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Introduction
Effective large-scale monitoring and surveillance of novel pathogens are critical compo-
nents of contemporary public health strategy [1, 2]. Genotypic screening of pathogens, 
in particular, enables researchers and clinicians to gain nuanced insights into disease 
transmission patterns, virulence factors, antibiotic resistance profiles, and potential out-
break sources [3]. Modern techniques for genotypic screening, however, can be cost-
prohibitive, slow, and intractable to scale [4]. High Resolution Melting (HRM) analysis 
offers an emerging alternative that enables rapid, effective, and economical post-amplifi-
cation nucleic acid characterization for profiling DNA sequences [5–11].
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HRM involves the use of a DNA-binding dye added to DNA samples, which fluoresces 
upon intercalating into the double-stranded structure. As the sample is heated, the DNA 
denatures, resulting in a loss of fluorescence which is recorded to produce a melt curve. 
Recent advancements have positioned HRM as not just a check on amplification product 
homogeneity, but also as a reliable method for heterozygote detection [5, 12]. Moreover, 
with improvements in heat transfer and reaction engineering, homozygous melt curves 
can now be leveraged as sequence-specific signatures [13–16].

When applied to the problem of identifying and differentiating bacteria, universal 
primers have been used to target the 16S rRNA gene, which is highly conserved in bacte-
ria but contains variable regions that are specific to different species or strains. This ena-
bles broad-based amplification of the bacterial 16S gene with universal primers, while 
relying on melt to genotype the hypervariable sequences specific to organism identity. 
The use of machine learning (ML) classification, where each unique sequence-specific 
curve signature represents a pathogen class, offers a principled framework to utilize 
HRM as a broad-based sequence profiling tool. This could be especially valuable in clini-
cal diagnostics, where specifically identifying pathogenic bacteria is crucial for deter-
mining the appropriate treatment [17–19].

The growth in the amount of HRM data available for ML training has further acceler-
ated the practical application of these methods for pathogen profiling. The rising prom-
inence of digital PCR has led to the evolution from traditional HRM to digital HRM 
(dHRM) which enables 200-fold increases in the number of melt curves [20, 21]. This 
methodology originated from our prior work in which we introduced a unique dHRM 
platform that employs specialized heat transfer and imaging mechanisms to simulta-
neously melt thousands of digital PCR (dPCR) reactions [13, 14, 22]. A distinct feature 
of this methodology is its digital design, in which each reaction is characterized by the 
presence or absence of a genome as its DNA template. While traditional HRM might 
typically operate on a 96-well plate, our dHRM technique utilizes a dPCR chip with 
20,000 partitions, resulting in 20,000 HRM curves.

Existing literature has demonstrated effective application of Naïve Bayes (NB) [23], 
Support Vector Machines (SVM) [15, 16], k-Nearest Neighbors using Dynamic Time 
Warping [24], Random Forest (RandF) [25, 26], and Neural Networks [27], for the pur-
pose of pathogen classification using melt curve data. SVM algorithms have shown 
notable performance even with relatively few melt curves. However, in the traditional 
one-versus-all application for multiclass classification, these methods are ill-suited to 
address melt curves that lie outside the distribution of their training set. Specifically, 
when presented with an out-of-distribution melt curve, these classifiers may errone-
ously classify the signature of an emerging pathogen as a known pathogen class. Thus, 
to enable broad-based pathogen surveillance, there is substantial promise in ML that can 
accurately identify the emergence of novel genotypes.

