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Abstract 

Background: Discovery biological motifs plays a fundamental role in understanding 
regulatory mechanisms. Computationally, they can be efficiently represented as kmers, 
making the counting of these elements a critical aspect for ensuring not only the 
accuracy but also the efficiency of the analytical process. This is particularly useful 
in scenarios involving large data volumes, such as those generated by the ChIP-seq 
protocol. Against this backdrop, we introduce biomapp::chip, a tool specifically designed 
to optimize the discovery of biological motifs in large data volumes.

Results: We conducted a comprehensive set of comparative tests with state-of-the-
art algorithms. Our analyses revealed that biomapp::chip outperforms existing approaches 
in various metrics, excelling both in terms of performance and accuracy. The tests 
demonstrated a higher detection rate of significant motifs and also greater agility 
in the execution of the algorithm. Furthermore, the smt component played a vital role 
in the system’s efficiency, proving to be both agile and accurate in kmer counting, 
which in turn improved the overall efficacy of our tool.

Conclusion: biomapp::chip represent real advancements in the discovery of biologi-
cal motifs, particularly in large data volume scenarios, offering a relevant alterna-
tive for the analysis of ChIP-seq data and have the potential to boost future research 
in the field. This software can be found at the following address: (https://github.com/
jadermcg/biomapp-chip).
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Background
Motifs are subsequences of length k that occur with high frequency in a set of sequences 
of dna, rna, or proteins. Formally, consider an alphabet � , which can be {A,C ,G,T } 
for dna, {A,C ,G,U} for rna, or a set of amino acids for proteins. A sequence s is an 
ordered list of symbols from � and a motif m is a subsequence of s such that m ∈ �k , 
where k is the length of the motif. The discovery of motifs involves identifying these 
subsequences that frequently occur in a set of sequences, possibly with some variations 
[4, 5].

It is important to note that motifs can be represented through kmers (contiguous sub-
sequences of a given size k), making the efficient counting of these structures highly 
relevant. The representation of motifs as kmers allows for the simplification of complex 
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computational problems, enabling efficient counting algorithms to be applied as a pre-
liminary step in identifying biologically significant sequences [18].

In motif discovery, there are two main approaches: enumerative techniques and proba-
bilistic techniques. Both have their own advantages and disadvantages, and the choice 
between them depends on the specific needs of the analysis at hand. Enumerative tech-
niques, as the name suggests, aim to identify motifs by exhaustively enumerating all pos-
sible subsequences within a set of sequences. These methods are generally more accurate 
as they consider all possibilities. However, they are computationally intensive and may 
not be feasible for large volumes of data or for motifs of significant length [10].

On the other hand, probabilistic techniques such as Gibbs Sampling (gs) and Expec-
tation Maximization (em) employ statistical models to estimate the presence of motifs. 
These methods are generally faster in handling large volumes of data; however, they are 
sensitive to initial conditions and model parameters, which may compromise accuracy. 
Both approaches have their merits: while enumerative techniques are typically more 
accurate, probabilistic techniques are more time-efficient. Nevertheless, it is possible 
to integrate these two approaches to leverage the advantages of both. For example, one 
could use an enumerative approach to filter candidates and a probabilistic approach for 
final optimization [15].

This interconnection between kmer counting and motif discovery highlights the 
importance of efficient algorithms in both domains for the acceleration and enhance-
ment of bioinformatics analyses. In this context, algorithms for kmer counting serve as 
initial tools in the processing chain for discovering biological motifs, especially in analy-
ses that involve large volumes of data, such as ChIP-seq (Chromatin Immunoprecipita-
tion followed by Sequencing) data.

The ChIP-seq (Chromatin Immunoprecipitation followed by Sequencing) protocol 
is a modern technology that allows the identification of dna-protein interactions on a 
genomic scale. This method has become an indispensable tool in the discovery of biolog-
ical motifs, as it provides a comprehensive mapping of protein-binding regions through-
out the genome. One of the major challenges of ChIP-seq is the substantial volume of 
data generated. The handling, storage, and analysis of such data require robust compu-
tational infrastructure and efficient algorithms, as traditional motif discovery techniques 
may not be suitable for such a magnitude of data [9].

In addition to the data volume challenge, complexity and the presence of noise are 
also significant factors. The ChIP-seq protocol is susceptible to various types of artifacts 
and noise that can introduce errors in motif identification. Therefore, robust preprocess-
ing and filtering methods are required before the motif discovery stage itself. Many cur-
rent motif discovery algorithms were not designed to handle the challenges imposed by 
ChIP-seq, such as large data volumes and complexity in sequence structure. This often 
results in a trade-off between accuracy and computational efficiency [12].

In this context, biomapp::chip (Biological Application for ChIP-seq data) is designed 
to address these challenges. Our algorithm adopts a two-step approach for motif 
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discovery: counting and optimization. In the counting phase, the smt (Sparse Motif 
Tree) is employed for efficient kmer counting, enabling rapid and precise analysis. For 
the optimization stage, biomapp::chip employs an enhanced version of the em algo-
rithm, aimed at improving accuracy in motif identification.

Implementation
Implemented in C++ and R, biomapp::chip combines analytical and numerical meth-
ods optimized for in-depth data treatment, particularly data derived from ChIP-seq 
experiments. The objective of this approach is to build effective solutions that assist 
researchers and experts in the field of molecular biology, more specifically in the study of 
conserved sequences, thereby facilitating complex investigations that involve sequence 
motif analysis. Through the appropriate combination of methods, some already estab-
lished and others specifically created for our framework, biomapp::chip offers a robust 
and adaptable tool for the scenario of functional genomics. Figure 1 illustrates the gen-
eral pipeline, all the framework modules, and their respective interactions.

As illustrated in Fig. 1, the framework initiates its process with the pre-processing of 
the input sequences. These are then forwarded to the smt, responsible for the efficient 
counting of kmers, generating seeds that have already gone through an initial stage of 
optimization as a result. These seeds are subsequently refined by the fast-em algorithm. 

Fig. 1 biomapp::chip framework pipeline. (A) The main workflow is structured in various interconnected 
modules. Each module is responsible for a specific part of the overall functionality of the package. 
Preprocessing involves identifying and normalizing peaks in the data. (B) In the counting step, the dataset 
is loaded, a background model is generated, followed by the construction of the smt. Enriched kmers are 
extracted and initial models are created. (C) Optimization occurs by refining the seeds using the fast-em 
algorithm
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The architecture is modular and composed of seven main modules: utils, smt, oops, 
zoops, anr, em, and biomapp::chip. The utils module acts as the backbone of the sys-
tem, providing essential functionalities used by all the other modules.

The smt module is developed on the foundation provided by the utils, and the oops, 
zoops, anr, and em modules are likewise constructed on this foundation. In addition 
to being supported by the utils, the em module has interdependencies with the oops, 
zoops, and anr modules. The biomapp::chip module, in turn, represents the high-
est level of complexity as it integrates the functionalities of all the previous modules to 
execute its operations. Parallelization is supported in all modules through the openmp 
(https:// www. openmp. org/) and thread building blocks (https:// www. intel. com/ 
conte nt/ www/ us/ en/ devel oper/ tools/ oneapi/ onetbb. html) libraries. The source code of 
biomapp::chip is available at: https:// github. com/ jader mcg/ bioma pp- chip.

