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Abstract 

Accurate and efficient prediction of drug-target interaction (DTI) is critical to advance 
drug development and reduce the cost of drug discovery. Recently, the employ-
ment of deep learning methods has enhanced DTI prediction precision and efficacy, 
but it still encounters several challenges. The first challenge lies in the efficient learn-
ing of drug and protein feature representations alongside their interaction features 
to enhance DTI prediction. Another important challenge is to improve the gener-
alization capability of the DTI model within real-world scenarios. To address these 
challenges, we propose CAT-DTI, a model based on cross-attention and Transformer, 
possessing domain adaptation capability. CAT-DTI effectively captures the drug-target 
interactions while adapting to out-of-distribution data. Specifically, we use a convolu-
tion neural network combined with a Transformer to encode the distance relationship 
between amino acids within protein sequences and employ a cross-attention module 
to capture the drug-target interaction features. Generalization to new DTI prediction 
scenarios is achieved by leveraging a conditional domain adversarial network, aligning 
DTI representations under diverse distributions. Experimental results within in-domain 
and cross-domain scenarios demonstrate that CAT-DTI model overall improves DTI 
prediction performance compared with previous methods.
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Introduction
Drug discovery is highly valued in the current biomedical field [1]. In drug discovery, 
verifying whether a drug interacts with a certain target is a key step in proving drug 
effectiveness [2]. In vitro screening experiments are feasible but labor-intensive, expen-
sive and time-consuming [3]. The utilization of computerized screening for potential 
DTI candidates has been substantiated as an effective strategy to aid biologists in the 
identification of genuine DTIs through wet-lab experiments [4]. Therefore, computer-
aided DTI prediction has aroused great interest and received increasing attention.

Existing DTI prediction methods can generally be divided into three categories: ligand-
based, structure-based and machine learning-based [5]. Traditional structure-based and 
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ligand-based in silico virtual screening methods have gained increased attention owing 
to the demonstrated relative effectiveness [6–8]. However, these traditional methods 
have significant limitations. For example, the widely adopted molecular docking method 
is relatively inefficient, sometimes slow due to the huge amount of computation and the 
scoring function has relatively low accuracy [9]. In short, ligand-based methods face lim-
ited application scope and performance challenge due to the limited number of known 
ligands for some proteins. In addition, structural-based methods are limited by the lack 
of three-dimensional structures and ligand information for the majority of protein, 
thereby constraining the development.

Traditional machine learning models such as support vector machine (SVM) [10] and 
random forest (RF) [11] are also used for DTI prediction [12]. For example, Faulon et al. 
[13] used molecular features and reaction features as input to the SVM kernel function 
for DTI prediction. Wang et al. [14] used the features extracted by the Boruta algorithm 
as the input of the RF algorithm for DTI prediction. However, although these methods 
are simple and effective, the performance is far from satisfactory.

Recently, as an important branch of machine learning, deep learning has also made 
significant progress in DTI prediction. In the early days, researchers used hand-crafted 
descriptors of drugs and proteins to make predictions through a fully connected neural 
network [15]. Subsequently, Lee et al. proposed DeepConv-DTI [16], which used convo-
lution neural network (CNN) to extract protein features, employed the extended con-
nectivity fingerprints (ECFP) algorithm [17] to calculate drug features, and predicted 
DTI through fully connected network (FCN). However, the interaction characteristics 
of drug-protein pairs are ignored. Furthermore, the adoption of advanced feature extrac-
tion techniques, such as the DynCNN module in SAG-DTA [18] and DrugVQA [19], 
highlight the continuous efforts to optimize feature extraction methods.

Over the past few years, graph neural network (GNN) have demonstrated excellent 
predictive performance in addressing key prediction challenges in the field of bioinfor-
matics by utilizing the powerful feature representation learning capability [20–22]. To 
extract the topological information of drugs, Nguyen et  al. designed GraphDTA [23] 
based on GNN, treating drugs as molecular graphs, using GNN and CNN to extract 
drug and protein features respectively to predict the affinity of drugs and targets. Despite 
the use of stronger feature extraction modules, the important fact that the interactions 
between molecules are mainly focused on the relevant substructures of drugs and pro-
teins is ignored [24]. Furthermore, a simply connection of drug and protein features fails 
to capture the complex interactions between them.