In this work, we leverage the massive datasets generated from our dHRM platform 
and broad-based 16S gene amplification strategy to evaluate the performance of com-
mon ML classifiers in the identification of novel and known bacterial genotypes. To our 
knowledge, this work represents the first study in which multiple broadly applicable ML 
classifiers have been investigated for the purpose of novelty detection with HRM. Previ-
ous work by Andini et al. utilized Naïve Bayes and a custom distance metric based on 
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the Hilbert Transformation, but this approach was limited in efficacy since it aligned 
melt peaks to a single temperature [23]. We hypothesize that by incorporating a larger 
HRM dataset than previously reported, extracting significant geometric features of the 
melt curves, selecting the optimal ML algorithm, and developing an appropriate met-
ric of model confidence, we can more accurately automate the identification of novel 
genotypes. We test this hypothesis using both experimental samples and simulated melt 
curves generated using the uMelt tool [28]. We focus on the specific use-case of bactere-
mia in neonates in which a small number of bacterial organisms are typically implicated, 
but emerging and opportunistic infections can occur [29].

Material and methods
Bacterial strains

The bacterial species used in this study and their corresponding melt curves are 
described in Additional file 1: Table S1. These bacteria are the primary causative path-
ogens in cases of neonatal sepsis [29, 30]. We obtained isolates from Dr. David Pride 
(University of California San Diego School of Medicine) as well as the American Tissue 
Culture Collection (ATCC, Old Town Manassas, VA). Bacteria were cultured in Lurie-
Bertani (LB) broth or Tryptic Soy broth (TSB), as required, and incubated overnight at 
37 °C.

Bacterial genomic DNA extraction and PCR

Following culturing, we performed DNA extraction using Wizard Genome DNA Puri-
fication kit (Promega Corporation, Madison, WI). We assessed the quality and concen-
tration of the extracted DNA using spectrophotometric absorbance measurements and 
confirmed the identities of the species from sequencing. We prepared genomic DNA 
dilutions for use with dPCR and used the commercially available QuantStudio 3D Digital 
PCR 20 K chip v2 (Applied Biosystems, Foster City, CA) for amplification. We followed 
the manufacturer’s recommended process, but customized our reagents. The composi-
tion of our dPCR master mix is described in our prior work. It includes 1 μL of sam-
ple, 0.15  μM forward primer 5′-GYG GCG NACG GGT GAG TAA -3′ (Integrated DNA 
Technologies, Coralville, IA), 0.15 μM reverse primer 5′-AGC TGA CGACANCCA TGC 
A-3′ (Integrated DNA Technologies, Coralville, IA), 0.02 U/μL of Phusion HotStart Pol-
ymerase (Thermo Fisher Scientific, Waltham, MA), 0.2 mM dNTPs (Invitrogen, Carls-
bad, CA), 1X Phusion HF Buffer containing 1.5 mM MgCl2 (Thermo Fisher Scientific, 
Waltham, MA), 2.5X EvaGreen (Biotium, Fremont, CA), 2X ROX (Thermo Fisher Sci-
entific, Waltham, MA), and ultrapure PCR water (Quality Biological Inc., Gaithersburg, 
MD) to bring the total volume to 14.5 μL. We loaded the chip by spreading 14.5µL of 
the master mix per the manufacturer’s recommendation. We then cycled the the dPCR 
on a flatbed thermocycler with the following cycle settings: an initial enzyme activation 
(98 °C, 30 s), followed by 70 cycles (95 °C, 30 s, 59 °C, 30 s, 72 °C, 60 s).

DNA melt curve generation and preprocessing

The architecture of our U-dHRM device has been previously described [13, 14]. A 
copper plate hosts the microfluidic dPCR chip, separated by a thin layer of thermal 
grease to ensure efficient heat transfer. Temperature control is achieved through 
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a thermoelectric module (TE Technology Inc., Traverse City, MI), PID control-
ler (Meerstetter Engineering GmbH, Rubigen, Switzerland), Class 1/3B resistance 
temperature detector (RTD) (Heraeus, Hanau, Germany) embedded in the copper 
block, K-type thermocouple (OMEGA Engineering, Stamford, CT), and heat sink. 
We secure the device on-stage for optimal fluorescent imaging using a custom-made 
adapter. A Nikon Eclipse Ti microscope (Nikon, Tokyo, Japan) captures simultane-
ous fluorescent images from heat ramping the DNA-intercalating dye, EvaGreen (Ex/
Em: 488 nm/561 nm) and the control dye, ROX (Ex/Em: 405 nm/488 nm). An auto-
mated image processing algorithm implemented in MATLAB is used to generate the 
melt curves. We perform background subtraction using the linear method described 
in [31]. This horizontally aligns the tails of the melt curves with the x-axis, to ensure 
they are most similar to the theoretically predicted uMelt curves.

