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Abstract 

Background: Classifying breast cancer subtypes is crucial for clinical diagnosis 
and treatment. However, the early symptoms of breast cancer may not be apparent. 
Rapid advances in high-throughput sequencing technology have led to generating 
large number of multi-omics biological data. Leveraging and integrating the available 
multi-omics data can effectively enhance the accuracy of identifying breast cancer 
subtypes. However, few efforts focus on identifying the associations of different omics 
data to predict the breast cancer subtypes.

Results: In this paper, we propose a differential sparse canonical correlation analysis 
network (DSCCN) for classifying the breast cancer subtypes. DSCCN performs differ-
ential analysis on multi-omics expression data to identify differentially expressed (DE) 
genes and adopts sparse canonical correlation analysis (SCCA) to mine highly cor-
related features between multi-omics DE-genes. Meanwhile, DSCCN uses multi-task 
deep learning neural network separately to train the correlated DE-genes to predict 
breast cancer subtypes, which spontaneously tackle the data heterogeneity problem 
in integrating multi-omics data.

Conclusions: The experimental results show that by mining the associations 
among multi-omics data, DSCCN is more capable of accurately classifying breast can-
cer subtypes than the existing methods.

Keywords: Multi-omics data integration, Breast cancer subtypes, Sparse canonical 
correlation analysis, Deep neural network

Introduction
Breast cancer is the second leading cause of cancer death in women after Lung cancer 
[1]. It is a highly heterogeneous disease, consisting of different biological subtypes. Each 
breast cancer subtype has different clinical, pathological and molecular features, and has 
different prognostic and therapeutic implications [2, 3]. Therefore, the study of breast 
cancer subtypes is of great significance for precision medicine and prognosis prediction 
of breast cancer [4, 5]. To profile heterogeneous genotype data related to breast cancer, 
high-throughput technologies could be exploited [6–8].
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Driven by the new high-throughput sequencing technologies, biological data in a 
variety of different formats, sizes and structures are growing at an unprecedented rate 
[9–11]. Based on these omics data, there have been many studies on the classification 
of breast cancer subtypes, which can be divided into two categories. The first category 
is based on single omics data. For example, Lehmann et al. [12] used gene expression 
data for clustering analysis to identify subtypes of triple-negative breast cancer. Rhee 
et  al. [13] proposed a hybrid approach to integrate graph convolutional networks and 
relational networks to predict breast cancer subtypes using gene expression profiles. Yu 
et al. [14] performed differential expression analysis on biologically important genes in 
the gene regulatory networks and constructed a machine learning-based binary classifi-
cation model for each breast cancer subtype using the differential expression genes. Each 
type of omics data exhibits specific disease associations [15, 16]. However, the analysis of 
single omics data do not capture the interrelationships between molecules at different 
levels, which may fail to provide a comprehensive understanding of the biological pro-
cesses of breast cancer [17].

To address these limitations, the second category utilizes multi-omics data to perform 
breast cancer classification. Various studies have shown that combining multiple omics 
datasets yields better accurate prediction to clinical outcomes, thereby verifying the 
importance of integrating multi-omics data over single-omics data [17–21]. According 
to the way of data integration, the multi-omics data integration methods for predicting 
breast cancer subtypes can be classified as concatenation-based, ensemble-based and 
knowledge-driven methods[22].

The concatenation-based methods combine all omics data into a single dataset 
before training [15, 23]. For example, Tao et al. [24] presented a SVM model with mul-
tiple kernel to classify breast cancer subtypes using multi-omics data. List et al. [25] 
constructed random forest model to classify breast cancer subtypes using both gene 
expression and DNA methylation data. Concatenation-based methods are convenient 
for integrating multi-omics data into single dataset before training, but they suffer 
from the increasing dimensionality of multi-omics data and the data heterogeneity 
issue in integrating multi-omics data [26]. The ensemble-based methods separately 
train a model on each omics dataset and combine the prediction results based on the 
average or majority voting scheme [27]. For example, Lin et al. [28] proposed a deep 
neural network model DeepMo based on multi-omics data for the breast cancer sub-
types classification. DeepMo applies fully-connected layers to each omics and con-
catenates these fully-connected layers for final subtypes prediction. Joung et al. [29] 
presented an interpretable deep learning-based framework moBRCA-net for clas-
sifying breast cancer subtypes. moBRCA-net utilizes self-attention module to each 
omics to mine the important features of multi-omics data and integrates the mined 
features into deep neural network to identify breast cancer subtypes. The ensemble-
based methods retain unique data distribution so that the omics data from different 
sources can be fully trained. However, the ensemble-based methods do not consider 
the biological interaction between multi-omics data, which may lose complementary 
information in multi-omics data [30]. Knowledge-driven approaches considers the 
relationships between different omics data based on prior knowledge. For example, 
Singh et al. proposed DIABLO to seek common information across different modality 
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data by selecting a subset of features and discriminating multiple subtypes simultane-
ously. SMSPL [31] is a robust multimodal approach for classifying breast cancer sub-
types by analyzing integrative multi-omics data. However, it should be noted that the 
prior knowledge sometimes may not be suitable for some biological research fields 
[31].