In order to more accurately model the interactions between drugs and proteins, some 
studies have introduced the attention mechanism into DTI prediction [25]. Nowadays, 
attention mechanisms have been widely used for revealing the contribution of different 
components of a drug or target on interaction [19] and describing interactions between 
targets and drugs [26]. HyperAttentionDTI [27] assigned attention vectors to each 
atom and amino acid on the basis of CNN to enhance feature expression. Although this 
method considered the interactions representation between drugs and proteins, the lim-
ited receptive field of CNN limits the ability to capture global dependencies.
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Inspired by the powerful ability of Transformer [28] to capture features between two 
sequences, Chen et al. proposed TransformerCPI [29], using Transformer to predict DTI 
from the SMILES of drugs and protein amino acid sequences. Huang et  al. proposed 
MolTrans [30], which applied Transformer to extract features from the substructure of 
drug and protein sequence and combined them into interaction map for compound-
protein interaction prediction. However, this method mainly focuses on the interaction 
features between drugs and protein substructures, while ignoring the importance of uti-
lizing original feature information.

Due to the wide scope and complexity of the chemical and genomic fields, DTI predic-
tion often faces great challenges in real-world scenarios. Recently, Bai et  al. proposed 
the DrugBAN [31] using bilinear attention to capture the local interaction representa-
tion of drug and target for DTI prediction. In cross-domain prediction tasks, the con-
ditional adversarial domain adaptation method is introduced to transfer source domain 
knowledge to the target domain and demonstrate excellent cross-domain generalization 
capability.

In order to cope with the problem that many models [16, 23, 27, 31] cannot fully cap-
ture global context information while retaining local features when processing global 
and local information, resulting in the inability to extract sufficiently effective feature 
information. In this work, we propose a model named CAT-DTI, whose protein features 
are extracted by a protein feature encoder combining CNN and Transformer, which fully 
considers global context information while capturing local features of protein sequences. 
Besides, attention-based methods [23, 32–34] generally focus more on extracting inter-
nal features of drugs and targets, but rarely introduce attention to mine DTI representa-
tions. With the aim of better preserving the internal features of drugs and proteins while 
deeply exploring the interaction information between them, we input the extracted drug 
and protein features into the cross-attention module for feature fusion. We also notice 
that the training of the model in a specific domain is mainly aimed at the distribution 
of the domain and the drug-target pairs to be predicted in practical applications may 
have a different distribution from the training data, resulting in the inability to directly 
transfer the existing knowledge to new scenarios. Therefore, in cross-domain tasks, we 
employ conditional domain adversarial network (CDAN) to better understand and pre-
dict DTI in domains that are distributed differently from the training data, thus enhanc-
ing the cross-domain generalization ability.

Our contributions are summarized in the following points. First, we propose a deep 
learning model named CAT-DTI, which uses GCN and CNN combined with Trans-
former to extract feature maps of drugs and proteins, respectively. Second, we employ 
cross-attention module that fuse drug and protein features, effectively capture and 
process the interaction features between drugs and proteins while retaining the inter-
nal feature information. For the cross-domain prediction task, we adopt the CDAN to 
enable the model to adapt and cope with the characteristics of new domains, improve 
the performance of CAT-DTI in cross domain DTI prediction tasks and enhance the 
generalization performance and practical value of CAT-DTI. Compared with other base-
line methods, CAT-DTI achieves generally better predictive performance on three pub-
lic datasets.