Feature engineering

The resulting preprocessed melt curves contain fluorescence loss values (−dF/dT) for 
410 temperature steps in the range [51 °C, 92 °C]. We model this as a 1-dimensional 
time-series and apply a signature transform to each melt curve. The signature method 
is a non-parametric feature extractor that computes a series of integrals along a data 
path that fully capture its order and area [32, 33]. The signature method is option-
ally time-shift invariant and is sensitive to the geometric shape of the path. We apply 
the signature transform on a rolling window with a kernel size of 20 and a stride of 8 
across the time-series with time and basepoint augmentations and a signature depth 
of 3 to generate a set of features for the downstream classification tasks.

Machine learning model selection

We set out to compare five ML methods: Logistic Regression, Naïve Bayes (NB), Support 
Vector Machines (SVM), Neural Networks and Random Forest (RandF). To address cor-
relation between the input signature features, we used L2 regularization for the logistic 
regression, SVM, and neural network models. At the end of this work we briefly dis-
cuss how calibrating the probabilities affects the results. We built and implemented all 
algorithms using the scikit-learn package within Python programming language [34]. All 
data and code are available on https:// github. com/ abous sina/ dHRM- novel ty- detec tion.

Quantification of genotypic differences

To further assess the utility of our derived HRM signatures for the identification of dis-
tinct genotypes, we analyzed the ability of the aforementioned ML models to quantify 
the degree of genotypic differences between species. That is, beyond simply classifying 
a melt curve to a given species, we reformulated this as a regression problem where the 
target variable is a metric for genotypic difference. We calculated this metric by mapping 
our ten bacterial species on the SILVA phylogenetic tree and computing the patristic 
distance between the node of each species and the E. coli node [35]. We evaluated the 
performance of this regressor using the c-statistic as described in [36].

https://github.com/aboussina/dHRM-novelty-detection
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Leave‑one‑group‑out (LOGO) experiments

We evaluated the capability of these machine learning models for the task of identify-
ing novel melt curves, i.e. those belonging to species unrepresented in the training 
set, using a leave-one-group-out experimental design. For each of our ten bacterial 
species, we held out its melt curves and split the curves of the remaining nine species 
into training and test sets (80:20 ratio). Then, the held-out species’ curves were added 
to the test set. The machine learning model was trained on the training set and then 
tested on its ability to recognize the curves of the held-out species as novel within the 
modified test set. This process was repeated for each of the ten species. The schematic 
of this approach is presented in Fig.  1. To measure our model’s efficacy in novelty 
detection, we used Youden’s index, a metric that assesses the performance of a binary 
diagnostic test.

Threshold selection

We set the threshold for novelty identification on a single LOGO experiment to the 
Youden Index (i.e. the point on an ROC curve at which sensitivity + specificity − 1 
is maximized). However, to practically identify novel organisms, the ideal thresh-
old should apply across all ten LOGO experiments. Thus, we calculate a ‘practical’ 
threshold by accumulating all the LOGO experiments and determining the Youden 
Index from their combined ROC curve. We then assess the performance of each 
LOGO experiment using this combined ‘practical’ threshold. We investigated apply-
ing sample weights to each experiment based on the number of left-out curves, but 
didn’t observe a significant change in the selected threshold (data not shown).

Threshold validation with synthetic melt curves

We generated in-silico melt curves using uMelt for 50 clinically relevant bacterial 
pathogens, including category A and B biothreat agents and their surrogates from 
[37] (Additional file 1: Table S1). We added real dHRM noise to these synthetic melt 
curves to more realistically capture sample variation as described [26]. We created 
100 melt curves per species, with a unique noise residual applied to each individual 
melt curve.