Although the abovementioned methods have achieved great success in predicting 
breast cancer subtypes, some challenges still remain when integrating multi-omics data: 
(1) Biological data usually contain a large number of features p and small size of samples 
n, which is called the large p and small n problem [32]. From a biological perspective, 
only a small fraction of features is highly correlated with the target disease, while most 
features are irrelevant. From a machine learning perspective, many irrelevant features 
may be prone to overfitting problems and negatively influence the performance of the 
classifier. (2) Data heterogeneity problem. Different types of biological data produced 
by different omics platforms contain heterogeneous information, which could result in 
different kinds and levels of uncertainty and imprecision [33]. (3) The complementary 
information presented in multi-omics data is not fully utilized. In the classification of 
breast cancer subtypes, people mainly focused on employing the associations between 
disease and single omics data rather than the associations among different types of 
omics data.

Motivated by these limitations, we propose a novel framework called DSCCN for clas-
sifying breast cancer subtypes by mining the associations among multi-omics data. To 
solve the large p and small n problem in the integration of multi-omics data, DSCCN 
first performs differential analysis on the multi-omics expression data of breast cancer 
patients to identify differentially expressed genes. This step, specifically designed for 
breast cancer, has effectively reduced the number of features while ensuring that the 
selected features are statistically significant, which are potentially related to the occur-
rence of breast cancer. To mine the associations among multi-omics data, a SCCA mode 
[34] is exploited to detect linear structural interaction information of the multi-omics 
expression data to uncover correlated multi-omics features of the identified DE-genes. 
To the best of our knowledge, this is the first time of using SCCA model to identify 
associations in multi-omics data for classifying breast cancer subtypes. Finally, DSCCN 
adopts an end-to-end multi-task deep learning neural network model DNN with atten-
tion mechanism to train the correlated multi-omics features of DE-genes to classify the 
breast cancer subtypes. Unlike traditional neural networks, which are usually trained 
only for a single specific task, our multi-task network utilizes a shared representation to 
perform multiple tasks simultaneously. Two independent tasks are separately performed 
to train our DNN model on two omics dataset, and the attention mechanism is utilized 
to mine the impotrant multi-omics genes of high similarity within both tasks to produce 
classification probabilities for each task. This effectively solves the problem of data het-
erogeneity and captures the information presented in multi-omics.

We demonstrate the capability of DSCCN by comparing it with the state-of-the-art 
methods. In the comparative experiments, we evaluate the performance of all competi-
tive methods in the binary/multiclass classification of breast cancer subtypes. The results 
demonstrate that DSCCN shows competitive performance with the existing methods in 
classifying breast cancer subtypes. Our proposed DSCCN thus could be a promising 
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method for the classification of breast cancer subtypes. The source code is available at 
https:// github. com/ hyr07 71/ DSCCN.

Materials and methods
In this section, we introduce our method DSCCN for classifying breast cancer subtypes. 
The overview of DSCCN is summarized in Fig. 1. As shown in Fig. 1, DSCCN mainly 
includes three steps:

Step 1: Performing differential analysis on the multi-omics data (mRNA, DNA meth-
ylation) of breast cancer patients to detect DE-mRNAs and DE-DNAms.
Step 2: Utilizing Sparse Canonical Correlation Analysis to identify highly correlated 
mRNAs and DNAms of patients based on the detected DE-mRNAs and DE-DNAms 
in step 1. We call these correlated mRNAs and DNAms as Corr-mRNAs and Corr-
DNAms, respectively.
Step 3: Using the deep neural network model to classify the breast cancer subtypes 
based on the Corr-mRNAs and Corr-DNAms of patients.

Fig. 1 Procedure of DSCCN. Step 1 first performs differential analysis on mRNA and DNA methylation 
(DNAm) omics data to find DE-genes. Step 2 uses a SCCA model to detect highly correlated genes in mRNA 
and DNAm using DE-genes. Step 3 utilizes correlated genes to train the deep neural network model DNN to 
classify the breast cancer subtypes

https://github.com/hyr0771/DSCCN
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Differential analysis of multi‑omics data

The breast cancer multi-omics (mRNA, DNAm) data of patients are obtained from The 
Cancer Genome Atlas(TCGA) [35]. The multi-omics data contains four subtypes of 
breast cancer: Basal-like (Basal), Her2-enriched (Her2), Luminal A (LumA), Luminal B 
(LumB), which are publicly reported as the most replicated subtypes of human breast 
cancer [2]. The primary characteristics of the breast cancer subtypes are based on the 
expression levels of estrogen receptor (ER), progesterone receptor (PR), human epider-
mal growth factor receptor 2 (HER2) and proliferation indicator Ki67 [2, 36, 37]. The 
sample numbers of the breast cancer subtypes are given in Table 1.

Note that integrating omics data faces the challenge of the large p and small n prob-
lem. Appropriate dimensionality reduction is necessary for identifying relevant multi-
omics features of samples. We thus first carry out dimensionality reduction process on 
the mRNA and DNAm datasets. Specifically, we divide the samples into two groups. For 
the mRNA dataset, the health group and the disease group with breast cancer contain 
194 and 986 samples respectively. For the DNAm dataset, the health group and the dis-
ease group with breast cancer contain 97 and 785 samples respectively.