Preprocessing

Before delving into the method description, it is important to understand how the data 
are acquired. They can be obtained from various public and private sources. For more 
information on the ChIP-seq databases used in this work, please refer to  “Results and 
discussion” Section. The data acquisition process can be summarized in the following 
steps: 

1. Experiment execution: the proteins of interest are immunoprecipitated along with 
the associated dna fragments.

2. Raw data processing: the raw sequencer data are processed to obtain short dna 
sequences, called reads.

3. Peak identification: specific programs, such as macs [21] or sicer [20], are used to 
identify regions of reads enrichment, called peaks.

4. Pre-processing: removal of peaks in non-specific regions, peak filtering based on 
quality criteria, data normalization, and removal of spurious peaks.

5. Analysis: performing the analysis of interest, which may include: motif extraction, 
functional annotation, regulatory network analysis, conservation analysis, among 
others.

The steps 1 and 2 are part of the biological experiment and are generally conducted by 
a biologist. Step 3, called enrichment analysis, aims to identify the peak regions, rang-
ing from 100 to 300 bp1, where there is a high probability that the fragments of interest 
are present. Step 4 is critical as it involves the removal of repetitive and low-complexity 
sequences. The final step consists of the analysis of the pre-processed data.

The biomapp::chip starts operating at the end of step 3, where it receives as input the 
peak regions properly extracted from the genome. In step 4, specialized algorithms are 
used for pre-processing, and step 5 is fully implemented. The biomapp::chip consists of 
three main phases: pre-processing, initialization, and optimization.

1 The resolution of the reads heavily depends on the sequencing technology employed.

https://www.openmp.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://github.com/jadermcg/biomapp-chip
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The pre-processing phase involves adapting the dataset for the execution of experi-
ments, such as standardizing the size of the sequences and converting all characters to 
uppercase. However, the main goal of this stage is to identify low-complexity sequences, 
transposable elements such as alus (Arthrobacter luteus) and sines (Short Interspersed 
Nuclear Elements), E. coli insertions, or any other components that could lead to inac-
curate conclusions in subsequent steps. This is carried out with the help of specialized 
algorithms like dust [19] and repeat masker [17]. This phase involves the elimination 
of redundant sequences and error correction, ensuring the quality and integrity of the 
data.

Counting

The counting phase takes as input pre-processed peak regions, where it is presumed that 
there are fragments from the distribution of interest surrounded by background dis-
tribution elements. The purpose of the initialization algorithm is to efficiently identify, 
count, and group enriched kmers, as well as to perform hypothesis tests to determine 
their statistical significance. The core of this stage consists of two components specifi-
cally developed for this purpose: i) smt: a scalable data structure based on suffix trees 
responsible for storing all kmers from the main dataset; ii) kdive: an efficient algorithm 
whose objective is to search for fragments with up to d degrees of mutation.

The counting phase follows a set of steps to identify enriched kmers in the main data-
set and generate initial models based on this information. First, the algorithm loads the 
pre-processed data, which contains the nucleotide sequences of interest. Next, if avail-
able, control sequences are loaded. Otherwise, they are generated by shuffling the main 
dataset using the Markov method [6] or the Euler method [1]. A background proba-
bilistic model is then generated from the control data, which will serve as a reference 
for identifying enriched kmers. The value of k is then estimated, or a pre-defined value 
is used, depending on the approach adopted. Based on the peak regions, the smt data 
structure is built, allowing the efficient extraction of enriched kmers.

SMT

smt is represented by a two-dimensional data structure Mν×6 , where ν is the number 
of nodes, implemented from fixed-width text fragments. It is lightly inspired by room 
squares theory [2], in which each element Mi,j is either empty or has a value set between 
1 and ν . Its main goal is to efficiently store all kmers belonging to the main dataset, along 
with their representation and count, allowing for rapid searches. Thus, each row of M 
represents a node {1, 2, 3, . . . , ν} , columns 1 to 4 represent the nucleotides, and the last 
two columns, 5 and 6, represent the number of times a fragment appeared in the dataset 
and its respective address or numeric representation. Figure  2 graphically shows how 
this process occurs.

In panel (a), we observe the extraction of six overlapping k-mers from the ACG TAC 
GAT  dna sequence, where each kmer is visually distinguished by a specific color. This 
color overlay method makes it easy to follow how the kmers are interspersed throughout 
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the sequence. Moving forward to panel (b), these kmers are integrated into the smt. The 
structure of smt is represented by a matrix, in which kmers are positioned according to 
their corresponding nucleotide sequences. Each cell in the matrix is color-coded accord-
ing to the kmer it represents, creating a visual mapping that reflects the composition 
and frequency in the original dna sequence. The columns in the matrix marked with 
the @ symbol record the addresses, indicating the specific location of each kmer in the 
dna sequence from which they were extracted. Conversely, columns marked with the # 
symbol account for the frequency, providing a quantitative means to assess the recur-
rence of each sequence within the dataset. Notably, the fully colored lines within the 
matrix denote the so-called totalization nodes of the smt. These nodes are fundamental 
to the tree structure, as they aggregate counts and consolidate their respective position-
ing information. Through this mechanism, smt captures the diversity and distribution 
of kmers in the sequence and also provides a cumulative summary that is essential for 
subsequent analyses.

For example, if M1,T = 10 , then the symbol T is present between nodes 1 and 10. Its 
construction has time complexity O(nk) , where k is the fixed size and n is the number of 
fragments. However, k does not scale with n and has a well-defined limit falling between 
5 ≤ k ≤ 35 , so we can simplify the analysis to O(n) which is linear in n. Furthermore, 
it is possible to run several algorithms on smt in linear time, such as exact search and 
approximate search, which, for example, allow quick recovery of the most abundant 
kmers in the dataset. The approximate search is performed by the kdive algorithm that 
will be presented later. Algorithm 1 shows how the smt is constructed.

Fig. 2 Example of the smt functionality. a demonstrates the extraction of overlapping kmers from the dna 
sequence ACG TAC GAT , where each kmer is represented by a unique color, facilitating the visualization of 
the overlap. b Illustrates the subsequent addition of the kmers to the smt, with the colored cells representing 
the individual fragments. The columns labeled with @ indicate the addresses of each kmer in the original 
sequence, while the columns marked with # display the frequency. Fully colored lines denote the totalization 
nodes, where the sums of the frequencies and the compilation of the addresses are calculated. Circles inside 
cells denote that they have been visited more than once
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Algorithm 1 create-smt 

In line 3, the root (root) is set to the value 1 and the new node (new_node) as 2. In 
line 5, all the sequences {s1, s2, s3, . . . , sn} are processed starting from the root, each of 
which has a width of k. In line 9, the algorithm checks if M[node, symbol] is equal 
to 0. If this occurs, it means that there is no edge with the symbol defined by the vari-
able symbol leaving from the variable node and going towards another node. In other 
words, it is necessary to add a new node at this position, which is done in lines 10 and 
11. Finally, the variable node takes the value of the new node (new_node) and in line 
12, the new node is incremented. In line 13, if M[node, symbol] is different from 0, 
then the node already exists, and in line 14, the variable node is simply updated with the 
value represented by M[node, symbol].

