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Introduction
The Human Genome Project has enabled the discovery of new drug targets by iden-
tifying macromolecules likewise genes and proteins that are often involved in disease 
processes [1]. Proteins are the most common druggable targets for drug development 
[2] because approximately 95% of known drug targets are proteins and over 92% of 
known drug-target interactions involve these organic molecules [3]. The involvement 
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of proteins in biological processes are essential for the understanding of cellular func-
tions. Proteins can be broadly categorized into enzymes, receptors, ion channels, trans-
porters and structural proteins based on their highly diverse structure and functions [4]. 
Among these protein classes druggable proteins (DPs) has unique properties that make 
them attractive target for the drug discovery for the treatment of many diseases, includ-
ing cancer, genetic disorders, chronic disease, blood pressure, cardiovascular diseases, 
etc [5]. Analyzing the biochemical characteristics DP sequences, for example its binding 
affinity or enzymatic activity could help the researcher to provide insights about the pro-
tein interaction with other molecules inside the cell [6]. Thus, investigating about DPs 
and non-DPs is crucial to accelerate the drug development process for curing multiple 
diseases.

In recent decades, the researchers have been characterizing the DPs through wet-lab 
experiments such as mass spectrometry, X-ray crystallography, nuclear magnetic reso-
nance (NMR), etc [7, 8]. These wet lab experiments for determining DPs and non-DPs 
are precise, but time-consuming, resource intensive and expensive due to the nature 
of experiments as well as the huge abundance of un-annotated proteins in databases. 
Moreover, development pipeline for a novel drug can be a long and expensive process, 
with an average development time of over 12 years and a cost of around 2.6 billion USD 
[9]. Furthermore, only a small percentage of drug development plans eventually result in 
licensed drugs, with estimates ranging from 4% to 12% [10, 11]. Hence, computational 
techniques led the researchers to use machine learning and deep learning algorithms as 
an alternative for analyzing large-scale druggable proteins data with improved accuracy.

Over the past few decades, considerable research attention has been directed toward 
a variety of computational methods to identify the distinctive characteristics of DPs vs. 
non-DPs. For example, DrugMiner [12], Sun et al. [13], GA-Bagging-SVM [5], DrugHy-
brid_BS [14], Yu et al. [15], XGBDrugPred [16], MS Iraji et al. [17] and SPIDER [18] are 
the proposed predictors for discriminating DPs from non-DPs. The pioneering work 
along this line was conducted by Jamali et al. [12] in 2016 and constructed a bioinfor-
matics protocol called DrugMiner for the prediction of DPs, using multiple discrete fea-
tures in conjunction with neural network classifier. The proposed model achieved over 
92.10% accuracy (ACC). However, loss of sequence order information and sequence-
length effects are the main shortcomings of the proposed method [19]. Afterword, Lin 
et al. [5] enhanced the performance by developing GA-Bagging-SVM for DPs prediction. 
Lin et  al. first extracted the local and global feature vectors using reduced sequences, 
pseudo amino-acid-composition (PseAAC) and dipeptide composition (DPC). Then 
optimal features were selected through genetic algorithm (GA) and proposed support 
vector machine (SVM) based model by bagging-based ensemble strategy. Similarly, 
Gong et al. [14] designed hybrid-based predictor called DrugHybrid_BS using grouped 
amino-acid-composition, monoDIKgap and cross-variance with ensemble learning 
engine and achieved 97% of accuracy. Furthermore, Yu et  al. [15] developed the first 
deep learning model to improve the overall performance of the DPs by incorporating 
sequence and dictionary features with ensemble convolutional recurrent neural network 
model(CNN-RNNs). The Yu’s model attained the 89.80% of ACC and 0.799 MCC on 
independent dataset. Recently, R.Sikander et al. [16], proposed machine learning model 
called XGBDrugPred by utilizing group di-peptide composition (DPC), reduced amino 
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acid composition and serial-PseAAC features with extreme gradient boosting classifier. 
More recently, P Charoenkwan et al. proposed an effective meta-learning based classi-
fier SPIDER, stacked predictor of druggable proteins, which predicted DPs and non-DPs 
with high accuracy than other existing methods [18]. Table  1 summarized the prece-
dents of druggable protein prediction from literature.