Table 1 The original and differential analysis mRNA and DNA methylation data

In the entire sample set (528), the distribution of breast cancer subtypes is: Basal (87), Her2 (31), LumA (284), and LumB (126)

Omics types Original data Differential analysis data

Sample No. of features Sample No. of features

mRNA 1180 19,961 528 3692

DNA methylation 882 12,264 528 4679

Fig. 2 Volcano plots of differentially expressed mRNAs and DNAms between the health and disease 
groups of breast cancer patients. Red dots and blue dots represent the highly and lowly expressed genes, 
respectively. Grey dots represent normal expressed genes. The highly and lowly expressed genes are 
considered as differentially expressed genes (DE-genes)
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Then we perform differential analysis on two sets of omics separately, utilizing T-test 
and Fold Change methods to identifying differentially expressed genes. Specifically, the 
genes with a p-value (T-test) less than 0.01 and a Fold Change less than 0.5 are defined as 
lowly expressed genes. Similarly, those with a p-value (T-test) less than 0.01 and a Fold 
Change greater than 1 are considered highly expressed genes. Finally, we totally obtain 
3692 DE-mRNA genes, with 3440 highly expressed genes and 252 lowly expressed genes; 
4679 DE-DNAm genes, with 3740 highly expressed genes and 939 lowly expressed 
genes. The results of differential analysis of the mRNA and DNAm data are shown in 
Table 1 and Fig. 2.

Identifying correlated genes with SCCA model

A comprehensive analysis of mRNA and DNA methylation omics data can offer a 
encompassing overview of gene regulation, aiding in the comprehension of the molec-
ular mechanisms for gene expression regulation. Detecting complex bi-multivariate 
associations between the mRNA and DNAm of patients is a critical task in identifying 
cancer subtypes. Recently, Sparse Canonical Correlation Analysis has received great 
attention in bi-multivariate association identification and feature selection [34]. Usu-
ally, there exists a chain association across mRNA and DNAm [38, 39]. Specifically, 
the effect of DNA methylation on mRNA is mainly manifested in its ability to regulate 
gene expression changes in DNA methylation levels can affect the binding of tran-
scription factors to DNA, leading to activation or silencing of genes, which in turn 
affects the production of mRNA. Inspired by this, we adopt a SCCA model called 
FGL-SCCA [34] with the fused pairwise group lasso (FGL) penalty and the graph 
guided pairwise group lasso (GGL) penalty to mine the bi-multivariate associations of 
mRNA and DNAm to classify breast cancer subtypes.

The matrix X ∈ Rs×m represents the DE-mRNA data of patients where s is the num-
ber of samples and m is the feature number of DE-mRNA. The matrix Y ∈ Rs×n rep-
resents the DE-DNAm data of patients where n is the feature number of DNAm. Let 
X and Y be normalized and centered, the optimization problem can be defined as the 
following FGL-SCCA model [34]:

where the vectors u and v are the canonical weights for the mRNA features and DNAm 
features respectively, ϕFGL(u) and ϕGGL(v) are the penalties to fit the adjacent smooth-
ness and graphical smoothness, respectively. The FGL penalty ϕFGL(u) is defined as 
γ1

m−1
k=1 ωk ,k+1 u2k + u2k+1 where ωk ,k+1 is the weight of two adjacent features and γ1 is 

positive tuning hyperparameter. By mapping the feature space of v into a undirected 

graph G, the GGL penalty ϕGGL(v) is defined as γ2
∑

(p,q)∈E ωp,q

√

v2p + v2q  where p and q 

are the DNAm feature nodes of G, E is the edge set guided by the graph G, and ωp,q is the 
weight of the edge, and γ2 is a hyperparameter to control the amount of regularization. 
Both FGL and GGL penalty can be used in the data-driven model in the case of no prior 
knowledge is given[34], while FGL assumes that the mRNA data is sequential. Mean-
while GGL is usaully adopted to bridge the gap between graph guided penalties and 
group lasso. DNA methylation have different roles in cell types or tissues and the 

(1)min
u,v

−u
⊤
X
⊤
Yv + ϕFGL(u)+ ϕGGL(v) s.t. � Xu�2 ≤ 1, � Yv�2 ≤ 1,
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graphical relationship of different roles for DNA methylation could be better captured 
by the graph guided penalty GGL. We thus impose the FGL penalty on mRNA data and 
GGL penalty on DNA methylation data, respectively.

The FGL penalty encourages uk and uk+1 in the vector u to have similar values. During 
each iteration of solving Eq. (1), the FGL penalty sets ωk ,k+1 to the value of u2k in the pre-
vious iteration. This forms a smooth sequence of weights among adjacent elements of u , 
which is beneficial for handling data with an ordered structure.

For the GGL penalty imposing on Y , the undirected graph G represents the pattern 
of connections between the DNAm features, guiding the construction of the edge set 
E. Specifically, a matrix of n ×(n-1) rows and n columns is constructed for E where 
each row represents a connection between two different nodes in G. For the connected 
DNAm feature nodes p and q in G and their canonical weights vp and vq , the GGL pen-
alty encourages vp and vq in v to have similar values. Similar to the determination of 
ωk ,k+1 , the GGL penalty sets ωp,q to the value of v2p in the previous iteration of solving 
Eq. (1).