The space complexity of smt in the worst case is O(σν) , where σ is the number of 
symbols in the alphabet, in this case 4, and ν is the number of nodes in the tree. The 
value of ν directly depends on the size and variance of the fragments. Thus, the higher 
the variance, the greater the number of nodes. An inherent characteristic of smt is that 
most elements in M remain empty. This behavior is recurrent and can be calculated. In 
particular, we can compute the expected occupancy level of M. To do so, consider that 
the maximum and minimum number of children a node can have is 4 and 0, respectively. 
The average would then be 4+0

2 = 2 children per node.
A tree with depth k and with each node having an average of 2 children, will 

have an average of 2k leaves. The average number of nodes in the tree will be 
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ν =
k
i=0 2

i = 2k+1 − 1 . In this case, we will need a matrix M with 2k+1 − 1 rows and 
4 columns (two more columns for metadata). However, each line has 4 columns and on 
average only 2 of them will be occupied. With this, we can then calculate the occupancy 
level using ω = 2ν

4ν = 0.5 . In practice, this number will be even smaller, as the average 
number of children decreases as the depth of the tree increases. This way, the average 
space complexity of M is O(ων) , as ω < σ , then O(ων) < O(σν) . Thus, we can expect 
that only half of the capacity of M will be utilized, which characterizes a significant waste 
of space. For this reason, the create-smt algorithm was implemented using a high-per-
formance sparse matrix through the armadillo linear algebra library [16], employing the 
C++ programming language.

Example To add the k-mer ACGT  to smt, we start at the root of the matrix, which repre-
sents the starting point for all kmers. Each node in the matrix, or row, can be considered a 
decision point, which directs to the next node based on the next nucleotide. We insert the 
first nucleotide, A, checking the corresponding cell in the root row. If there is no previous 
entry (indicated by a zero), this means that A is a new path and a new node is created to 
represent it, with its index recorded in the cell A of the root.

Now, moving to the new node, we repeat the process for the second nucleotide, C. 
Likewise, the absence of a node for C indicates that we must add a new node, connect-
ing it to the path starting with A. This addition process is sequential and continues for 
G and T, creating a unique path within smt for the ACGT  fragment. When we reach the 
end of kmer, we update the count and address at the end node to reflect the new addi-
tion. When two or more fragments are identical or share a common prefix, smt uses 
this shared structure to save space and facilitate parsing. For example, if we already have 
kmer ACGT  in smt and we come across it again in the sequence, we simply increment the 
count at the final node, without the need to add new nodes to this fragment repeated.

In the case of kmers that share a prefix, such as ACGA  and ACGT , smt takes advan-
tage of common nodes and diverges only in the last step, creating new paths for distinct 
nucleotides finals. This is particularly efficient because the paths that are shared do not 
need to be duplicated. Each kmer has its own count register and address, allowing smt 
to accumulate information in a compact and structured way. Totalization nodes aggre-
gate the counts of all k-mers that pass through that point, providing a cumulative count 
along different paths.

KDIVE

While kdive stands as the most important algorithm for analyzing conserved sequences 
in the context of smt, it is not the only option available. Other algorithms that operate 
on the smt include ksearch, iupacsearch, and khmap. Each of these methods offers 
distinct advantages and functionalities, and they are discussed in detail in the supple-
mentary data.

kdive was created with the objective of performing efficient text fragment searches 
in the smt , even if these present up to d mutations. In other words, kdive should 
return true for the search even if the query string contains up to d mismatches . It is 
important to highlight that the algorithm assumes as a premise that the probability 
of a mutation occurring is the same for any position in the sequence. For example, if 
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the probability of a match is equal to 14 , then that of a mismatch is 1− 1
4 = 3

4 . There-
fore, the occurrence of a mutation is three times more likely than that of a base con-
servation. This characteristic is important because it alters the expected number of 
computations carried out and consequently modifies the algorithm’s complexity. 
Algorithm 2 shows the basic functioning of kdive.

Algorithm 2 kdive 

Algorithm  2 was implemented recursively and takes as its main parameters the smt 
matrix, the fragment s , and the total number of allowed mutations d . If s ∈ M with at 
most d mutations, the algorithm returns the boolean value true , indicating the presence 
of the fragment with up to d mutations. The algorithm performs its task by traversing 
the smt to identify matches between the search string and the stored kmers, taking 
into account the number of allowed mutations. It is worth noting that this algorithm 
can be easily adapted to return the complete set of mutated elements, instead of just a 
boolean value (true or false). This modification can be useful in certain applications, 
as it allows for more detailed information about the matches found. For example, it is 
possible to identify which kmers in the smt correspond to the search fragment, consid-
ering the allowed mutations.

The use of a recursive algorithm in the implementation of kdive comes from several 
strategic and technical considerations. Tree data structures, such as smt, benefit from the 
recursive approach because of how naturally recursion allows you to navigate nodes and 
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branches. Code simplicity is another significant advantage, where recursion offers a more 
readable and concise implementation compared to iterative methods that would require 
explicit stack or queue management. Furthermore, recursion aligns perfectly with the 
divide and conquer paradigm, dividing the problem into manageable sub-problems and 
handling them individually in an efficient manner.

This approach simplifies implementation and also improves code clarity and maintain-
ability. The divide and conquer nature of recursion is particularly useful in scenarios with 
multiple choices or branches, common in structures like smt where each node can lead to 
multiple paths. Efficiency in dealing with these multiple branches is one of the fundamen-
tal reasons for choosing a recursive method. Furthermore, recursion facilitates backtrack-
ing, allowing the algorithm to explore alternative paths in an orderly and efficient manner, 
essential in search and optimization processes such as the one described by kdive.

Although recursion carries the risk of stack overflow and overhead associated with func-
tion calls, these concerns are mitigated by the fact that the problem is well bounded and the 
depth of recursion is controlled by the size of the kmer, imposing a natural limit. Thus, the 
advantages of recursion, especially in terms of simplicity, readability and suitability for tree 
structures, justify its choice for kdive, providing a robust and effective method for analyz-
ing k-mers in smt.

The parameters dmax , d, i, and k allow for the control of searching for exact or approxi-
mate matches. The recursion enables the algorithm to traverse the tree in depth and check 
all possible paths until it finds a match or reaches the maximum depth defined by the 
parameter dmax . A possible call to Algorithm 2 could be kdive(M, s, dmax = 2 , d = 
0, i = 1, k = 10, node = root, resp = false). In this case, the algorithm 
expects to find a match even if up to d = 2 mutations are detected in sequences of size 
k = 10 . Algorithm 2 has two base cases, shown on lines 1 and 4. The first checks if the 
number of mutations has exceeded the limit dmax , that is, if d ≥ dmax . If this condition is 
met, a pruning will occur in the search. The second base case checks if the algorithm has 
completely analyzed the query string, which will happen if i ≥ k . If this condition is true, 
then the pattern has been found and the resp variable is updated to the value true.

The time complexity of kdive can be measured through the Negative Binomial distri-
bution. Consider a smt with ν nodes, d mutations, and fragments of width k . Also con-
sider the random variable X ∼ NB(d, p) , which counts the number of comparisons that the 
kdive algorithm performs. It’s easy to verify that p = 3

4 , since if the probability of a match 
is 14 , the probability of a mismatch will be 1− 1

4 = 3
4 , therefore X ∼ NB(d, 34 ) . The PMF 

Px(d, p) is given by Eq. 1 and the expectation by Eq. 2.