Although each of the above mentioned predictors in (Table 1) has demonstrated a sig-
nificant contribution to the prediction of DPs, however challenges remain unsolved. For 
instance, many existing predictors have relied upon the conventional sequence-based 
feature including mono-, di-, tri-peptide composition, and physicochemical proper-
ties. But these methods were unable to explore the evolutionary profile and structural 
properties of druggable protein sequence. Secondly, only two previous studies (Yu et al. 
[15], SPIDER [18]) performed an independent test evaluation to verify the generalization 
capability of their proposed methods. Thirdly, the overall performance of the previous 
models for DP prediction was not satisfactory indicating the room for improvement in 
the prediction capability. In the present article, we proposed a machine learning based 
predictor DPI_CDF for highly accurate identification of DPs and non-DPs based on 
novel combination of evolutionary-, physicochemical- and sequence-based feature of 
protein sequence. Our contribution can be briefly summarized as follows: 

(a)	 We proposed new set of feature descriptor to capture the evolutionary-, sequen-
tial- and physicochemical-based patterns from a given protein sequence. Then, we 
hybridized this set of features to incorporate the local and global intrinsic proper-
ties of protein sequence.

(b)	 We proposed DPI_CDF, a novel model based on cascade deep forest (CDF) to pre-
dict druggable proteins with superior performance on existing training and testing 
benchmark datasets.

Table 1  Summary of the existing works on druggable protein prediction

a AAC: amino-acid-composition, DPS: dipeptide propensity score, DPC: dipeptide composition, TPC: tripeptide composition, 
CTD: composition transition and distribution, CC: cross covariance, CPSR: component protein sequence representation, 
GAAC: grouped AAC, GDPC: grouped DPC, HOG-PSSM: histogram of oriented gradient position specific scoring matrix, 
NQLC: Normalized qualitative characteristics, APAAC: amphiphilic pseudo AAC, PAAC: pseudo AAC, PCP: physicochemical 
properties, RAAAC: reduced alphabet amino acid composition, S-PseAAC: serial pseudo amino acid composition
b NN: neural networks, SVM: support vector machine, CNN-RNN: convolutional-neural-network and recurrent-neural-
network, XGB: extreme gradient boosting, CDF: cascade deep forest
c 5-fold cross-validation (5CV); 10-fold cross-validation (10CV); independent test (IND)

Method/tool Dataset used Feature seta Proposed modelb Evaluation methodc

DrugMiner [12] Jamali et al. AAC, PCP, DPC NN 5CV

Sun et al. [13] Jamali et al. CTD NN 5CV/IND

GA_Bagging_SVM [5] Jamali et al. PAAC, DPC, RC SVM 5CV

DrugHybrid_BS [14] Jamali et al. monoDIKgap, CC, 
GAAC​

SVM 5CV/IND

Yu et al. [15] Jamali et al. and Yu 
et al.

DPC, TPC, Dictionary, 
CTD

CNN, RNN 5CV/IND

XGB DrugPred [16] Jamali et al. RAAAC, S-PseAAC, 
GDPC

XGB 10CV

SPIDER [18] Jamali et al. and Yu 
et al.

AAC, CTD, RC, 
APAAC, PAAC, DPC

SVM 10CV/IND

DPI_CDF (our 
method)

Jamali et al. and Yu 
et al.

CPSR, NQLC, HOG-
PSSM

CDF 10CV/IND
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(c)	 We used interpretable t-SNE and SHAP methods to show the visual representation 
of the proposed features and their importance in the prediction task.

.

Materials and methods
To develop DPI_CDF, we considered existing benchmark datasets of protein sequence 
that are already published in literature. Then we encoded the biological protein 
sequences into fixed length feature vector based on the compositional, physicochemical, 
and evolutionary properties of amino acids. Then, machine learning models were devel-
oped for the prediction of druggable protein. Finally, we evaluate the proposed model 
based on cross-validation and compared the performance of the proposed model against 
exiting methods. Figure  1 depicts the schematic diagram of the workflow for the devel-
opment of DPI_CDF.

Dataset collection

We considered the available dataset from Jamali et al. [12]. This dataset contains 1223 
sequence that were considered as druggable protein sequence. It also contains 1319 
sequence that are considered as non-druggable. We consider this dataset to develop 
machine learning model for DPI_CDF. Moreover, we consider another dataset from Yu 
et  al. study [15] as independent dataset to determine the generalization power of the 
trained predictor. The independent dataset contains total of 461 sequence, of which 224 

Fig. 1  The schematic diagram of the proposed DPI_CDF
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were labelled as druggable and 237 were labeled as non-druggable. Table 2 summarizes 
the number of samples from both datasets.