Based on the DE-mRNA features and DE-DNAm features derived from the differ-
ential analysis in the first step, we adopt standard quadratic programming [34, 40] to 
solve (1), and the solutions u and v are the canonical weights for the DE-mRNA features 
and DE-DNAm features respectively. Then we can compute the correlation coefficient 
corr(X ∗ u,Y ∗ v) to measure the relevance of the DE-mRNA and DE-DNAm features 
based on Pearson correlation coefficient. The larger the absolute value of the correlation 
coefficient, the stronger the correlation between the DE-mRNA features and DE-DNAm 
features. We can choose suitable values of γ1 and γ2 based on the correlation coefficient.

Finally, we calculate the absolute values of u and v and sort the DE-mRNA features and 
DE-DNAm features based on the values of u and v in descending order. Then we select 
the top m1 DE-mRNA and n1 DE-DNAm features to construct the correlation matrices 
Xcorr ∈ Rs×m1 and Ycorr∈ R

s×n1.

Predicting breast cancer subtypes using DNN model

The FGL-SCCA model is capable of extracting linear structured feature information 
from the mRNA and DNAm data. However, the non-linear associations in the omics 
data are critical for cancer subtype classification as well. In order to mine the non-linear 
associations in the mRNA and DNAm data, we utilize a multi-task deep learning neu-
ral network model DNN [41] to identify the non-linear associations among the mRNA 
and DNAm data to predict breast cancer subtypes. We use  Xcorr and Ycorr as the input 
of the DNN model. As can be seen in Fig.  1, the DNN model consists of three main 
stages: (i) constructing modules for each dataset using module encoder. (ii) Identifying 
important modules across different omics data with a module attention mechanism. (iii) 
Implementing multi-task learning on a fully connected layer to comprehensively process 
each omics dataset.

Module encoder

The module encoder consists of a fully connected layer, which links the features of the 
omics data to each module. Let W j

module denote the weights of the fully connected layer, 
which represents the association between modules and features of the j-th omics data. 
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For a training sample (x j, y), x j denotes the sample from the j-th omics data and y is the 
classification label of x j. Let F j

module represent the module encoder for the j-th omics 
data. The module vectors Mj for the j-th omics data can be defined as follows:

where Wmodule represents the weights of Fmodule , Nj indicates the number of modules of 
j-th omics data, and D represents the dimension of the module vector.

Attention mechanism

DNN devises a module attention mechanism that specifically focus on modules with 
high similarity between each omics data module. Cosine similarity is used to assess the 
degree of correlation among these modules. Let Att denote the module attention matrix 
between the module vectors of two omics datasets. Attlk represents the element in row 
l and column k of Att . Attlk contains the information on the potential dependencies 
between the l-th module of one omics dataset and the k-th module from another omics 
dataset. The definition of each element within the attention matrix is as follows [41]:

where Mj = Mj
(

xj
)

 as an abbreviation, Mi
l and Mj

k respectively represent the l-th mod-
ule vector of i-th omics data and the k-th module vector of j-th omics data. To empha-
size important modules, the module vectors are multiplied by the attention matrices and 
then concatenated with the other omics data. The updated module vector is defined as 
follows:

Training

The fully connected layers are then applied. In the model, loss L is set to the cross-
entropy error between the true label and predict outputs and it is defined as follows:

where J  denotes the number of omics datasets, C represents the total number of the 
breast cancer subtypes, yi

(

ŷi
)

 denotes the true (predict) probability for each breast 
cancer subtype. Each layer takes the previous layer as input and multiplies it with the 
trained weight matrix to obtain the input of the next layer. At last, the classification layer 

(2)Mj
(

xj
)

= F
j
module

(

xj;W
j
module

)

∈ R
Nj×D,

(3)
Attlk

(

Mi,Mj
)

=
exp

(

cos
(

Mi
l ,M

j
k

))

∑Nj

k=1 exp
(

cos
(

Mi
l ,M

j
k

))

s.t. i, j ∈ 1, . . . , J , i �= j,

(4)Att_Mj
(

xj
)

=

[

(

Att
(

Mj ,Mj
))T

Mj

]

, s.t. Mj ∈
{

M | M �= Mj
}

(5)L = −

J
∑

j=1

C
∑

i=1

yi · log
(

ŷi
)

,
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flattens the multi-dimensional vectors and generates the final classification probabilities 
for each breast cancer subtype.

Results
Evaluation metrics

In this section, we will introduce the metrics for evaluating the performance of clas-
sifying breast cancer subtypes. The number of correctly predicted positive samples 
is denoted as TP (True Positive) and the number of negative samples that are identi-
fied as positive samples is denoted as FP (False Positive). Similarly, the number of 
correctly predicted negative samples is denoted as TN (True Negative), and the num-
ber of the positive samples that are identified as negative samples is denoted as FN 
(False Negative). Then we can calculate the Accuracy(ACC) = (TP + TN)/(TP + T
N + FP + FN), Precision = TP/(TP + FP), Recall = TP/(TP + FN) and F1 = 2 × Preci-
sion × Recall/(Precision + Recall). Accuracy (ACC) indicates the prediction accuracy 
of all samples whereas Precision indicates the ratio of the true positive samples in 
the predicted positive samples. Recall indicates the probability that the true positive 
samples are correctly predicted. ROC is the curve that calculates True Positive Rate 
TPR = TP/(TP + FN) and False Positive Rate FPR = FP/(TN + FP) according to various 
rank thresholds. AUC is defined as the area under the ROC curve and it is less than 1.