The Negative Binomial distribution is a generalization of the geometric distribution, 
which is defined as X ∼ GEOM(p) = NB(1, p) . Therefore, the geometric distribution is 
the Negative Binomial distribution with d = 1 , making it possible to use it for 

(1)Px(d, p) =

(

n− 1
d − 1

)

pd(1− p)n−d

(2)E(X) =
∑

x∈X

xPx(d, p)
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calculating the expected value. For example, consider X ∼ NB(1, p) , Y ∼ NB(1, p) , and 
Z = X + Y  . If X and Y  are independent, then Z = X + Y ∼ NB(2, p) . Therefore, we can 
calculate E(Z) = E(X)+ E(Y ) = 1

p + 1
p = 2

p . In this way, X ∼ NB(d, p) can be written 
as Z = X1 + X2 + X3 + · · · + Xd , where Xi ∼ NB(1, p) . Calculating E(Z) = E(X1)

+E(X2)+ E(X3)+ · · · + E(Xd) =
1

p + · · · +
1

p =
d
p.

The time complexity in the worst case will still be O(k), but on average d×4
3  compari-

sons will be executed. With this result, we can write that the average time complexity of 
kdive is O

(

d×4
3

)

= O(d) . It is easy to verify that the larger the size of d , the more oper-

ations will be necessary. It is important to highlight that motifs rarely exceed a width of 
20 nucleotides, and the number of mutations is generally no more than 20% of their size. 
Considering this, we can expect to find an average of d = 5 mutations, which results in 
5×4
3 ≈ 6.666 comparisons per fragment.
We can calculate the complexity of the kdive algorithm in relation to the size of the 

input sequences. Consider a dataset with n sequences of width t . We have a total of 
m = t − k + 1 fragments of size k in each sequence of size t . Let X be the number of 
comparisons made for each fragment. We know that X follows a negative binomial dis-
tribution with parameters p = 3

4 and d , and that E(X) = d
p = 4d

3  . Therefore, the number 
of comparisons per sequence will be 4dm3  resulting in an average asymptotic behavior 
O(dm).

Optimization

The aim of this stage is to optimize the initial seeds obtained in the previous phase 
through the em algorithm. The use of this algorithm allowed refining the parameters 
associated with the seeds, making them more accurate representations. This optimiza-
tion process is important for the quality of the resulting models and for the success of 
subsequent analyses.

In this phase, pre-optimized seeds obtained from the smt are used as a starting point 
for running the em algorithm. The em algorithm is responsible for refining these seeds, 
adjusting their parameters in order to maximize the likelihood of the given observations. 
As a result of this phase, each seed is transformed into a pwm model, which represents 
a more accurate and adjusted description of the motif in question. This pwm model can 
then be employed on new data to find patterns that have not yet been labeled.

To select the appropriate variant of the em algorithm for ChIP-seq data, it’s important 
to consider the protocol’s nuances, which include the presence of noise and non-spe-
cific signals. While ChIP-seq aims to capture sequences with the motif of interest, not 
all peaks may contain it due to various factors. Therefore, the zoops model is generally 
the most fitting for motif analysis in ChIP-seq data, allowing for the motif ’s occasional 
absence. Depending on the biological context, anr or oops models may also be relevant.

FAST‑EM

The fast-em represents a significant optimization over traditional oops and zoops 
models. This algorithm was inspired by the implementation provided by [7, 8], whose 
modification not only speeds up the execution time but also enhances efficiency in 



Page 12 of 26Garbelini et al. BMC Bioinformatics          (2024) 25:128 

handling larger data sets. In other words, fast-em enhances the capabilities of the origi-
nal models, making them more adaptable and robust when faced with large volumes of 
information.

The calculation of marginal probabilities represents one of the most computation-
ally demanding phases in the em algorithm. This stage requires computing the probabil-
ity of a kmer being found at each of the n× (t − k + 1) valid positions, given the n input 
sequences. This process can become a significant bottleneck, especially in ChIP-seq experi-
ments where a large volume of sequences is often dealt with, in turn making the value of 
n considerably high. Although it is possible to mitigate this computational challenge by 
using only a subset of the sequences as a sample, this approach compromises the predictive 
power of the model.

To understand its workings, we need to recap some concepts. The bayes’ rule for the 
em algorithm states: P(pj|si) =

P(si|pj)×P(pj)

P(si)
 , which can be interpreted as: “the probabil-

ity of a motif existing at position pj given we are observing sequence i , divided by the 
marginal probability of si .” The marginal probability can be written as the weighted sum: 
p(si) = P(si|p1)P(p1)+ · · · + P(si|pm)P(pm) . If we consider that a motif can be in any 
position with equal likelihood, then this sum simplifies to: p(si) = P(si|p1)+ · · · + P(si|pm)

.
To compute each term of the marginal probability, it is necessary to employ both 

the positive model (α) and the negative model (β) through the following equation: 
P(si|pu) =

∏u
j=1 P(sij|β)

∏u+k
j=u+1 P(sij|α)

∏m
j=u+k+1 P(sij|β) , for 1 ≤ u ≤ m . In other 

words, this equation must be run for all m valid positions in each sequence. The fast-
em algorithm does this by computing P(si|β) =

∏m
j=1 P(sij|β) just once. Then, for 

each 1 ≤ u ≤ m , this value is divided by P(pu|β) =
∏u+k

j=u P(sij|β) and multiplied by 
P(pu|α) =

∏u+k
j=u P(sij|α) . To work on a logarithmic scale, simply replace multiplications 

with additions and divisions with subtractions. This simple optimization, when combined 
with multithreading techniques, makes the fast-em algorithm significantly faster and, 
therefore, better suited for handling large volumes of data.

To more intuitively understand the optimization provided by fast-em, we can consider 
the calculation of marginal probabilities as the most expensive optimization operation. 
In essence, the algorithm seeks to understand the probability of each kmer in all possi-
ble positions, a considerable computational challenge when dealing with a large number 
of sequences. The efficiency of fast-em lies in its ability to simplify this process without 
compromising the integrity of the results. Instead of repeatedly calculating complex prob-
abilities for each position and kmer, fast-em makes use of a positive model and a negative 
model to pre-calculate and reuse results, significantly reducing the number of operations 
required.

By focusing on pre-calculating the negative model for the entire sequence and adjusting 
it as needed for each position, the algorithm avoids redundancy and speeds up the process. 
This optimization, although simple in concept, has a profound impact on the efficiency of 
the algorithm, allowing it to operate faster and handle significantly larger volumes of data. 
Furthermore, by operating on a logarithmic scale, replacing multiplications with additions 
and divisions with subtractions, fast-em further improves its performance.



Page 13 of 26Garbelini et al. BMC Bioinformatics          (2024) 25:128  

Results and discussion
In this section, we will show and analyze the results obtained by the biomapp-chip 
framework in comparison with state-of-the-art algorithms. The biomapp-chip was 
rigorously compared with state-of-the-art algorithms, including meme [3], prosam-
pler [13], and homer [11]. In the experiments conducted, two distinct types of data 
were employed to evaluate the effectiveness of our method. Synthetic data were used 
for load tests, allowing a comparative analysis of time consumption and ram memory 
usage between the different approaches. On the other hand, real data were employed to 
assess accuracy, thus ensuring a more realistic evaluation of its applicability in practical 
scenarios.