Feature encoding

Feature encoding schemes are challenging task used to formulate a biological sequence 
into fixed length numerical feature [19–21]. In the present work, we considered physio-
chemical, compositional, and evolutionary-based algorithms to tackle this problem. The 
details of each feature descriptor are explained below.

Position‑specific scoring matrix representation of druggable protein

The evolutionary conserved reign of amino acid residues is encoded by a technique 
called position-specific scoring matrix (PSSM). It has been observed that PSSM has been 
successfully improved the model prediction in divers bioinformatics problems for exam-
ple prediction of protein folding [22], antifreeze protein identification [23] and predic-
tion of DNA-binding protein [24]. Motivated by these precedents, we considered PSSM 
to encode DP sequences into feature vector. PSSM generates the corresponding feature-
space of 20 attributes and M rows for an input sequence in PSI-BLAST [25] PSI-BLAST 
compare the DP protein evolutionary information with default parameters in Swiss-Prot 
databank [26]. Then, the obtained PSSM is normalized by the following mathematical 
formula:

where a represent the actual value of PSSM. Then we considered the PSSM from each 
protein to generate feature vector.

Histogram of oriented gradient‑based extraction of PSSM

Histogram of Oriented Gradient (HOG) is widely used as a feature extractor for object 
detection problem in computer vision [27, 28]. The HOG-based methods provided bet-
ter results compared to the existing wavelet-based methods for extracting feature from 
input image [29, 30]. In this study, we consider the PSSM to retain the biological evolu-
tionary information of a sequence and applied HOG encoding method for transform-
ing the PSSM into an HOG-PSSM. We briefly describe the steps for generating HOG 
based feature from protein sequence below: Firstly, we calculated the horizontal gradient 
Gx(i, j) and vertical gradient Gy(i, j) of the PSSM image by following equations:

(1)f (a) =
1

1+ exp(−a)

Table 2  Dataset summary

a N_Pos, N_Neg represent the total number of positive and negative sequences, respectively

Dataset Total sequence (N_Pos, N_Neg)a

DPtrain 2542 (1223, 1319)

DPind 461 (224,237)
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Then, we determined the magnitude as well as the direction of gradient based on the fol-
lowing equation:

where G(i,  j) and �(i, j) are the gradient magnitude and gradient direction matrices of 
L× 20 size. Then, we decomposed the image into fixed sized connected region called 
“cells”. Each cell retained the feature set of magnitude and direction of graident inside the 
sub-matrix.

Here m, n denotes the subscripts of sub-matrix (0 ≤ m ≤ 2, 0 ≤ n ≤ 2) and u, v denote 
the subscripts within sub-matrix (0 ≤ v ≤ 9, 0 ≤ v ≤ L/2− 1) . Based on this, each sub-
matrix generates 16 different histogram channels. Finally, the resultant feature vector 
from HOG-PSSM for each protein sequence was of 256 (16*16).

Normalized qualitative characteristic feature

Qualitative characteristics feature (QLC) [31] considers the physicochemical properties 
of proteins which are distributed globally in a protein sequence. QLC considered hydro-
phobicity, charge, predicted secondary structure, polarizability, polarity, normalized 
Van der Waals volume, and solvent accessibility as the seven physicochemical attributes 
of the AA residues to categorize them into three groups [31] (Details are in Additional 
file 1: Table T1). The QLC descriptor encode the composition, distribution and residue 
wise transition of the protein based on three indexes, namely C (composition) index, D 
(distribution) index, and T (transition) index. Therefore it is also named as composition, 
transition and distribution (CTD) [32]. The C index characterizes the percent compo-
sition of each group of AA residues (based on physicochemical properties) in protein 
sequence; the T index (transition) signifies the transition likelihood between two adja-
cent residues of proteins associated with dissimilar properties; and the D index com-
putes the distribution of AA residues along the sequence of each group in percent (25%, 

(2)Gx(i, j) =
PSSM(i + 1, j)− 0, i = 1,
PSSM(i + 1, j)− PSSM(i − 1, j), 1 < i < 20,
0− PSSM(i − 1, j), i = 20

(3)Gy(i, j) =







PSSM(i, j + 1)− 0, j = 1,
PSSM(i, j + 1)− PSSM(i, j − 1), 1 < j < L,
0− PSSM(i, j − 1), j = L

(4)G(i, j) =
√

Gx(i, j)2 + Gy(i, j)2,

(5)�(i, j) = tan−1

[

Gx(i, j)

Gy(i, j)

]

.