Traditional metrics such as Precision, Recall, and F1 score are originally defined for 
binary classification problems. In multi-classification problems, we use macro-averaged 
Precision (Precision-macro), macro-averaged Recall (Recall-macro), and macro-aver-
aged F1 score (F1-macro) to comprehensively evaluate the performance of each method. 
Specifically, we first independently calculate the Precision, Recall, and F1 score for each 
class, and then respectively take the arithmetic mean of the Precision, Recall and F1 
score across all classes to obtain Precision-macro, Recall-macro and F1-macro.

Comparison with other methods

To evaluate our proposed method DSCCN, we compare its performance with the state-
of-the-art methods. Specifically, we apply the logistic regression model/multinomial 
model with Elastic Net (EN) regularization [42], Random Forest (RF) [43] in the concat-
enation and ensemble frameworks to obtain two concatenation-based methods (Con-
cate EN, Concate RF) and two ensemble-based methods (Ensemble EN, Ensemble RF) 
for comparison. Besides these four comparative methods, we also compare the perfor-
mance of DSCCN with other three breast cancer classification methods based on multi-
omics data. These three multimodal methods include DIABLO [22], SMSPL [31] and 
DeepMO [28].

Among the comparative methods, DIABLO is dedicated to maximizing the shared 
or correlated information across multiple omics datasets, reducing the high dimen-
sionality of features. SMSPL addresses the issue of data heterogeneity by interactively 
recommending high-confidence samples between different modalities and assigns var-
ying weights to training samples through its unique soft weighting mechanism, which 
significantly mitigates the impact of high-dimensional noise on model performance. 
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Meanwhile, DeepMo employs the SelectKBest [44] method from the Python library to 
select the top K features for training to alleviate the problem of data heterogeneity.

In the experiments, we use FGL-SCCA to detect highly correlated genes between DE-
mRNAs and DE-DNAms. We randomly divided 70% of the samples as the training set 
and treated the remaining samples as the test set in Table 1. By performing grid search 
on γ1 andγ2 , we obtained the optimal correlation coefficient values of 0.969 on the train-
ing data and 0.896 on the test data, respectively. For DNN, the optimized parameters are 
as follows: the ‘number of modules’ is selected from {16, 32, 64, 128}, the ‘learning rate’ is 
selected from {10–4,  10–5, 5 ×  10–6,  10–6}, the ‘weight decay’ is selected from {10–3,  10–4, 
 10–5} and the ‘early stopping patience’ is selected from {50, 100, 200, 300}. To ensure fair-
ness in comparison, for each comparative method, including random forest, we used the 
default parameter value suggested by their literatures.

In the following section, we first verify the performance of DSCCN on the binary and 
multiple classification of breast cancer subtypes. Then we conduct ablation studies to 
learn the effectiveness of each step in DSCCN. Finally, we perform comprehensive anal-
ysis on the selected genes to learn the ability of DSCCN in identifying critical features 
for predicting breast cancer subtypes.

Performance of binary classification

To assess the performance of our method DSCCN in binary classification, we compare 
its effectiveness in distinguishing any two subtypes of breast cancer, including (1) Basal 
versus Her2, (2) Basal versus LumA, (3) Basal versus LumB, (4) Her2 versus LumA, (5) 
Her2 versus LumB, and (6) LumA versus LumB. The sample size of the breast cancer 
datasets in binary classification can be found in Table 2.We maintain the stability of our 
results by conducting stratified fivefold cross-validation on each classification dataset, 
and repeat the experiments 30 times to report the average measurement. The Accuracy, 
AUC and F1 score on any two subtypes of breast cancer obtained by different methods 
are shown in Table 3.

Table  3 presents the performance comparison, demonstrating that DSCCN con-
sistently outperforms other methods in terms of F1 score across all datasets. Notably, 
except for Her2 vs LumA, DSCCN attains the highest accuracy (ACC) on the remain-
ing five datasets. Moreover, DSCCN attains the highest AUC value in four out of the six 
datasets. These results indicate that DSCCN is an effective method in performing binary 
classification for the subtypes of breast cancer.

Table 2 The sample size of the breast cancer datasets in binary classification

Binary classification datasets Total number of samples

Basal (87) vs Her2 (31) 118

Basal (87) vs LumA (284) 371

Basal (87) vs LumB (126) 213

Her2 (31) vs LumA (284) 315

Her2 (31) vs LumB (126) 157

LumA (284) vs LumB (126) 410
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Performance of multi‑classification

In this section, we compare the average performance of DSCCN and other seven meth-
ods on the multi-classification of multiple breast cancer subtypes. From Table 4, we can 
find that DSCCN outperforms other methods across all metrics. Specifically, DSCCN 
achieves the highest accuracy value of 0.906 and F1-marco of 0.922, respectively. Over-
all, the results in Table 4 demonstrate that DSCCN is an effective method in classifying 
multiple breast cancer subtypes.