In addition to comparisons with state-of-the-art methods, we also conducted a direct 
evaluation between the smt and jellyfish [14], a widely-used tool for kmer counting. 
The aim was to understand the efficacy of the smt algorithm in relation to established 
methods in the literature. Details on this comparison, including performance metrics, 
are provided in supplementary data. This additional analysis reinforces the robustness 
of our approach and offers further insights into the performance of the smt algorithm.

It is important to highlight that all performance metrics presented in this study were 
rigorously evaluated. Load tests, which include measurements of execution time and 
memory consumption, have been standardized and quantified. The execution time of 
each algorithm was measured in seconds, while memory consumption was recorded in 
megabytes. In addition to performance metrics, accuracy was evaluated using several 
distance and correlation measures as a reference. These included euclidean distance, 
manhattan distance, hellinger distance, pearson correlation, bhattacharyya 
coefficient, and sandelin-wasserman similarity. These measurements were used to 
evaluate the models found in relation to the reference models.

Synthetic data

The generation of synthetic data was carefully planned to allow a comprehensive com-
parison between biomapp-chip framework in relation to other motif discovery algo-
rithms. For the comparison, 50 datasets were generated, with sizes ranging from 1× 105 
to 2× 107 bases. Each of these datasets was submitted to all algorithms with k-mer sizes 
(k) ranging from 5 to 30 bases. This experimental design allowed for a rigorous evalua-
tion of performance and efficiency in k-mer counting under different load and complex-
ity conditions.

Real data

Real data were extracted from the jaspar database version 2022 along with the genomic 
position files (.bed). These experiments form a fundamental step in validating our 
approach. By using real data, we can evaluate the performance of the algorithms in 
practical applications, increasing the reliability of the results and the robustness of our 
conclusions. Table 1 presents a detailed analysis of the data volume (measured by the 
number of peak regions) generated by different types of experiments available in the jas-
par 2022 database.
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The ChIP-seq protocol stands out as the main source of data, generating the largest 
volume of information, with an average number of peak regions of 17,538.78. The data 
volume generated by this protocol varies considerably, ranging from a minimum of 22 to 
a maximum of 322,803 peak regions. Other significant protocols in terms of data volume 
include cap-selex and ht-selex, which generated an average of 9,878.26 and 9,856.47 
peak regions, respectively. Although these protocols generate considerable data vol-
umes, they are still significantly below ChIP-seq.

In the experiments involving real data, datasets containing more than 10,000 
sequences were selected. This criterion resulted in an initial set of 148 distinct datasets. 
However, 17 of these datasets were subsequently excluded from the analysis, as they 
were still in the process of validation. Therefore, the final set for evaluation consisted of 
131 validated datasets. The choice of this selection criterion aims to ensure a sufficiently 
large and varied sample to rigorously and comprehensively evaluate the performance of 
the algorithms. This approach allows not only to test the efficacy of the algorithms on 
real data, but also provides an in-depth analysis of their applicability in scenarios closer 
to the experimental conditions frequently encountered in research in the area of biologi-
cal motif discovery.

Parameters

In order to ensure the reproducibility of experiments, we established the parameters for 
each algorithm according to specific guidelines. The standardization of these settings is 
important to guarantee the integrity and comparability of the results obtained. Further-
more, all experiments were run on Intel Xeon CPU E5-2673 v4 2.30GHz servers with 

Table 1 Number of peak regions extracted from various experiments available in the jaspar 2022 
database

It is clearly noted that the ChIP-seq protocol is responsible for generating the most significant volume of data

type min max avg

1 chip-seq 22 322803 17538.78

2 cap-selex 206 22850 9878.26

3 ht-selex 55 91919 9856.47

4 na 84 105198 8801.62

5 ncap-selex 2249 13498 6792.00

6 pbm 98 100001 4424.22

7 compiled 6 28379 3661.81

8 dap-seq 22 19758 1222.74

9 smile-seq 998 1001 999.97

10 chip-exo 48 1000 568.80

11 selex 9 1001 561.11

12 chip-chip 71 4737 475.80

13 selex-seq 384 384 384.00

14 Universal protein binding microar-
ray

99 101 100.00

15 pbm, csa and/or dip-chip 8 102 99.12

16 emsa 29 100 64.50

17 Bacterial 1-hybrid 13 60 23.13

18 DNaseI footprinting 10 41 16.33
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8Gb of Ram memory with Linux/Ubuntu 22.04 operating system. The parameters used 
in the experiments followed those displayed in Table 2.

It is essential to clarify some aspects regarding the choice of parameters. All meth-
ods were adjusted to identify only the most effective model, as evidenced by the options 
-n 1, -nmotifs 1, -m 1, and -S 1 for the smt, meme, prosampler, and homer 
algorithms, respectively. The zoops model was employed in the biomapp::chip and 
meme algorithms, while homer uses the zoops model intrinsically. The prosampler 
algorithm, on the other hand, does not offer the option of selecting this model. Addi-
tionally, the parameters -r 1000 and -f 0.001 are used to govern the convergence 
of biomapp::chip. The iterative process will be halted if the increment in the score dif-
ference between two successive iterations is below -f 0.001. Otherwise, the algorithm 
will continue until it reaches a limit of -r 1000 iterations.

Biomapp‑chip on synthetic data

The aim of these experiments was to measure the performance of the biomapp::chip 
framework on a diverse set of synthetic datasets. These data were generated with vari-
able parameters to simulate different scenarios and complexities associated with the real 
world. The use of synthetic data offers a controlled platform that allows isolating and 
evaluating the performance and efficacy of algorithms under well-defined conditions. 
This analysis procedure is essential for the initial validation of the adopted methodologi-
cal approach, serving as a preliminary step before handling real data.

These trials were designed to collect basic data on the time consumption and ram 
memory usage by the biomapp::chip algorithm. This information was compared with 
time and space metrics obtained from other established algorithms in the field, such as 
meme, prosampler, and homer. The purpose of this comparison was to understand 
how biomapp::chip stands in relation to other solutions and identify the strengths and 
weaknesses of each approach. To carry out the experiments, the k parameter, represent-
ing the size of the kmers, was systematically varied within a range that covers values 
from 5 to 30, thus keeping in line with the criteria established in the smt load tests. In 
this way, 5200 experiments were performed, 1300 for each algorithm. The capture of rel-
evant metrics, which include both time consumption and ram memory allocation, was 
conducted using the unix/linux /usr/bin/time -v  command, ensuring consistent and 
comparable data collection across all algorithms under study.

Figure  3 illustrates the global averages of the tests for each algorithm, considering 
both time and space consumption. biomapp::chip proved superior in terms of time effi-
ciency, closely followed by meme. On the other hand, prosampler and homer showed 

Table 2 Parameters configured for the algorithms used in the research

Each algorithm is listed alongside its respective parameters to ensure the reproducibility of the experiments

algorithms parameters

biomapp::chip -k <size of kmer> -n 1 -d 2 -c zoops -r 1000 
-f 0.001

meme -w <size of kmer> -dna -mod zoops -nmotifs 1

prosampler -k <size of kmer> -m 1 -l 0

homer -len <size of kmer> -S 1
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less efficacy in this aspect, requiring longer periods for execution. Regarding memory 
usage, meme led in performance but was closely followed by biomapp::chip. The lat-
ter employs the smt data structure to initialize its models, which demonstrates the effi-
ciency of this structure in terms of memory usage. As observed in the time dimension, 
homer and prosampler occupied lower positions in memory consumption.