Fig. 1 Workflow for ML novelty detection
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Results
Preprocessing

Figure 2 and Additional file 1: Figs. S1–S2 show the results of background subtraction 
on the experimental melt curves. Also shown are the simulated melt curves from uMelt 
with added dHRM noise. Supplemental Additional file 1: Fig. S3 shows an overview of 
the synthetically created melt curves for all 50 pathogens. As demonstrated, the back-
ground subtraction effectively aligns the curves with the x-axis. Further, the simulated 
curves show similar characteristics to the experimental observations.

Classification and regression performance

The ML methods show very similar classification accuracy, which is summarized in 
Table 1. No significant difference can be observed between the ‘full melt’ and ‘short melt’ 
classification results, which implies there might not be any additional information in the 
tail of the melt curve. Additional file 1: Figure S4 shows the correlation between melt 
curve distance (defined as the average pointwise distance from the average E. coli curve) 
and patristic distance from E. coli. We observe modest correlation with a couple of dis-
tinct outliers. The performance of a select ML method (RandF, n = 500) to quantify the 
patristic distance is listed in Additional file 1: Table S2. We observe strong performance 
(c-statistic: 0.96) for this regression task indicating that the derived features enable quan-
tification of the genotypic differences between organisms.

Fig. 2 Overview of dHRM datasets. A Experimentally obtained dHRM melt curves. B Ten examples of 
synthesized melt curves using a combination of uMelts and real dHRM melt curve noise. Full and short melt 
refer to using the entire length of the melt curve or a shorter window around the melt peak location

Table 1 ML methods overview and classification results

Full melt accuracy Short melt 
accuracy

Logistic regression 0.996 0.997

Gaussian Naïve Bayes 0.963 0.975

SVM (rbf ) 0.990 0.993

SVM (linear) 0.996 0.997

Neural net (identity) 0.994 0.997

Neural net (logistic) 0.997 0.998

Neural net (tanh) 0.996 0.998

Neural net (relu) 0.996 0.998

RandF (n = 100) 0.997 0.997

RandF (n = 500) 0.997 0.997



Page 7 of 13Boussina et al. BMC Bioinformatics          (2024) 25:185  

Leave‑one‑group‑out (LOGO) experiments and threshold selection

Figure  3 shows the results of one LOGO experiment for one ML method (RandF, 
n = 500). The optimal threshold is found by plotting the ROC curve (Fig. 3B) and select-
ing its Youden index.

Figures 4 and 5 summarize the results of the accumulated LOGO experiments. The 
ROC curves of the 10 individual LOGO experiments as well as the accumulated ROC 
curve are shown in Fig. 4. The performance, as measured by Youden’s index is shown as 
a function of classification method in Fig. 5. Each bar shows the average performance 
across ten LOGO experiments. ‘Optimal thresholds’ means selecting the best thresh-
old for each LOGO experiment individually. ‘Practical threshold’ means selecting the 
optimal threshold for the accumulated LOGO experiments and applying it to all LOGO 
experiments separately. Random Forest outperforms the other methods, but Neural 
Nets and SVMs still perform relatively well.

Fig. 3 Leave-one-species-out cross validation to determine probability threshold. A Boxplot of the 
classification probabilities of each of the ten species. In this experiment C. koseri is the left-out species, 
which means it is left out of the training set and added to the test set. This experiment is repeated for each 
of the ten species, and an optimal threshold can be found for each of them. This experiment is repeated 
for all ML methods (method shown here is RandF (n = 500)). B ROC curve that is used to find the optimal 
threshold. Youden’s Index is chosen as the optimal threshold, it is the point on the ROC curve where 
sensitivity + specificity − 1 is maximized