In Fig.  3, we plot the normalized confusion matrices to visualize the multi-classifi-
cation performance of all methods for each breast cancer subtype. Figure 3 shows that 
DSCCN obtains comparative performance as compared to other methods on the breast 

Table 3 Performance of binary classification for the subtypes of breast cancer

The best results are marked in bold

Breast Cancer 
Subtypes

Ensemble 
RF

Ensemble 
EN

Concate RF Concate EN DIABLO SMPSL DeepMo DSCCN

Accuracy

Basal vs Her2 0.826 0.870 0.826 0.782 0.857 0.913 0.912 0.926
Basal vs LumA 0.946 0.959 0.946 0.919 0.911 0.959 0.941 0.982
Basal vs LumB 0.923 0.929 0.952 0.952 0.935 0.786 0.948 0.965
Her2 vs LumA 0.905 0.921 0.921 0.952 0.920 0.825 0.910 0.951

Her2 vs LumB 0.839 0.839 0.839 0.839 0.864 0.774 0.908 0.926
LumA vs LumB 0.756 0.732 0.829 0.841 0.814 0.732 0.783 0.844
AUC 

Basal vs Her2 0.795 0.921 0.779 0.772 0.812 0.909 0.989 0.982

Basal vs LumA 0.889 0.929 0.907 0.857 0.850 0.850 0.939 0.997
Basal vs LumB 0.921 0.929 0.952 0.950 0.811 0.735 0.978 0.997
Her2 vs LumA 0.625 0.688 0.643 0.700 0.620 0.775 0.983 0.948

Her2 vs LumB 0.643 0.723 0.662 0.770 0.536 0.755 0.938 0.951
LumA vs LumB 0.778 0.695 0.797 0.769 0.670 0.751 0.838 0.857
F1 score

Basal vs Her2 0.875 0.875 0.875 0.828 0.761 0.929 0.914 0.933
Basal vs LumA 0.875 0.875 0.882 0.833 0.985 0.824 0.927 0.988
Basal vs LumB 0.914 0.914 0.950 0.947 0.987 0.640 0.957 0.974
Her2 vs LumA 0.400 0.400 0.444 0.571 0.983 0.560 0.837 0.973
Her2 vs LumB 0.444 0.444 0.444 0.667 0.914 0.667 0.917 0.956
LumA vs LumB 0.811 0.804 0.875 0.896 0.740 0.784 0.664 0.883

Table 4 Overall performance of all methods on multi-classification for all subtypes of breast cancer

The best results are marked in bold

Methods Accuracy Precision‑macro Recall‑macro F1‑macro

Ensmble EN 0.800 0.859 0.759 0.806

Ensmble RF 0.743 0.748 0.630 0.684

Concate EN 0.800 0.859 0.759 0.806

Concate RF 0.790 0.838 0.720 0.775

DIABLO 0.604 0.589 0.632 0.609

SMPSL 0.810 0.793 0.720 0.755

DeepMo 0.849 0.884 0.820 0.851

DSCCN 0.906 0.941 0.905 0.922
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cancer datasets. Specifically, for Basal, DSCCN makes accurate classifications (error 
rate = 0). For Her2, which has the smallest sample size, DSCCN shows the strongest 
classification capability (error rate = 25%) compared to other methods. For LumA, which 
has the largest sample size, DSCCN makes the second best classification on it (error 
rate = 4%). DSCCN makes a slightly weak classification of LumB (error rate = 26%). 
Compared to other methods, DSCCN has overall demonstrated robust performance in 
the classification of each subtype.

Ablation experiment

In this section, we will evaluate the effectiveness of different parts of DSCCN by con-
ducting ablation study on both binary classification and multi-classification. In DSCCN, 
two optimization techniques are employed for the classification of breast cancer sub-
types, with the utilization of a DNN model as the classifier. Specifically, the first tech-
nique is to perform the differential analysis on both omics datasets to reduce data 
dimensionality. The other optimization technique is to detect the highly correlated genes 
between mRNA and DNAm using the algorithm FGL-SCCA.

As can be seen in Table  5, we construct five models for DSCCN. For DSCCN1, 
none of the optimization techniques is implemented. For DSCCN2, only the dif-
ferential analysis is implemented. For DSCCN3, only the FGL-SCCA technique is 
implemented.

To investigate the efficacy of the DNN model in the classification of breast cancer sub-
types, we construct two models: DSCCN 4 and DSCCN 5. For DSCCN4, two optimiza-
tion techniques are employed, and XGBoost [45] is utilized as a classifier to demonstrate 
the effectiveness of the DNN model. To further understand the role of the attention 
mechanism within DNN, we construct DSCCN5, which is identical to the DSCCN 
except for the deactivation of the attention mechanism.We then compare the perfor-
mance of these five models to explore the effectiveness of each step of DSCCN.