The Fig.  4 analyzes the execution time of the four algorithms – biomapp::chip, 
meme, homer, and prosampler – as a function of the k size. It is noticeable that 
biomapp::chip is the most time-efficient algorithm, closely followed by meme, both 
maintaining an average execution time below 100 s for all evaluated cases. In contrast, 
the average execution times for prosampler and homer were substantially higher, with 
prosampler exceeding 200  s and homer surpassing 400  s. Additionally, the analysis 
also reveals that the execution time for all evaluated algorithms increases as the size of k 
grows.

The Fig. 5 presents a line graph illustrating the ram memory consumption for each 
algorithm. It is a unified graph, allowing for direct comparison between all of them. Sim-
ilar to what was observed in execution time, biomapp::chip and meme were close in 

Fig. 3 Performance comparison between biomapp-chip, meme, homer and prosampler, with emphasis on time 
(measured in seconds) and memory consumption (measured in mbytes). The values presented are calculated 
as the average performance across all analyzed datasets and for all sizes of k. While meme stood out for its 
efficient use of memory, biomapp-chip proved to be the fastest in terms of execution time

Fig. 4 Runtime variation in relation to k for the algorithms biomapp::chip, meme, homer, and prosampler. It is 
observed that the biomapp::chip algorithm exhibits an advantage in terms of time efficiency, followed by the 
meme algorithm
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memory efficiency, although meme had a slight advantage, consuming just under 500 
Mbytes in the worst case. biomapp::chip showed an average memory consumption 
slightly below 1000 Mbytes. In contrast, the homer and prosampler algorithms dis-
played much higher memory usage, reaching just over 2000 Mbytes and exceeding 4000 
Mbytes in the worst scenario, respectively.

Biomapp::chip on real data

Although experiments in simulated environments are useful for initial understand-
ing and fine-tuning of algorithms, it is the trials with real data that provide the true 
validity test for any computational method in bioinformatics. They offer a much more 
complex and variable scenario, which more accurately plays out the conditions that 
algorithms will face in real-world applications. Therefore, this section is the most crit-
ical and provides more precise information about the feasibility and robustness of the 
evaluated algorithms.

In this test set, all algorithms were executed on a sample of 131 datasets, obtained 
from the jaspar repository. These data were carefully selected based on two specific 
criteria: (i) all are from ChIP-seq experiments and (ii) all have more than 10 thou-
sands sequences. The main focus of this test was the comparison of accuracy between 
the approaches. For this reason, unlike the tests performed on synthetic data, where 
the value of k was varied systematically, in this scenario the value of k adopted was 
that suggested by scientific literature. Thus, each algorithm was tested with a unique 
and specific value of k, according to the most recent academic guidelines.

Performance in relation to time and space consumption Figure 6 reveals important 
nuances in the performance of the four examined algorithms in terms of execution 
time and ram memory consumption. biomapp:chip stands out for displaying the 
shortest average execution time, only 15.9 s, making it the most agile option. On the 
other hand, homer proved to be the slowest, with an average time of 624  s and an 
average ram consumption of 1436.16 MB, which could be a limitation in scenarios 
that demand quick responses.

Fig. 5 Variation of ram memory consumption in relation to k for the algorithms biomapp::chip, meme, homer, and 
prosampler. It is observed that the meme algorithm has an advantage in terms of spatial efficiency, followed by 
the biomapp::chip algorithm
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In terms of ram consumption, meme was the most efficient with an average of 
217 mbytes, while homer exhibited the highest consumption, with 1436 mbytes. 
prosampler, which had moderate performance in time, registered the highest peak 
in ram usage, reaching 3501 mbytes. In addition, prosampler displayed the greatest 
variation in both time and ram consumption, suggesting that its performance may be 
highly sensitive to the characteristics of the analyzed dataset. Overall, the tests indi-
cated that biomapp::chip and meme proved to be more robust, making them more 
predictable in their performance, as shown in Table 3.

Fig. 6 Comparison of the overall average ram memory (measured in Mbytes) and execution time 
consumption (measured in seconds) among different algorithms applied to real datasets. It is observed that 
biomapp:chip leads in time consumption and occupies the second position in ram consumption. meme shows 
the lowest ram consumption, while prosampler, despite its inferior performance in synthetic tests, shows a 
significant improvement, coming in second place in memory consumption. The homer algorithm does not 
stand out in any of the criteria

Table 3 Comparison of memory consumption (measured in Mbytes) and time (measured in 
seconds) between the algorithms biomapp::chip, homer, meme and prosampler 

algorithm avg time avg ram max time max ram min time min ram

Biomapp 15.86 335.57 192.79 868.92 1.41 190.08

Homer 624.45 1436.16 1952.69 2270.09 52.47 524.70

Meme 138.36 216.94 159.70 1618.04 118.93 69.32

Prosampler 61.83 548.17 655.92 3500.79 14.26 199.07

Fig. 7 Comparison between the average performance of the algorithms in relation to time consumption 
grouped by value of k. It is possible to verify that biomapp::chip, prosampler and meme exhibit the shortest times 
while homer presented significantly higher execution times
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The analysis of the data presented in Figs.  7 and 8 provides important insights into 
the performance and efficiency of the four algorithms evaluated in various scenarios, 
parameterized by the value of k. First, it is possible to observe that the biomapp::chip 
algorithm displays, on average, the lowest consumption of time and ram memory in 
almost all scenarios. Its average execution time ranges from 9.79 to 23.00  s, while the 
average ram usage lies between 251.50 and 838.70 mbytes. The algorithm is also con-
sistent in maintaining a relatively low maximum and minimum execution time, as shown 
by the data in Table 4.

On the other hand, the homer algorithm presents the highest consumption of both 
time and ram. It is interesting to note the increase in average execution time and aver-
age ram usage as k increases, reaching a peak of 1174.47 s and 1950.41 mbytes for k = 
16.

The meme algorithm shows relative stability in average execution time, ranging from 
134.64 to 143.33  s, but with peaks of ram usage reaching 1618.04 mbytes for k = 
12. The prosampler displays intermediate performance in terms of time efficiency and 
ram usage, with a large variation in maximum and minimum metrics, particularly for 
ram usage, which reaches up to 3500.79 mbytes for k = 12.

Comparison with  reference models In this subsection, we will address the evaluation 
of the models generated by each algorithm, contrasting them with reference models 
extracted from the jaspar database version 2022. The goal of this comparison is to quan-
tify how well the algorithms were able to approximate the pwm matrices found by each 
approach to their respective reference matrices. For this, specific metrics were employed 
to measure the distance between the matrices, thus providing a comprehensive analysis 
of the accuracy of the methods in finding reliable and precise representations of the inves-
tigated biological motifs.

According to Fig. 9 and Table 5, the biomapp algorithm showed superiority in almost 
all metrics analyzed. In the bha metric, the biomapp algorithm recorded an average of 
0.993 and a very low standard deviation of 0.0308, signaling consistency in the results. 

Fig. 8 Comparison between the average performance of the algorithms in relation to memory consumption 
ram grouped by k value. It is possible to verify that biomapp::chip, prosampler and meme exhibit the shortest times 
while homer presented significantly higher execution times
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However, it is interesting to note that prosampler had the lowest minimum in this 
metric (0.685), which could be a point of concern in terms of consistency.