Page 4 of 20Zeng et al. BMC Bioinformatics          (2024) 25:141 

Methods
An overview of CAT-DTI framework is illustrated in Fig. 1a. Given drug SMILES and 
protein amino acid sequences as input, the protein and drug embeddings are gener-
ated. Drug embedding is input into GCN to extract feature representations of drug mol-
ecules (i.e., drug feature map FD ). The protein embedding is passed to the protein feature 
encoder as shown in Fig. 1b, which combines the CNN and Transformer to extract the 
protein feature map FP , capturing local features and global context information in the 
protein sequence simultaneously. Next, the cross-attention module interacts protein and 
drug features for feature fusion to capture the interaction relationship between drugs 
and targets, as shown in Fig. 1c. Specifically, we swap the key and value of protein atten-
tion with those of drug attention. After obtaining the feature maps, the original features 
are integrated to construct the final features for both drugs and proteins. Through max-
pooling and concatenation, the joint feature f for drug and protein target is produced 
and input into the decoder to predict DTI. To enhance the generalization performance 
of CAT-DTI in real-world scenarios for novel drug-target pairs, we integrate the domain 
adaptation module CDAN into the framework, which is employed to adapt the repre-
sentations of drugs and proteins, thereby facilitating effective alignment between source 
and target domain distributions.

GCN for drug molecular graph

Regarding the drug feature extraction process, we transform drug SMILES into a cor-
responding 2D molecular graph. To capture the node information within the graph, we 
first initialize each atom node. Each atom is denoted by a 74-dimensional integer vec-
tor that encapsulates eight distinct attributes, including the atom type, the atom degree, 
the number of implicit Hs, the formal charge, the number of radical electrons, the atom 
hybridization, the number of total Hs and whether the atom is aromatic.

The drug feature encoder transmits and aggregates information on the drug molecular 
structure through a three-layer GCN, thereby achieving extraction and representation 
of drug feature. In each layer of GCN operation, each row of the drug representation 

Fig. 1 Framework of the proposed CAT-DTI. a Overview of CAT-DTI framework. b Details of the protein 
feature encoder. c Processes of cross-attention
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represents an aggregated representation of adjacent atomic nodes in the drug molecule. 
Each GCN layer uses the information of neighboring atomic nodes to update the fea-
ture representation of each atomic node, allowing the model to effectively capture the 
correlation information between neighboring atomic nodes. We retain node-level drug 
representations for subsequent explicit learning of interactions with protein fragments. 
We set the maximum number of nodes in the graph to be md . Therefore, the node fea-
ture matrix of each graph is denoted as Md ∈ R

md×74 . Furthermore, we employ a simple 
linear transformation to establish Fd = MdW

⊤
o  , resulting in a real-valued dense matrix 

Fd ∈ R
md×Dd as input features, where Dd is the drug embedding dimension. Finally, we 

obtain the drug feature map FD ∈ R
md×Dd through the drug feature encoder, which can 

be expressed as:

where Wi
gcn and bigcn are the weight matrices and bias vector of the i-th layer of GCN. Ã is 

the adjacency matrix with added self-connection. Hi
d denotes the hidden node represen-

tation of layer i with H0
d = Fd.

Feature encoder for protein

To enhance protein sequence feature representation and capture long-distance rela-
tionship between sequence tags, we introduce a protein feature encoder that combines 
CNN and Transformer. Traditional CNN may struggle with long sequences due to the 
limited local receptive fields, so we combine the global attention mechanism of Trans-
former to capture long-distance dependence in protein sequences. By fusing the local 
perception capabilitiy of CNN and the global attention mechanism of Transformer, our 
model simultaneously considers local features and global context information in protein 
sequences, thereby extracting more effective protein features.

It is worth noting that before the feed forward layer of Transformer, we add 1D CNN 
to process local information. By sliding the convolution kernel on the protein sequence, 
we captured the local pattern and substructure of the protein. Combined with the 
advantages of Transformer in handling long-range dependencies, our model achieves 
the fusion of local and global information in the protein feature encoding process, which 
is beneficial to enhance the representation of protein sequence features. In our work, 
a three-layer protein feature encoder is used to capture protein features, as shown in 
Fig. 1b, where each layer includes a multi-head self-attention, CNN and a feed-forward 
neural network. Specifically, the protein sequence is input to the protein feature encoder 
with the feature matrix Fp ∈ R

lp×Dp , where lp is the length of the protein sequence and 
Dp is the protein embedding dimension. The matrices Q ∈ R

lp×Dp , K ∈ R
lp×Dp and 

V ∈ R
lp×Dp in different feature spaces based on the feature matrix Fp are generated by 

the linear layer as follows:

(1)Hi+1
d = σ(GCN(A,Wi

gcn, b
i
gcn,H

i
d)),

(2)





Q = Fp ·WQ + bQ
K = Fp ·WK + bK ,
V = Fp ·WV + bV
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where WQ ∈ R
Dp×Dp , WK ∈ R

Dp×Dp , WV ∈ R
Dp×Dp are learnable parameter weights. bQ , 

bK  and bV  are bias vectors. Given Q, K and V matrices, the self-attention layer computes 
the attention weights as follows:

where dk is the dimension of K. The output XM of the multi-head attention layer is gen-
erated as follows:

where WM ∈ R
Dp×Dp is the learnable weight matrix and bM is the bias vector.

The multi-head attention layer extracts information from diverse representation sub-
space, enhancing model robustness. Therefore, long-range relationships between amino 
acids spanning the entire sequence can be learned with self-attention weights. Addition-
ally, the first ADD & Norm layer implements a residual connection with original protein 
feature matrix Fp and then follow by normalization, expressed as follows:

Subsequently, a three-layer CNN is inserted after the first ADD & Norm layer to extract 
local feature in the protein sequence:

After the second ADD & Norm layer, we derive the protein feature map FP ∈ R
lp×Dp as 

follows:

Cross‑attention module

After obtaining the feature maps for drugs and proteins through the feature encoder, we 
introduce a cross-attention module to effectively model the interaction between drugs 
and proteins, thereby capturing enhanced representations of their interaction and pro-
vides more reliable feature representation for DTI prediction. By performing two-way 
information interaction between the key and value of protein attention and the key and 
value of drug attention, the information exchange and association between drug and 
protein is realized, thus capturing the interaction features between drug and protein tar-
get. In this process, protein features can adjust their own expression by attention weights 
of drug features, and vice versa. Such an interaction and adjustment mechanism enable 
the cross-attention module to promote information flow across feature maps, effectively 
fuse drug and protein features, and extract more comprehensive DTI feature representa-
tion. The cross-attention module is depicted in Fig. 1c and primarily consists of drug and 
protein attention.

In this section, we set De = Dd = Dp . For drugs, the drug feature map FD is passed 
through the linear layer to calculate the drug query vector Qi

D ∈ R
md×dhead , and then the 

protein feature map FP is obtained through a linear layer, which is further calculated as 

(3)Attention(Q,K ,V ) = Softmax(
Q · K⊤

√
dk

)V ,

(4)XM = MutiHead(Q,K ,V ) = Concat(Attention(Q,K ,V ))WM + bM ,

(5)XAN = LayerNorm(Fp + XM),

(6)XCNN = CNN(XAN),

(7)FP = LayerNorm(XCNN + XAN ),
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the drug key vector Ki
D ∈ R

lp×dhead and value vector V i
D ∈ R

lp×dhead . The query, key and 
value for the drug are obtained as follows:

where Wi
q ,W

i
k ,W

i
ν ∈ R

De×dhead are different weight matrices in the linear layer and 
dhead = De/heads is the channel dimension. i = 1, 2, · · · , heads , where heads are the 
number of attention heads.