(6)Gm,n(u, v) =G

(

5×m+ 1+ u, n×
L

4
+ 1+ v

)

(7)�m,n(u, v) =�

(

5×m+ 1+ u, n×
L

4
+ 1+ v

)



Page 7 of 18Arif et al. BMC Bioinformatics          (2024) 25:145 	

50%, and 75% or 100%), respectively [33]. For each protein, C, T and D index generated 
21, 21, and 105 dimensions of features, respectively. Thus, the resultant dimension of the 
feature was 147 for each protein sequence [32]. Then we normalized the values within 
the range of [0, 1] using the following formulation to generate normalized QLC (NQLC):

Where xi denotes the physicochemical features values of j_th (j=1, 2, 3 â€¦20) AA resi-
dues. x̄  denote the mean value and std(x) denote the deviation from mean of 20 AAs. yi 
represent the resultant normalized value.

Composite protein sequence representation

Composite Protein Sequence Representation (CPSR) descriptor is adopted to encode the 
prominent physicochemical properties from DPs sequences. The AA residues in proteins 
possesses unique physiochemical properties [34] that play a vital role in different protein 
function prediction problems [35, 36]. CPSR-derived method has also been used in our 
previous studies for encoding anticancer proteins, membrane proteins etc [37, 38]. We 
have used seven different types of physicochemical properties of DP sequence (Table 3 ).

(a)	 Amino Acid Composition (AAC) For encoding protein sequence, AAC is consid-
ered the simplest formulation method. AAC counts the frequency of 20 residues in 
a proteins sequence and normalized its values. Resultantly, ACC generated a 20D 
vector of protein sequence.

(b)	 Sequence Length (L) The total number of native AAs in the given protein sequence 
is defined as L.

(c)	 2-Gram Exchange Group Frequency The composition of the bi-gram exchange 
group plays a crucial functions in encoding the protein sequence. The exchange 
groups consider broad categories of AA residues that form clusters based on evo-
lutionary effects [39]. Thus, by computing the frequency of each possible bi-gram 
pair, thirty six features of 36-D were generated from its equivalent 6-letter exchange 
group of AAs. We have provided more detail about cluster pairs of AA in Addi-
tional file 1:  Table T2.

(8)yi =
(

xj − x̄

std(x)

)

Table 3  CPSR-based feature encoding

Feature space Number 
of 
features

Amino acid composition 20

Sequence length 1

2-Gram exchange group frequency 36

Electron group 6

Rigidity 1

Flexibility 1

Irreplaceability 1

R-group 5
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(d)	 Electron Group Based on the electron properties of AA, the 20 AA molecules can 
be broadly divided into six groups, i.e., acceptor or donor, electrically special and 
neutral AA, weak electron acceptor or donor, electron acceptor or donor electron 
donor or acceptor [38]. For each protein sequence, we counted the number of AA 
from each group and represent it as a 6-D protein feature vector.

(e)	 Rigidity We encode the rigidity of each protein sequence to describe protein struc-
ture static attributes under the impact of extrinsic factors. For each AA of a protein 
sequence, we summed the rigidity score and normalized by protein length, generat-
ing a 1-D feature vector.

(f )	 Flexibility “The flexibility of protein occurs universally at the level of AA side-
chains and crucial for catalysis and binding function” [39]. For each AA of a protein 
sequence, we summed the flexibility score and then normalized by protein length, 
generating a 1-D feature vector.

(g)	 Irreplaceability The irreplaceability is a response to mutation deterioration during 
the evolution of life. To compute the irreplaceability of AA residues in protein, we 
summed the flexibility score and then normalized by protein length, generating a 
1-D feature vector.

(h)	 R-group The AA residues in a protein sequence possess a unique chemical side 
chain but similar functional group. The R-group categorize the druggable protein 
sequence based on sub-families of AA’s and generate a 5D feature vector. The five 
categories are provided in the Additional file 1:  Table T3.