When we observe distance metrics such as euc, hell, and man, biomapp once again 
stands out for having the lowest averages. Here, homer’s performance is notably infe-
rior; for example, in the man metric, the average is 0.264 with a standard deviation of 
0.194, both values being the highest among the algorithms analyzed. This could point to 
a generally inferior performance of homer in multidimensional comparisons. Regard-
ing the pcc metric, all algorithms showed high average values, indicating a good degree 

Table 4 Comparison of memory consumption (measured in Mbytes) and time (measured in 
seconds) between the algorithms biomapp::chip, homer, meme and prosampler grouped by k 

algorithm k avg time avg ram max time max ram min time min ram

Biomapp 10 19.34 251.50 95.17 422.70 4.69 208.02

11 15.83 307.61 150.88 489.64 2.62 221.99

12 21.53 326.33 192.79 664.13 2.36 235.98

13 13.25 310.64 40.45 514.13 1.41 190.08

14 15.99 370.37 34.08 576.42 3.68 262.31

15 10.43 343.74 28.53 683.56 4.05 271.53

16 15.84 381.98 24.34 527.36 7.01 281.87

18 23.00 420.45 34.17 478.62 11.25 374.58

21 9.79 838.70 15.10 868.92 4.47 808.49

Homer 10 65.81 542.56 85.76 575.83 52.47 524.70

11 258.96 867.76 421.93 1054.18 133.48 684.94

12 549.22 1368.86 1802.54 1944.38 152.97 1156.77

13 806.39 1613.70 1951.66 1796.67 171.83 1467.87

14 952.28 1825.39 1875.14 2103.16 213.74 1565.54

15 645.16 1826.03 1584.17 2062.00 326.13 1717.78

16 1174.47 1950.41 1952.69 2195.72 184.05 1592.81

18 763.16 1887.06 1931.68 2270.09 142.80 1595.04

21 497.58 1765.16 709.77 1824.43 285.39 1705.90

Meme 10 139.84 117.86 152.63 166.72 133.59 73.30

11 138.23 225.86 159.70 1319.03 122.78 72.28

12 137.20 242.56 155.45 1618.04 126.23 69.32

13 136.74 202.81 153.11 538.06 118.93 72.25

14 140.46 223.61 156.88 409.22 129.15 73.24

15 139.28 240.67 152.55 1491.57 130.57 75.79

16 139.92 218.37 152.61 338.57 129.52 102.36

18 143.33 248.87 152.39 328.58 136.32 135.78

21 134.64 86.45 143.97 93.61 125.32 79.28

Prosampler 10 31.15 350.59 47.54 482.50 16.71 232.54

11 62.76 563.89 418.14 2796.34 15.60 199.07

12 69.60 603.25 518.37 3500.79 14.26 213.74

13 55.79 526.55 155.40 1166.94 16.35 235.40

14 61.46 571.55 112.23 909.96 17.21 226.32

15 81.32 566.79 655.92 2596.81 16.70 236.42

16 58.93 558.32 97.11 817.34 25.89 335.26

18 69.08 626.60 91.61 794.47 34.94 400.59

21 20.13 259.94 21.58 265.49 18.68 254.39



Page 21 of 26Garbelini et al. BMC Bioinformatics          (2024) 25:128  

of correlation. However, it is interesting to note that prosampler had the lowest mini-
mum value (0.600) in this metric. Such a minimum value is significantly lower than the 
others, which may indicate instability in specific cases. Figure 10 displays the evolution 
of each algorithm as a function of the variable k.

Fig. 9 General comparative analysis between biomapp::chip, meme, prosampler and homer algorithms, employing 
a variety of distance metrics and correlation coefficients. Metrics used for comparison include euclidean 
distance, manhattan distance, hellinger distance, pearson correlation coefficient, sandelin-wasserman coefficient, 
and bhattacharyya coefficient . The values presented are the global average of all metrics, calculated over all 
datasets and for all sizes of k 

Table 5 Comparative analysis between algorithms in various distance and correlation metrics

The bold highlights the winner of each metric in terms of average

metrics program mean sd min max

Biomapp 0.993 0.031 0.787 1.000
bha Homer 0.963 0.045 0.746 0.999

Meme 0.972 0.040 0.751 0.999

Prosampler 0.988 0.037 0.685 1.000

Biomapp 0.026 0.058 0.002 0.412
euc Homer 0.115 0.085 0.016 0.391

Meme 0.091 0.071 0.019 0.429

Prosampler 0.045 0.065 0.008 0.460

Biomapp 0.033 0.063 0.003 0.393
hell Homer 0.143 0.091 0.026 0.443

Meme 0.129 0.077 0.027 0.470

Prosampler 0.067 0.069 0.011 0.479

Biomapp 0.061 0.137 0.005 0.935
man Homer 0.264 0.194 0.039 0.925

Meme 0.218 0.167 0.044 1.016

Prosampler 0.104 0.147 0.019 1.008

Biomapp 0.991 0.045 0.626 1.000
pcc Homer 0.955 0.059 0.663 0.999

Meme 0.983 0.055 0.686 1.000

Prosampler 0.985 0.054 0.600 1.000

Biomapp 1.988 0.057 1.554 2.000
sw Homer 1.940 0.079 1.561 1.999

Meme 1.969 0.070 1.586 1.999

Prosampler 1.982 0.074 1.391 2.000
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It is possible to observe in this figure that biomapp in the euclidean, hellinger, 
and manhattan distances always stayed below the other algorithms, for all val-
ues of k. In the bhattacharyya coefficient, prosampler obtained the best result 
(0.988) for k = 10, followed by meme (0.975) and biomapp::chip (0.972). For other 
values of k, biomapp::chip achieved better values in this metric. Something similar 
occurred with the Pearson correlation and sandelin-wasserman similarity, in 
which biomapp::chip had the lowest score for k = 10. The sw metric showed a 
closer competition among the algorithms, with all averages approaching 2 and rela-
tively low standard deviations. However, prosampler here showed the lowest mini-
mum value of 1.39, which once again raises questions about its consistency compared 
to the other algorithms. While biomapp exhibited a generally superior performance 
in all metrics evaluated, the other algorithms have weak points that deserve attention. 
The inferior performance of homer in distance metrics and the variability of prosa-
mpler in metrics like bha and pcc are points that require additional investigations.