Protein attention follows a process similar to drug attention. The protein feature map 
FP is input into the linear layer to calculate the protein query vector Qi

P ∈ R
lp×dhead , and 

then the drug feature map is taken to generate the protein key vector Ki
P ∈ R

md×dhead 
and protein value vector V i

P ∈ R
md×dhead . The queries, keys and values of proteins are 

calculated by the following formulas:

where the weight matrices Wi
q ∈ R

De×dhead , Wi
k ∈ R

De×dhead and Wi
v ∈ R

De×dhead share the 
same weights as drug attention. Through the application of a softmax function, the drug 
and protein attention matrices are computed as:

where dKi
D
= dKi

P
= dhead is the dimension of K for drug and protein. The drug/protein 

feature map for each head is obtained by multiplying the drug/protein attention matrix 
of each attention head with the corresponding drug/protein value matrix. Subsequently, 
the drug/protein feature maps of all attention heads are concatenated in the channel 
dimension and fed into the linear layer to obtain the final drug feature representation 
ZP ∈ R

lp×Dp and protein feature map ZD ∈ R
md×Dd received attention:

where i = 1, 2, · · · , heads and WZ ∈ R
De×De is the shared weight matrix.

Next, the feature maps of interest are combined with the original feature maps to 
obtain the final drug feature map FZD ∈ R

md×Dd and protein feature map FZP ∈ R
lp×Dp:

(8)





Qi
D = FD ·Wi

q

K i
D = FP ·Wi

k ,

V i
D = FP ·Wi

ν

(9)





Qi
P = FP ·Wi

q

K i
P = FD ·Wi

k

V i
P = FD ·Wi

v

,

(10)Ai
D = Softmax


Qi

D · Ki
D
⊤

�
dKi

D


,

(11)Ai
P = Softmax


Qi

P · K
i
P
⊤

�
dKi

P


,

(12)ZD = Concat(Ai
D × V i

D)×WZ ,

(13)ZP = Concat(Ai
P × V i

P)×WZ ,
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The drug and protein feature maps are downsampled by using a global max-pooling 
operation to generate one-dimensional drug feature vector dmp ∈ R

Dd and protein fea-
ture vector pmp ∈ R

Dp:

Finally, we concatenate dmp and pmp to obtain the joint feature representation f ∈ R
2De:

Drug‑target interaction prediction

In order to predict the DTI probability, we input the joint representation f into the 
decoder, which consists of a fully connected classification layer. Finally, the DTI prob-
ability p is generated as follows:

where W and b are learnable weight matrix and bias vector.
During model training, we employ backpropagation to concurrently optimize the 

learnable parameters. Our objective in training is to minimize the cross-entropy loss 
function:

where yi denotes the ground-truth label of the i-th drug-target pair. pi represents DTI 
prediction score predicted by the model. θ is the set of learnable weight matrices and 
bias vectors and � is a hyperparameter for L2 regularization to prevent overfitting.

Cross‑domain adaptation enhances generalization

Deep learning models show excellent performance on similar data (i.e., in-domain) 
that is distributed with the training data. However, the performance on different data 
with different distributions (i.e., cross-domain) is not satisfactory. To this end, we 
employ   the  CDAN module  to improve the generalization ability of CAT-DTI model 
from a source domain rich in labeled data to a target domain containing only unlabeled 
data. Figure 2 shows the framework after integrating the CDAN module into CAT-DTI 
(i.e., CAT-DTICDAN ), which consists of three key components: Feature Extractor F(∗) , 
Decoder G(∗) and Discriminator D(∗).

(14)FZD = 0.5ZD + 0.5FD,

(15)FZP = 0.5ZP + 0.5FP ,

(16)dmp = Maxpooling(FZD),

(17)pmp = Maxpooling(FZP),

(18)f = Concat(dmp, pmp),

(19)p = σ
(
W f + b

)
,

(20)L = −
∑

i

(
yi log (pi)+ (1− yi) log (1− pi)

)
+

1

2
�||θ ||22,
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On the cross-domain task, given NS labeled drug-target pairs PS = {(xis, y
i
s)}

i=1
NS

 in the 

source domain and NT unlabeled drug-target pairs Pt = {(xit)}
i=1
NT

 in the target domain. 
We rely on CDAN to adjust the distribution of samples to optimize cross-domain pre-
diction performance. The feature extractor F(∗) is the drug and protein feature encoder 
together with the cross-attention module to generate a joint representation of the input 
domain data, namely f is = F(xis) and f jt = F(x

j
t) . For the decoder G(∗) , we employ a fully 

connected classification layer and follow a softmax function as G(∗) to obtain predicted 
classification results gis = G(f is ) ∈ R

2 and gjt = G(f
j
t ) ∈ R

2 . Subsequently, the joint rep-
resentation f and the classifier prediction g are embedded into a joint conditional repre-
sentation c ∈ R

2De , which is defined as follows:

where FLATTEN performs a flattening operation on the outer product of the f and g 
vectors and ⊗ is the outer product.