Hybrid feature composition

Single set of feature may fail to capture enough attributes from protein sequence to build 
a generalized model [40]. In order to bring better complimentary information from 
several sets of feature vectors, feature hybridization is a crucial strategy [41]. Inspired 
by this, we adopted a serial feature hybridization technique to enhance the prediction 
capability of the learning algorithm. We merged HOG-PSSM, NQLC, and CPSR encod-
ers to propose hybrid features for the model development. We considered three differ-
ent hybrid features sets namely Hybrid1, Hybrid2 and Hybrid3. Hybrid1 combined the 
evolutionary profile and physicochemical based-feature of CPSR and HOG-PSSM and 
generate a feature space of 327D. Hybrid2 combined the compositional and evolution-
ary profile-based feature of NQLC and HOG-PSSM to form a feature space of 403D. 
Hybrid3 considered all features from CPSR, NQLC and HOG-PSSM to encode the pro-
tein sequence generating feature vector of 474D.

Cascade deep forest‑based predictor development

The cascade deep forest (CDF) is an ensemble-based framework inspired by Zhou et al. 
[42] model, to the serves as a substitute for deep neural networks (DNNs) [43]. In recent 
research, CDF model became a has become a dominant learning algorithm in wide range 
of domains like pattern recognition [44, 45], and bioinformatics [46]. CDF model struc-
ture is an ensemble of trees hierarchically sequenced in multiple layers [47]. The top-down 
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architecture of CDF enables the classifier ideal for training even limited number of samples 
[48]. Furthermore, Zhou and Feng pinpointed in their pioneering work that DF is much 
easier in tuning the hyperparameter compare to DNN [48]. Considering this, an improved 
version of CDF were developed containing an ensemble of RF [49], XGBoost [50], and 
extremely randomized trees (ERT) classifiers [51] to build DPI_CDF. Each layer of DPI_
CDF is composed of four learners of XGBoost, RF and ERT machine learning classifiers 
that take the feature-vector of the previous layer. The previous level’s class probability is 
then passed on to the next layer. In order to produce the augmented attributes, the related 
heterogeneous feature vectors are merged, averaged and the maximum probability values is 
generated as output. The hyper parameter of the models were tuned using GridSearchCV 
and the selected parameters are added in Additional file 1:  Table T6. The node split attrib-
utes were selected by randomly selecting features, where 

√
d is the total number of features. 

Figure 2 shows the layer-by-layer architecture of the DPI_CDF.

Performance evaluation metrics

To measure the prediction performance of binary class, we use four performance evalua-
tion metrics: sensitivity (SEN), accuracy (ACC), specificity (SPE), and Matthew’s correla-
tion coefficient (MCC). These measures are mathematically formulated as follows:

(9)ACC =
(tp+ tn)

(tp+ tn+ fp+ fn)

(10)SEN =
tp

tp+ fn

Fig. 2  The proposed architecture of DPI_CDF classifier
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In the above Eqs. (09–12), tp represents the correctly predicted DPs,tn represents the 
correctly predicted non-DPs. Whereas fn represent the incorrectly predicted DPs and 
in contrast the fp represent the non-DPs predicted incorrectly by the model. The above-
mentioned performance metrics are threshold dependent. In order to shed light the 
proposed model efficacy an independent evaluation measure receiver operating charac-
teristic (ROC) curve (AUC) was adopted [52].

Model evaluation

The performance of machine learning models were evaluated based on k-fold cross-vali-
dation (CV). In k-fold CV, benchmark dataset was divided into k subsets (folds) of nearly 
same size. Of the all the k folds, the k-1 folds were used for training the model and the 
remaining one is taken for testing the model [53]. In this work, we used 10 fold CV to 
evaluate the generalization power of the model based on Jamal et al. dataset [12] and an 
independent dataset (Yu’s dataset [15] ) was used for examining the model performance.

Results and discussion
Performance of DPI_CDF using various feature descriptors on training (DPtrain) and testing 

