 
tool was used to save SNV and indel variants into separate VCF files.

Due to Strelka2 not being compatible with Python 3, a separate Python 2.7 envi-
ronment was set up for Strelka2. Strelka2 was run using this environment. Firstly, 
ConfigureStrelkaSomaticWorkflow.py was run with the “--exome” parameter and “run-
Workflow.py” script was generated. Then, the generated "runWorkflow.py" script was 
executed with the "-m local -j 23" parameters.

SomaticSniper was run with the parameters “-F vcf -Q 40 -G -L”. Since SomaticSniper 
does not have a recommended filtering method for files mapped with bowtie, no filter-
ing was applied to the SomaticSniper vcf files.

While only the PASS variants were selected for Mutect2 and Strelka2, no filtering was 
applied to SomaticSniper results. When SomaticSniper results were filtered, the number 
of detected somatic variants decreased significantly, which greatly reduced the F1 score.

NeuSomatic

While installing NeuSomatic, the first step was to compile it using g++ 5.4.0. During 
this compilation, there were issues with Seqan library. To resolve this problem, a com-
patible version of Seqan for gcc 5 was found, and its master branch link was provided 
in “seqan.cmake” file in “third-party” folder. After the compilation process, Python 3.7 
environment was set up, followed by meeting other dependencies. Finally, the function-
ality of NeuSomatic was verified by running “run_test.sh”. However, during the execu-
tion, there was an error related to the “pillow” Python library. To fix this issue, pillow 
version was downgraded to 6.2.1. After successfully passing the test, NeuSomatic was 
executed in CPU mode, and machine learning models were developed.

For creating NeuSomatic models, the first five chromosomes were used for training, 
and the remaining chromosomes were used for testing. The recalibrated BAM file was 
divided into chromosome-based regions using the “samtools view” tool. The resulting 
training and test BAM files were re-indexed and sorted. Region files were manually split. 
For creating the ground truth VCF file, variants were first converted to a pandas Data-
Frame and then saved as a VCF file using the “to_csv()” function. Subsequently, the nec-
essary VCF headers were added to this VCF file.

An Ensemble.tsv file containing the features is required to train NeuSomatic Ensemble 
models. This Ensemble.tsv file was generated using SomaticSeq.Wrapper.sh in Somat-
icSeq [39]. The resulting Ensemble.sSNV.tsv file had some “None” values, which were 
replaced with 0. Additionally, in some cases, the first column in this tsv file could be "id" 
instead of "CHROM". When the first column was “id”, NeuSomatic Ensemble models 
did not work properly. Therefore, in cases where the first column was labeled as "id," 
after dropping that column, it was ensured that the first column became "CHROM". The 
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tsv file and other training files were used as input to run the NeuSomatic preprocess.
py with the parameters "--mode train --min_mapq 10 --threads 12". After preprocess-
ing, NeuSomatic train.py was executed with the parameters "--ensemble --batch size 100 
--num_threads 12".

Similarly, for the test files, NeuSomatic preprocess.py and call.py were executed. 
Finally, SNVs were extracted from the detected variants in "Neusomatic.vcf" file using 
GATK SelectVariants.

Evaluation metrics

The number of detected somatic variants remains very low when considering the total 
base count in the DNA. This also leads to somatic variant sets being unbalanced. There-
fore, the metrics commonly used in unbalanced datasets in Table 3 were employed to 
assess the performance of the models. During the calculations, the VCF file operations 
were performed using PyVCF [40]. While determining the truth of the detected variants, 
it was checked whether the CHROM POS REF and ID information were the same as the 
high-confidence variants.

Abbreviations
ATCC   American Type Culture Collection
BAM  Binary alignment map
EA  European Infrastructure for Translational Medicine
FD  Fudan University
FN  False negative
FP  False positive
GATK  Genome analysis toolkit
gt  Ground truth
IL  Illumina
LL  Loma Linda University
m  The required number of detections
ML  Machine learning
NC  National Cancer Institute
NGS  Next generation sequencing
NV  Novartis
SAM  Sequence alignment map
SEQC2  Sequencing quality control phase 2
SNV  Single nucleotide variant
ss  Somatic Sniper
TNBC  Triple-negative breast cancer
TP  True positive
VCF  Variant call format
WES  Whole exome sequencing
WGS  Whole genome sequencing

Table 3 Metrics used to measure the performance of models detecting somatic variants

Metric Descriptions

TP The number of correctly predicted somatic variants

FP The number of predicted somatic variants that are not actually somatic variants

FN The number of actual somatic variants that were incorrectly classified as non-
somatic (missed) by the model

Precision TP

TP+FP

Recall TP

TP+FN

F1 2×Precision×Recall

Precision+Recall
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