Analyzing Fig. 10 focusing on biomapp and considering the points where it is sur-
passed by other algorithms, an interesting pattern can be seen in the behavior in rela-
tion to the different metrics and k values. In the Euclidean (euc), Hellinger (hell) 
and Manhattan (man) distance metrics, biomapp demonstrate to be superior in all 
k values, which implies significant consistency and efficiency in capturing differences 
between motifs, regardless of the k-mer size. However, when evaluating the bha, pcc 
and sw metrics, we observed that biomapp is not the leader for k = 10 . This could be 
a reflection of intrinsic characteristics of the data or the nature of the shorter motifs, 
which may not be as well captured by the algorithm as those of larger size. In small 
kmers, measurement precision may be more susceptible to variations due to the lim-
ited amount of information available for analysis. When considering k values greater 
than 10, biomapp outperforms other algorithms in most cases, indicating optimiza-
tion for intermediate to large kmers. From k = 15 onwards, biomapp’s performance 
is quite similar to that of prosampler, suggesting that both algorithms are efficient 
in capturing the relevant features of the motifs for these sizes of kmers, but biomapp 
has a slight advantage. The reason biomapp exhibits an improvement may be related 
to its ability to integrate and interpret more complex information that is more evi-
dent in larger sequences. As kmer grows, there is more context for analysis, allowing 
biomapp’s strengths in terms of algorithms and statistical modeling to come to the 

Fig. 10 Performance comparison of the biomapp, homer, meme and prosampler in different motif evaluation 
metrics. Metrics include Bhattacharyya coefficient (bha), Euclidean distance (euc), Hellinger distance (hell), 
Manhattan distance (man), Pearson correlation coefficient (pcc), and Sanderlin-Wasserman coefficient (sw), as a 
function of the size of the kmer (represented on the x-axis)
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fore. This may be a direct consequence of the method used to model motifs or the way 
biomapp weights different aspects of sequences when calculating similarity and cor-
relation measures.

Statistical analysis In the performance analysis of algorithms, it is imperative to employ 
rigorous statistical techniques to determine whether the differences observed in various 
metrics are truly significant. The application of statistical tests provides a means to vali-
date comparisons between different approaches or settings, ensuring that the conclusions 
drawn are robust and reliable.

In this subsection, use is made of the friedman test, a non-parametric method 
employed to identify significant variations in medians among multiple paired groups. 
This statistical test is especially relevant when the conditions of normality and homo-
scedasticity, which are prerequisites for the application of anova, are not verified, as 
observed in the present study. After the main tests, post hoc tests will be performed 
for multiple comparison analyses. The aim is to identify which groups are statistically 
different from each other. The results of the post hoc tests are essential for establishing 
concrete conclusions about the evaluated metrics.

The data displayed in Table 6 show the results of the friedman and nemenyi statisti-
cal tests applied to various metrics to evaluate the performance of the motif discovery 
algorithms. The metrics evaluated include euc (euclidean distance), man (manhat-
tan distance), pcc (pearson correlation), hell (hellinger distance), sw (sandelin-
wasserman coefficient), and bha (bhattacharyya distance).

For each metric, the friedman test produced highly significant p-values, pointing 
to a considerable difference between the approaches. All the p-values are very close 
to zero, well below the adopted significance level of α = 0.05 , indicating that the differ-
ences are statistically significant. The winner column indicates that the biomapp pro-
gram outperformed all other approaches for all the tested metrics, as denoted by the 
symbol (+). The results of the nemenyi test reinforce this conclusion, with p-values 
very close to zero. These data can be graphically visualized through Fig. 11.

Analyzing this figure, we can verify that the results obtained from the nemenyi test 
point to statistically significant differences between the biomapp::chip program and 
the other evaluated methodologies, covering all the metrics in question. It is relevant to 
highlight that meme was statistically similar to homer in all distance metrics. However, 

Table 6 Results of friedman and nemenyi tests for the evaluation of motifs discovery algorithms

Each line represents an evaluated metric. The columns χ2 and p− value correspond to the results of friedman’s test. 
The columns relating to homer, meme and prosampler display the p-values obtained by the nemenyi test, all compared to the 
biomapp::chip program. The last column, called result, indicates whether biomapp performed better (+), lower (-) compared to 
the other approaches or (=) to not statistically significant

χ2 p-value homer meme prosampler result

euc 280.46 1.69e−60 0.00e+00 0.00e+00 4.01e−09 +
man 281.35 1.08e−60 0.00e+00 0.00e+00 8.58e−10 +
pcc 243.61 1.57e−52 0.00e+00 2.94e−14 7.42e−13 +
hell 275.29 2.21e−59 0.00e+00 0.00e+00 1.50e−12 +
sw 261.30 2.35e−56 0.00e+00 0.00e+00 9.85e−09 +
bha 271.19 1.71e−58 0.00e+00 0.00e+00 3.32e−11 +
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in the pcc metric, the meme program was more similar to prosampler, showing no 
statistically significant differences between them in this regard. The similarity between 
meme and homer in distance metrics and the closeness between meme and prosa-
mpler in the pcc metric can be attributed to various factors. These may include the 
nature of the algorithms, sensitivity to outliers, data peculiarities, or even optimization 
for different loss functions. Each metric may be highlighting different aspects of the rela-
tionships between the approaches, which may contribute to this behavior.

Lastly, Fig. 12 presents the critical distance graphs between the different algorithms, 
providing an intuitive visualization of the relative positions of each method in terms 
of performance. The critical distance is a key value obtained from statistical tests such 

Fig. 11 Results of p-values derived from the nemenyi test indicate the presence of significant statistical 
differences between the biomapp::chip program and the other approaches tested in all metrics evaluated. 
Additionally, it is noted that meme does not present significant statistical differences in relation to homer except 
in the pcc metric. In the latter, both meme and prosampler were statistically similar

Fig. 12 Comparison of the critical distance between different approaches. The analysis reveals that the 
biomapp::chip algorithm stands out, presenting superior performance in relation to the other methodologies 
evaluated
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as the nemenyi post-hoc test, and serves as a threshold for determining whether per-
formance differences between multiple algorithms are statistically significant. This 
measure is important because it provides an objective criterion for evaluating and 
comparing the effectiveness of different methods. If the difference in performance 
between two algorithms exceeds the critical distance, we can conclude that one algo-
rithm is significantly better than the other with a certain level of confidence. It is 
clearly observed that the biomapp::chip algorithm achieved the best performance, 
demonstrating statistical superiority compared to all other approaches. A close rela-
tionship is also noted between the meme and homer algorithms in various metrics, 
especially those related to distance, corroborating the analysis performed on Fig. 12. 
Similarly, it is also possible to see in this figure that, in the pcc metric, the meme 
algorithm displayed a high proximity to the prosampler algorithm, indicating that 
there are no statistically significant differences between them in this specific metric.

Conclusions
This study addressed the problem of biological motif discovery, a field of extreme rel-
evance for understanding regulatory mechanisms in genomes and with implications in 
various areas of biology. Aiming to overcome the current limitations of available algo-
rithms, we introduced biomapp::chip, a tool designed to optimize both accuracy and 
efficiency in the analysis of large volumes of data, such as those generated by ChIP-seq 
protocols. biomapp::chip sets itself apart with its two-step approach: the first is dedi-
cated to efficient k-mer counting through the smt algorithm, and the second focuses on 
optimization via an enhanced version of the em algorithm. Our comparative analyses 
with state-of-the-art methods, such as meme, prosampler, and homer, demonstrated 
that biomapp::chip offers a strong balance between accuracy and efficiency. The suc-
cess of biomapp::chip in the experiments suggests that the tool can be an important 
resource for researchers looking for reliable and effective approaches to motif discovery 
in large data sets. Future research may explore additional optimizations and the applica-
tion of the tool in different biological scenarios.

Availability and requirements
Project name: biomapp::chip; Project home page: https:// github. com/ jader mcg/ bioma 
pp- chip; Operating system(s): Linux; Programming language: C++ and R; Other 
requirements: Threading Building Blocks https:// www. intel. com/ conte nt/ www/ us/ en/ 
devel oper/ tools/ oneapi/ onetbb. html; License: Apache License 2.0.
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