Adhering to CDAN principles, we employ a domain discriminator D(∗) to align the 
joint representation f and predicted classification distribution g of the source and target 
domains. D(∗) is a domain discriminator composed of a three-layer FCN that learns to 
distinguish whether a joint conditional representation c originates from the source or 
target domain. F(∗) and G(∗) are trained to minimize the cross-entropy loss L of the 
source domain with source label information, generating a joint conditional  represen-
tation c that confuses the discriminator D(∗) . In the cross-domain task, we utilize two 
losses: one for optimizing classification prediction and the other for optimizing the dis-
tribution alignment of the source and target domain:

(21)c = FLATTEN(f ⊗ g),

(22)LS(F ,G) = E(xis ,y
i
s)∼Ps

L

(
G
(
F
(
xis

))
, yis

)
,

Fig. 2 Diagram of cross-domain adaptation process. CDAN is a domain adaptation technique designed 
to address domain shift challenges with different distributions. We utilize CDAN to integrate the joint 
representation f of the source and target domain, along with classifier prediction g into the joint conditional 
representation distinguished by the discriminator. The discriminator is structured as a three-layer fully 
connected network with the specific goal of distinguishing the target domain from source domain by 
minimizing domain classification error
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where LS is the cross-entropy loss on the labeled source domain and Ladν is the adver-
sarial loss for the domain discriminator.

The optimization problem is written as a minimax paradigm:

where ω is a hyper parameter for weighting Ladν . By introducing adversarial training in 
Ladν , the difference in data distribution between the source domain and target domain is 
reduced, thereby enhancing the generalization ability of cross-domain prediction.

Experiments and results
Datasets and data processing

We comprehensively evaluate CAT-DTI and six baseline models on three public data-
sets: BindingDB, BioSNAP and Human. The BindingDB database records the binding 
affinity information of small drug molecules and proteins that have been verified through 
experiments and mainly studies the interaction between drug-like molecules and pro-
teins. In experiments, we use a low-bias version of the BindingDB dataset constructed 
by previous research [35]. The BioSNAP dataset is constructed according to previous 
research [30, 36] derived from the DrugBank database [37], including 4510 drugs and 
2181 proteins. It is designed as a balanced dataset containing validated positive samples 
and an equal number of unseen negative samples. Drawing on the previous studies [19, 
29], we also employ a balanced version of the Human dataset containing equal numbers 
of positive and negative samples. The statistics of the three datasets are shown in Table 1.

In experiments, we use different splitting strategies on the datasets for in-domain and 
cross-domain tasks. For in-domain evaluation, each experimental dataset is randomly 
split into training, validation and test sets in a ratio of 7:1:2. For cross- domain tasks, the 
decision to exclude the Human dataset stems from its comparatively limited sample size. 
In order to ensure the model  has robust performance in cross-domain scenarios,  the 
datasets should have sufficient data volume and sample diversity, so our cross-domain 
performance evaluation focuses on the large-scale BindingDB and BioSNAP datasets. 
We utilize the datasets from the previous study [31], which adopts a clustering-based 
pair split strategy to build cross-domain scenario and cluster drugs and target proteins 
from BindingDB and BioSNAP datasets respectively for cross-domain performance 
evaluation. Specifically, a single-linkage clustering method is used to cluster from the 
bottom and hierarchically to ensure that the distance between samples in different clus-
ters always exceeds a predefined minimum distance threshold, which helps prevent the 