(DPind) dataset

In this section, we analyzed the efficacy of four classification algorithms including multi-
layer perceptron (MLP), ERT( Extra Tree Classifier), XGBoost and DPI_CDF using 
various single-view descriptors, i.e., CPSR, NQLC, and HOG-PSSM and series combina-
tion of multi-view descriptors i.e., Hybrid1, Hybrid2 and Hybrid3. The classifiers were 
trained using 10-fold CV on DPtrain dataset and evaluated on DPind independent dataset 
with five evaluation measures AUC, SEN, SPE, MCC and ACC. We can comprehensively 
analyze several observations from Table 4 as follows; First, in case of individual feature 
space, HOG-PSSM produces outstanding prediction results on cascade deep forest clas-
sifier which are mean ACC of 94.77% and MCC of 0.895. The second-best performer 
on HOG-PSSM is XGBoost learning engine which attain 93.63% of ACC and 0.876 of 
MCC respectively. However, in contrast it achieves worst predictions on MLP classifier 
i.e., ACC=79.23% and MCC =0.594. The CPSR encoding method comparatively gener-
ates satisfactory results on classifiers. Secondly, to improve the prediction performance 
of the proposed model, feature fusion strategy was employed. It is clear from empirical 
results in Table 4 that our proposed DPI_CDF model train on hybrid features particu-
larly Hybrid3 (HOG-PSSM+CPSR+NQLC) features produce superior results than sin-
gle-view descriptors on all evaluation indicators ACC, MCC, SEN and SPE. The highest 
success rates in terms of ACC=99.23% and MCC=0.99 are obtained by DPI_CDF using 
Hybrid5 feature set. On the other hand, ERT classifier performed over all poor predic-
tions on the hybrid feature sets. We also performed the 5-,-6,and -8fold cross validation 

(11)SPE =
tn

tn+ fp

(12)MCC =
tp · tn− fp · fn

√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
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on the training dataset and the results are highlighted in Additional file  1: Table  T4. 
Using 10-fold CV we got the best results.

In order to determine the proposed model prediction power, an independent or 
blind test is generally conducted. Table  5 illustrates the performance of all classifiers 
using various feature encoding methods on independent dataset. We can easily see that 
DPI_CDF with Hybrid1 (HOG-PSSM + CPSR) feature set achieve best performance on 
all evaluation metrics i.e., ACC=95.01%, MCC=0.900, SPE=93.24, AUC=0.986, and 
SEN=96.87%. The second best model is XGBoost classifier that achieved comparatively 
consistent results than MLP and ERT on various feature encoding schemes. Moreover, 
we have added the confusion matrix(TP, TN, FP, and FN) predictions of the proposed 
DPI-CDF model in Additional file 1: Table T4 and T5.

We also generated the receiver operating characteristics (ROC) curve for the pro-
posed DPI_CDF model on training and independent set (Fig. 3). We can observe that the 
model with Hybrid3 based feature combination achieved the highest AUC for training 
and test set with 0.998 and 0.979, respectively.

Comparison with previous predictors

We comprehensively compared DPI_CDF with previously developed sequence-based 
computational models including DrugMiner [12], Sun’s Method [13], GA-Bagging-SVM 

Table 4  Performance of various feature descriptors on DPtrain benchmark dataset using 10-fold CV 
test

Classifier Feature vector ACC (%) SEN (%) SPE (%) MCC AUC​

MLP CPSR 88.08 86.63 86.63 0.770 0.932

NQLC 87.14 87.27 87.04 0.750 0.958
HOG-PSSM 79.23 85.69 73.24 0.594 0.872

Hybrid1  88.20 87.85 88.56 0.776 0.950

Hybrid2  87.69 85.31 89.92 0.760 0.954

Hybrid3  89.98 86.63 93.10 0.810 0.953

ERT CPSR 87.34 85.47 89.09 0.751 0.934
NQLC 86.08 83.91 88.1 0.724 0.928

HOG-PSSM 82.06 83.89 80.37 0.643 0.878

Hybrid1  80.17 82.00 78.48 0.605 0.883

Hybrid2  83.87 83.41 84.31 0.678 0.920

Hybrid3  83.16 82.99 83.33 0.664 0.916

XGBoost CPSR 87.77 85.63 89.76 0.759 0.944

NQLC 88.71 85.88 91.35 0.778 0.949

HOG-PSSM 93.63 94.10 93.18 0.876 0.986
Hybrid1  93.62 93.20 94.01 0.873 0.968

Hybrid2  92.76 93.20 92.34 0.859 0.969

Hybrid3  93.59 93.21 93.93 0.873 0.968

DPI_CDF CPSR 90.09 87.52 92.49 0.806 0.956

NQLC 89.22 85.96 92.26 0.788 0.949

HOG-PSSM 94.77 93.64 95.82 0.895 0.969

Hybrid1  99.13 98.52 99.69 0.982 0.999
Hybrid2  99.21 98.93 99.46 0.984 0.998

Hybrid3  99.33 99.02 99.62 0.986 0.998
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[5], YU’s Method [15], XGB-DrugPred [16], and SPIDER [18] for characterizing and 
identifying DPs and non-DPs. It is worth noting that among these approaches, only two 
predictors i.e. Yu’s Method [15] and SPIDER [18] were examined on both training DPtrain 
and testing DPind datasets. The comparison outcomes of past studies over training and 
testing datasets are reported in Tables 6 and 7, respectively. The high prediction value of 
each criterion is presented in bold fonts. It is clear from Table 6 that DPI_CDF achieved 
highest performance on training dataset in terms of ACC 99.13%, MCC of 0.982, SPE 