Fig. 4 Accumulating the leave-one-group-out (LOGO) experiments results in a ‘practical’ threshold. A ROC 
curve for all ten LOGO experiments accumulated with RandF (n = 500). The optimal threshold is again found 
by Youden’s Index. We have named it the ‘practical’ threshold as one threshold has to be chosen (as opposed 
to a separate threshold for each LOGO experiment) when further validating the model on unseen ‘novel’ melt 
curves. It is the optimal threshold for all ten LOGO experiments combined. B Choosing a practical threshold 
implies that each LOGO experiment individually will be performing at a suboptimal threshold, which 
translates to a suboptimal operating point on the ROC curve
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Fig. 5 Summary of LOGO novelty detection results. Average novelty detection performance across ten 
species measured by Youden’s index as a function of classification method. Optimal means selecting the best 
threshold for each leave-one-species-out experiment. Practical means selecting one threshold and applying 
it to all leave-one-species-out experiments

Fig. 6 Validation of practical threshold on synthesized set of melt curves. A The practical threshold, selected 
through the LOGO experiments, was validated on the signature features from a new dataset consisting of 50 
species, each with 100 synthetic melt curves with real dHRM noise. The performance of E. coli was confirmed 
to be an outlier using one-tailed t-tests. B ROC curve. When the practical threshold is close to the optimal 
threshold, it serves as a validation for the threshold selection process. C The practical threshold, repeated on 
the raw experimental and synthetic melt curves. D ROC curve using the raw melt curves. The ML method 
shown here is RandF (n = 100)



Page 9 of 13Boussina et al. BMC Bioinformatics          (2024) 25:185  

Threshold validation and novelty detection

Figure 6 shows boxplots and ROC curves used to validate the previously obtained ‘prac-
tical’ threshold using the signature features (Fig. 6A, B) as well as the raw melt curves 
(Fig. 6C, D). The method shown in Fig. 6 is RandF (n = 100), which was one of the best 
performing methods, similar figures for all other methods are available in the supple-
mentary data (Additional file  1: Fig. S5). When the practical threshold is close to the 
optimal threshold, the practical operating point on the ROC curve (Fig. 6B) will be close 
to the optimal one (Youden’s index). When this is the case, it confirms that our proposed 
method for obtaining a practical threshold for novelty detection, is indeed valid. Both 
feature sets (signatures and the raw melt curves) achieve strong discriminative perfor-
mance of novel organisms based on the model score. The use of signature features ena-
bles an overall slight improvement but notably results in reduced novelty detection of T. 
pallidum. Figure 7A shows an overview of the results for all ML methods. The average 
difference between the optimal and practically attained Youden index across the ten ML 
methods is just 0.019 with a standard deviation of 0.025. This serves as a confirmation 
of our threshold selection process using the accumulated LOGO experiments. Random 
Forest and SVM (rbf ) perform the best, with the Neural Nets a close third.

Further improvements

We observed that the classification probabilities for the E. coli group of melt curves are 
more spread out (Fig. 6A) and might be an outlier group compared to the other species. 
This was apparent for multiple ML methods and was confirmed with one-tailed t-tests 
(e.g. for the short melt curves: P < 0.01 for Logistic Regression, Gaussian NB, SVM (rbf 
and linear), Neural Net (identity and relu) and RandF (n = 100 and n = 500)). As a result 
of this, we ran all steps again, but this time leaving out E. coli, to see if we could further 
optimize our novelty detection method. Figure 7B shows that results do indeed improve 
when leaving E. coli out. Random Forest and SVM (rbf ) are the top performers, and their 
results are further summarized in Table 2. The best performance achieved is a Youden 
index of 0.93, corresponding to a specificity of 0.97 and sensitivity of 0.96.

We also investigated whether calibrating the probabilities using scikit-learn’s 
‘CalibratedClassifierCV’ function would improve the outcome. We tested both the 

Fig. 7 Summary of practical threshold validation results. A Average novelty detection performance on 50 
unseen species measured by Youden’s index as a function of classification method. B Dropping E. coli, an 
outlier group, results in improved performance for almost all methods (results including E. coli are overlayed 
in gray). SVM (rbf ) is more robust against this outlier behavior and sees less improvements
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‘sigmoid’ method, which corresponds to Platt’s method (i.e., a logistic regression 
model) or the ‘isotonic’ method, which is a non-parametric approach. Results are 
summarized in supplemental Additional file  1: Fig. S6. As expected, we see a large 
improvement for Naïve Bayes. We also see a significant improvement for Logistic 
Regression. None of the calibrated methods outperform the best results (SVM, Neu-
ral Net, RandF) as outlined in Fig. 7 and Table 2 though.