Fig. 3 Normalized confusion matrices of all competing methods on the breast cancer multi-omics dataset. 
In the confusion matrix of each method, the label of each row corresponds to the true label of breast cancer 
subtype and the label of each column represents the predicted label of breast cancer subtype. The diagonal 
entity in the matrix indicates the proportion of correctly predicted classes. The off-diagonal entity in the 
matrix indicates the proportion of misclassification. To account for imbalanced sample sizes of different 
breast cancer subtype dataset, the confusion matrices are normalized within the range of 0 to 1
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Binary classification

In this section, we discuss the performance of different modes of DSCCN on the binary 
classification of breast cancer subtypes. Table 6 shows the performance of classifying any 
two subtypes of breast cancer using different DSCCN modes depicted in Table  6. As 
depicted in Table 6, the indicators of DSCCN2 are superior to those of DSCCN1 on the 
most datasets. This implies that the differential analysis effectively filters out irrelevant 
feature values, resulting in the model exhibiting enhanced classification performance. 
Moreover, DSCCN3 outperforms DSCCN1 on all datasets in terms of ACC and AUC. 
This demonstrates the benefit of using FGL-SCCA to identify highly correlated features 
for the binary classification of breast cancer subtypes.

Moreover, Table 6 shows that the performance of DSCCN surpasses that of DSCCN4 
and DSCCN5. This result further confirms that the DNN models can achieve supe-
rior results in the binary classification of breast cancer subtypes. Additionally, it dem-
onstrates the efficacy of the attention mechanism within DNN models, significantly 
enhancing its performance. Overall, the ACC, AUC values, and the F1 score of DSCCN 
are all superior to those of its variant models. This indicates that DSCCN exhibits robust 
classification performance on the binary classification of breast cancer. Overall, the 
comparisons of different DSCCN modes demonstrate the effectiveness of combining dif-
ferential analysis and Sparse Canonical Correlation Analysis to perform binary classifi-
cation on breast cancer subtypes.

Multi‑classification

In this section, we discuss the performance of different modes of DSCCN on the 
multi-classification of the breast cancer subtypes. Table 7 shows the performance of 
different DSCCN modes for classifying multiple breast cancer subtypes in Table  1. 
As shown in Table 7, compared to DSCCN1, the optimized DSCCN2 and DSCCN3 
both demonstrate superior performance, which robustly validates the effectiveness of 
the two optimization techniques used. Furthermore, as shown in Table 7, the perfor-
mance of DSCCN surpasses that of DSCCN4 and DSCCN5, further confirming the 
enhanced ability of attention mechanism-equipped DNN models in the multi-classi-
fication of breast cancer subtypes. These results suggest that a more accurate multi-
classification of breast cancer subtypes can be achieved by integrating differential 
analysis and Sparse Canonical Correlation Analysis.

Table 5 Optimization techniques and classifier used in different DSCCN models

Models Optimization techniques Classifier

DSCCN1 None DNN

DSCCN2 Differential analysis DNN

DSCCN3 FGL-SCCA DNN

DSCCN4 Differential analysis; FGL-SCCA XGBoost

DSCCN5 Differential analysis; FGL-SCCA DNN without 
attention mecha-
nism

DSCCN Differential analysis; FGL-SCCA DNN
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In Fig. 4, we generate normalized confusion matrices to visualize the multi-classi-
fication performance of each DSCCN mode on each subtype. As shown in the Fig. 4, 
DSCCN2, DSCCN3, DSCCN5 and DSCCN correctly classify Basal from other three 
breast cancer subtypes. For Her2, both DSCCN2 and DSCCN obtain the best accu-
racy of 75%. For LumA, DSCCN achieves the second best accuracy of 96%. For LumB, 
DSCCN reaches the accuracy of 74%. Overall, DSCCN consistently maintains a high 
classification accuracy across all subtypes, making its overall performance superior. 
These results highlight the significant enhancements achieved by incorporating dif-
ferential analysis and FGL-SCCA techniques into our model, ensuring more reliable 
and precise multi-classifications on breast cancer subtypes.

Table 6 Performance of different DSCCN models on each binary classification dataset

The best results are marked in bold

Breast Cancer 
Subtype dataset

DSCCN1 DSCCN2 DSCCN3 DSCCN4 DSCCN5 DSCCN

Accuracy

Basal vs Her2 0.833 0.867 0.880 0.924 0.842 0.926
Basal vs LumA 0.947 0.958 0.958 0.978 0.767 0.982
Basal vs LumB 0.943 0.953 0.948 0.953 0.610 0.965
Her2 vs LumA 0.905 0.937 0.914 0.936 0.905 0.951
Her2 vs LumB 0.896 0.902 0.913 0.843 0.825 0.926
LumA vs LumB 0.695 0.768 0.766 0.786 0.635 0.844
AUC 

Basal vs Her2 0.950 0.960 0.984 0.973 0.957 0.982

Basal vs LumA 0.972 0.990 0.980 0.997 0.979 0.997
Basal vs LumB 0.965 0.963 0.997 0.933 0.965 0.997
Her2 vs LumA 0.946 0.970 0.969 0.966 0.981 0.948
Her2 vs LumB 0.910 0.949 0.934 0.943 0.650 0.951
LumA vs LumB 0.857 0.808 0.878 0.847 0.757 0.857
F1-score

Basal vs Her2 0.742 0.769 0.833 0.822 0.686 0.933
Basal vs LumA 0.965 0.975 0.967 0.986 0.848 0.988
Basal vs LumB 0.962 0.968 0.943 0.972 0.694 0.974
Her2 vs LumA 0.950 0.966 0.955 0.962 0.950 0.973
Her2 vs LumB 0.906 0.940 0.896 0.909 0.902 0.956
LumA vs LumB 0.667 0.642 0.695 0.598 0.401 0.883