Table 5  Performance of various feature descriptors on independent dataset DPind

Classifier Feature vector ACC (%) SEN (%) SPE (%) MCC AUC​

MLP CPSR 89.37 83.03 95.35 0.792 0.940
NQLC 90.23 86.60 93.67 0.805 0.937

HOG-PSSM 78.09 73.66 82.27 0.562 0.845

Hybrid1 86.98 91.51 82.70 0.743 0.940
Hybrid2 88.93 86.16 91.56 0.779 0.936

Hybrid3 89.37 88.39 90.29 0.787 0.946

ERT CPSR 86.55 79.46 93.24 0.736 0.892
NQLC 83.08 75.00 90.71 0.667 0.880

HOG-PSSM 77.87 73.66 81.85 0.557 0.838

Hybrid1 72.45 70.08 74.68 0.448 0.799

Hybrid2 77.86 74.55 81.01 0.557 0.865

Hybrid3 75.92 68.75 82.70 0.520 0.855

XGBoost CPSR 87.85 83.03 92.40 0.759 0.912

NQLC 87.85 82.14 93.24 0.760 0.917

HOG-PSSM 89.37 88.83 89.87 0.787 0.964
Hybrid1 89.15 88.83 89.45 0.782 0.936

Hybrid2 89.37 88.83 89.87 0.787 0.941

Hybrid3 89.15 88.83 89.45 0.782 0.936

DPI_CDF CPSR 87.41 87.94 86.91 0.748 0.927

NQLC 85.24 79.91 90.29 0.707 0.893

HOG-PSSM 94.14 96.42 91.98 0.883 0.980

Hybrid1 95.01 96.87 93.24 0.900 0.986
Hybrid2 94.36 96.86 91.98 0.888 0.977

Hybrid3 94.57 96.87 92.40 0.892 0.978

Fig. 3  ROC curves of DPI_CDF model using various feature encoding methods on the training (A) and 
testing (B) datasets
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of 99.69%, F-score of 0.999 and SEN of 98.52% which are 7.23%, 14.3%, 5.49%, 8.5% and 
9.02% higher than recent state-of-the-art SPIDER method. Furthermore, to demonstrate 
the generalization power of DPI_CDF on unseen data, independent test set results are 
reported in Table 6. The prediction outcomes in Table 6 reveals that DPI_CDF attained 
ACC of 95.01%, MCC of 0.900, SPE of 93.24%, F-score of 0.949 and SEN of 96.87%. Our 
proposed protocol showed superior performance in term of evaluation indexes ACC of 
4.31%, MCC of 8.4%, F-score of 5% and SEN of 11.17%, except little decrease in term of 
SPE than SPIDER. From aforementioned discussion, it can be concluded that the pro-
posed method for determining the proteins druggability is far superior to all the avail-
able computational methods.

Figure 4 highlights the performance evaluation metrics for DPI_CDF along with other 
existing methods for predicting druggable proteins. We can observe that both in train-
ing and independent set, DPI_CDF outperformed the existing methods. The proposed 
model attained the highest ACC and MCC of 95.01% and 0.949 respectively on inde-
pendent test.

Visual analysis and explanation of the proposed features

In order to interpret the impact of engineered features, we used two dimension scat-
ters plot t-SNE [54] and SHAP to visualize the distribution of extracted single-view fea-
tures (CPSR, NQLC and HOG-PSSM) and multi-view features (Hybrid1, Hybrid2, and 
Hybrid3) on training dataset (Fig. 5).