Discussion
Our work demonstrates the utility of time-series classification algorithms in resolv-
ing multiple bacterial organism melt curves, and in identifying previously unknown 
(novel) melt curves that are not represented in the database. The large amount of 
dPCR chip-generated melt curve data enabled the development of machine learning 
classifiers and novelty detection algorithms, which distinguishes this study from pre-
vious studies which did not assess out-of-distribution data and utilized small datasets 
of melt curves [38, 39].

The only other published method specifically aimed at melt curve novelty detection 
[23] aligns the melt curves to one specific temperature, losing the useful melt peak loca-
tion information in the process. We have selected the most widely used ML methods 
in HRM analysis and have shown that they are all able to classify our dHRM database 
with very high accuracy. Interestingly, some drastically outperform others when it comes 
to novelty detection. We find that Neural Nets, SVMs, and Random Forest outperform 
the other ML methods, even after calibrating the probabilities. Random forests utilizing 
features extracted from a time-series have been shown to perform well on time-series 
classification tasks [40]. Here, we show that its well-calibrated probabilities are also par-
ticularly useful for conducting HRM novelty detection.

The performance of our approach was improved with the removal of data for the out-
lier species E. coli. One reason for the lower performance of E. coli compared to the 
other species could be that is has the lowest number of melt curves available (Additional 
file 1: Table S1), which results in a smaller amount of training data available for the ML 
methods. We do not expect E. coli to inherently have more heterogeneity in its sequence 
compared to other species. Melt curve shape variance might be another contributor to 
its outlier behavior as it has the third most variance in shape (from the ten species) as 
measured by dynamic time warping (DTW), in our previous work [26].

Table 2 Overview of best results

Optimal 
specificity

Optimal 
sensitivity

Optimal 
Youden

Practical 
specificity

Practical 
sensitivity

Practical 
Youden

Full melt

Support vector machine (rbf ) 0.93 0.93 0.86 0.96 0.88 0.83

Random forest (n = 100) 0.98 0.95 0.93 0.94 0.96 0.91

Random forest (n = 500) 0.98 0.95 0.93 0.96 0.96 0.92

Short melt

Support vector machine (rbf ) 0.94 0.95 0.90 0.96 0.91 0.87

Random forest (n = 100) 0.97 0.96 0.93 0.97 0.96 0.93

Random forest (n = 500) 0.98 0.95 0.93 0.96 0.96 0.92
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No major differences were found between using the full length and short version of 
the melt curves, although for most methods the short version does outperform the full 
length, showing that there might not be any additional information in the low-tem-
perature tail of the curve, and including it might even confound the novelty detection 
performance.

There are several limitations to our work. First, while we benchmarked novelty detec-
tion across a suite of machine learning algorithms, we did not perform hyperparame-
ter tuning. It is possible that approaches such as Bayesian optimization could improve 
novelty detection performance. Further, we did not utilize any distance-based metric for 
evaluating out-of-distribution novel organisms; opting instead to leverage the output 
scores from discriminative classifiers to select an optimal threshold. Our approach pro-
vides an effective way to incorporate novelty detection within a large machine learning 
framework, but future work is required to evaluate alternative distance-aware method-
ologies [41].

In conclusion, advances in machine learning and ‘big data’ generation are opening up 
more opportunities for the advancement of HRM, which due to its speed, low cost, and 
simplicity was already attractive. The opportunity to use HRM as a discovery tool as well 
as profiling technology will further advance HRM technology towards its application in 
research and clinical diagnostics.
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