Table 7 Performance of different DSCCN models on multi-classification for all subtypes of breast 
cancer

The best results are marked in bold

Models Accuracy Precision‑macro Recall‑macro F1‑macro

DSCCN1 0.783 0.605 0.614 0.609

DSCCN2 0.840 0.809 0.825 0.817

DSCCN3 0.830 0.600 0.676 0.633

DSCCN4 0.868 0.787 0.749 0.768

DSCCN5 0.774 0.581 0.570 0.575

DSCCN 0.906 0.880 0.864 0.872
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Analysis of the selected gene of DSCCN

In order to learn the differences in the expression of the selected genes in each sub-
type, in Fig.  5, we draw the heatmaps for the expression of the top 30 selected genes 
of DSCCN in mRNA and DNAm data in the multi-classification of four breast cancer 
subtypes. In Fig. 5, it can be observed that there exists significant expression difference 
in the identified genes between the Basal subtype and other subtypes. Furthermore, to 
investigate whether the genes detected by DSCCN are highly correlated, we selects these 
top 30 genes with the highest weights from each omics for Pearson correlation analysis. 
Figure 6 depicts the correlation coefficient matrix between gene pairs of omics, as can be 
seen, a significant majority of gene pairs demonstrate some correlation. Further statisti-
cal analysis reveals that 65.3% (588 of 900) of these gene pairs have p-values below the 
critical threshold, suggesting that the correlations observed among them are not due to 
random chance.

Interestingly, 13 out of the 30 identified mRNAs in DSCCN (RNF145, CDKN2A, 
PLCG2, SOX10, TNFRSF11A, L3MBTL4, THRA, BBS10, ZFP36L2, SPNS2, RHOU, 
PER2, ANGPTL4) have recently been found to be associated with breast cancer. For 
example, The CDKN2A gene was found to be a potential addition to the small list of 
other genes examined for associations with breast cancer histopathology and/or disease 
course [46]. SOX10 was recently reported to have high expression in the triple nega-
tive breast cancer, which could be helpful for diagnosing the origin of breast cancer [47]. 
ANGPLT4 has been identified to be associated with the malignant progression and poor 
prognosis of breast cancer. This implies that ANGPLT4 might serve as a novel therapeu-
tic target for breast cancer [48].

18 out of the 30 identified DNAms in DSCCN (MED27,GNG7, ST6GLNAC4,RP11,DICER1, 
TCF12, ZNRF3, APOA5, CERS2,TRPM1,TATDN1,LSM2,ECI2,FBXW4,TRERF1,FRY,GPLD
1,FLT1) have been confirmed to be associated with breast cancer. For instance, the expres-
sion level of MED27 in breast cancer samples is higher than in normal tissues, especially in 
triple-negative breast cancer.Additionally, as the pathological stage increases, its expression 

Fig. 4 Normalized confusion matrices of different DSCCN models on the breast cancer multiclassification 
dataset
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level also rises [49]. The study revealed that, compared to normal breast tissue, GNG7 exhibits 
lower expression in breast cancer tissue. Silencing GNG7 significantly enhances cell prolifera-
tion, inhibits apoptosis, and the exogenous overexpression of GNG7 has a reversing effect on 
breast cancer cells [50].

Conclusion
In this work, we present a method called DSCCN to classify breast cancer subtypes using 
multi-omics data. To address the challenges of large p small n issue and data heteroge-
neity problem in multi-omics data integration, we first perform differential analysis on 
the multi-omics expression data of patients to identify differentially expressed genes and 
obtain DE-mRNA features and DE-DNAm features. Then we carry out Sparse Canonical 
Correlation Analysis to identify highly correlated DE-mRNA and DE-DNAm features. 
Finally, we adopt a neural network with attention mechanism to identify genes with high 
cosine similarity to classify breast cancer subtypes. Through the use of Sparse Canoni-
cal Correlation Analysis and attention mechanism, DSCCN is able to efficiently identify 
highly correlated genes between mRNA and DNAm data. The experimental results show 

Fig. 5 The heatmap of the expression of the top 30 selected genes of DSCCN in mRNA and DNAm omics for 
four breast cancer subtypes
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that our proposed method is superior to the existing methods in the binary classification 
and multi-classification of breast cancer subtypes. The ablation study shows that each 
step of DSCCN has a significant contribution to the classification performance. DSCCN 
thus could be a useful framework for classifying breast cancer subtypes.

Despite the effectiveness of DSCCN in classifying breast cancer subtypes, limitations 
remain. Biological intuition says that using more omics data could improve the perfor-
mance of the classification model. It is known that mRNA and DNAm are typical coding 
genes. In the future, we intend to extend our analysis to non-coding genes, especially 
the analysis of miRNAs and lncRNAs. This may enable us to improve the classifica-
tion accuracy and robustness of our model and understand the breast cancer subtypes 
from a comprehensive perspective of coding and non-coding genes. Moreover, due to 
data imbalance in breast cancer dataset, our model is difficuilt to thoroughly learn the 
features of each subtype, which results in a decreased accuracy. Considering that data 
augmentation techniques have been proven effective in numerous fields, we intend to 
incorporate these techniques into our future work so as to accurately recognize the char-
acteristics of each subtype.
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