In Fig.  5, the green dots represent the non-DPs and red dots represent DPs. Fig-
ure  5A-C are single-view descriptors, indicating that HOG-PSSM shows sharp dis-
tinction between the distribution of green and red dots (Fig.  5C) which significantly 
contribute to predicting DPs. Similarly, Fig.  5D–F are mixing different feature combi-
nation of (evolutionary +physicochemical) Hybrid1, (evolutionary + compositional) 

Table 6  Performance comparison of DPI-CDF predictor with existing methods on training dataset 
DPtrain

N/A: Not available in the literature

Predictor Algorithm ACC (%) SEN (%) SPE (%) MCC F-score

DrugMiner  NN 92.1 92.8 91.34 0.841 0.924

Sun’s Method NN 91.93 N/A  N/A  N/A  N/A

GA-Bagging-SVM SVM 93.78 92.86 94.45 0.878 0.935

Yu’s Method CNN-RNN 90 89 N/A 0.8 0.896

SPIDER SVM 91.9 89.5 94.2 0.839 0.914

XGB-DrugPred XGBoost 94.86 93.75 95.74 0.89 0.963

DPI_CDF (our method) CDF 99.13 98.52 99.69 0.982 0.999

Table 7  Performance comparison of DPI-CDF predictor with existing state-of-the-art methods on 
independent dataset DPind

Predictor Algorithm ACC (%) SEN (%) SPE (%) MCC F-score

Yu’s method CNN-RNN 89.8 84.8 89.5 0.799 0.889

SPIDER SVM 90.7 85.7 95.4 0.816 0.899

DPI_CDF (our method) CDF 95.01 96.87 93.24 0.90 0.949
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Hybrid2, and (evolutionary +physicochemical + compositional) Hybrid3. The plotting 
distribution of Hybrid1 feature in Fig.  5D seems more distinguishable than the other 
fused features indicate that Hybrid1 explore the biological region of DPs. The combina-
tion of physicochemical and evolutionary-based attributes is more effective in designing 
DPI_CDF model for DPs and non-DPs classification.

Furthermore, SHAP (Shapley Additive exPlanations) method [55] was used to eluci-
date the relative contribution of each feature in model performance (Fig. 6). It is clear 
from the Fig. 6 that the positive and negative SHAP values for the top ranked features 
favored the prediction performance of DPs and non-DPs, respectively. Majority of the 

Fig. 4  Performance comparison of DPI_CDF with existing DPs predictors over training (A) and testing (B) 
dataset

Fig. 5  t-SNE visualization of Druggable (red) and non-Druggable (green) samples on the training dataset in a 
two-dimensional feature space: CPSR (A), NQLC (B), HOG-PSSM (C), Hybrid1 (D), Hybrid2 (E), and Hybrid3 (F)
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top ranked features particularly HOG-PSSM51 and HOG-PSSM180 captured the key 
DPs attributes and had positive SAHP values, the model predicted a protein sequence 
as DP; otherwise a protein sequence was predicted as non-DP for negative SHAP val-
ues. We also noticed that among the toped ranked attributes, CPSR17 and NQLC75 
from CPSR and NQLC, respectively contributed to boosting the performance of DPI_
CDF. Thus, it is evident that feature fusion strategy helped to enhance the prediction 
capability of the proposed DPI_CDF model.

Conclusion
Identification of drug targets is crucial for pharmaceutical industries to design new 
efficacious drugs. In this work, we have designed a novel high-throughput model, 
DPI_CDF, for screening proteins with druggable activity. To our best knowledge, 
DPI_CDF is the first ensemble-based method based on evolutionary, physiochemi-
cal and compositional feature vectors for characterizing and discriminating DPs and 
non-DPs. Experiment outcomes on the benchmark datasets anticipate that our pro-
posed predictor attained superior performance in druggable target prediction and 
surpassed all the existing sequence-based DP prediction tools. Additionally, the DPI_
CDF protocol shows excellent efficacy due to multiple reasons. (a) The new encod-
ing schemes were designed to dig out the prominent information from the biological 

Fig. 6  SHAP analysis for the top ranked 25 features for DPI_CDF
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protein sequences. (b) Feature fusion strategy enhanced the overall performance of 
the model. (c) Designing a robust and efficient CDF learning algorithm for druggable 
protein identification.

Our work has some limitations that need to be mentioned. We considered hand 
curated features to encode protein sequences which requires domain expertise. We did 
not provide our methods as a web server or binary tool for the users. In future we will 
consider different combinations of novel features to encode proteins which may further 
improve the performance of DPI_CDF. In future we will try to collect more data and 
manually curate them to provide a high-quality larger dataset for this particular prob-
lem. We will also explore deep learning-based models, e.g., RNN, LSTM, B-LSTM, etc. 
to improve the performance of the predictor on large-scale un-annotated proteins.
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