(23)Ladν(F ,G,D) = Exit∼Pt
log

(
1− D

(
f it , g

i
t

))
+ E

x
j
s∼Ps

log(D(f
j
s , g

j
s)),

(24)max
D

min
F ,G

LS(F ,G)− ωLadν(F ,G,D),

Table 1 Details of datasets used in this work

Dadaset Drug Protein Association

BindingDB 14,643 2,623 49,199

BioSNAP 4,510 2,181 27,464

Human 2,726 2,001 6,728
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formation of clusters that are too close. For each dataset, the single-linkage algorithm is 
used for the clustering of drugs and proteins based on the ECFP4 [17] fingerprint and 
pseudo-amino acid composition (PSC) [38], respectively. Since the clustering-based pair 
split enables the quantitative construction of cross-domain task by taking into account 
the similarity between drugs and proteins, we use Jaccard distance and cosine distance 
on ECFP4 and PSC respectively to accurately measure pairwise distances. During the 
clustering of drugs and proteins, the distance threshold is set to 0.5 to ensure that the 
clusters do not become too large while maximizing the separation of different samples. 
So far, 2,780 drug clusters and 1,693 protein clusters have been obtained in the Bind-
ingDB dataset and 2,387 drug clusters and 1978 protein clusters have been obtained in 
the BioSNAP dataset. Through the clustering-based pair split strategy, the source and 
target domain are characterized by non-overlapping sets with different distributions. 
Following the general setup of domain adaptation, we use all labeled source domain data 
and 80% unlabeled target domain data as the training set and the remaining 20% labeled 
target domain data as the test set. While cross-domain evaluation presents greater chal-
lenges compared to in-domain random splitting, it emerges as a more efficacious meth-
odology for assessing the generalization capacity of model in the practical realm of drug 
discovery.

Baselines

We compare CAT-DTI with the following baselines.

• SVM [10] and RF [11] are used as a classifier to classify encoded drug and protein 
features.

• GraphDTA [23] uses GNN to encode drug molecule graphs and CNN to encode 
protein sequences. The learned drug and protein representation vectors are com-
bined with a simple concatenation.

• TransformerCPI [29] treats drugs and proteins as two sequences, generating repre-
sentations of protein sequences and drug atoms. The interaction feature is captured 
by Transformer decoder and the interaction probability is output by a fully con-
nected layer.

• MolTrans [30] is a deep learning model that utilizes Transformer to encode drug and 
protein information and learns the interactions between substructures through a 
CNN-based interaction module.

• DrugBAN [31] encodes drug SMILES through GCN to obtain drug features and uses 
CNN to capture protein features. Drug-target pairwise interactions are captured by 
a bilinear attention network, followed by a fully-connected classifier for DTI predic-
tion. Besides, conditional domain adversarial network is used to adjust the distribu-
tion of source and target domains in cross-domain prediction tasks.

Evaluation metrics

Since DTI prediction is a classification task, we choose the widely recognized evalua-
tion metrics AUROC (i.e., the area under the receiver operating characteristic curve) 
and AUPRC (i.e., the area under the precision-recall curve) as our primary assessment 
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criteria. Additionally, we provide reports on Accuracy, Sensitivity, Specificity, and F1 
score. In principally, the higher the AUROC value means the better the performance. 
The definitions of these evaluation metrics are given as:

where the true positive (TP) and true negative (TN) are the number of drug-target with 
interaction and drug-target without interaction that are successfully identified, respec-
tively. The false positive (FP) and false negative (FN) represent the number of drug-tar-
get with interaction and drug-target without interaction examples that are incorrectly 
identified.

Experimental setting

During the experiments, we allow our model to run for up to 100 epochs on all datasets, 
setting the experimental batch size to 32. We use the Adam optimizer with a learning 
rate of 2.5× 10−5 for the in-domain tasks and 5× 10−5 for the cross-domain tasks. The 
maximum sequence length allowed for proteins is set to 1000 and the maximum number 
of atoms allowed for drug molecules is 290. The number of hidden neurons in the fully 
connected decoder is 512. Five independent experiments are run for each dataset split. 
The best performing model is the one that exhibits the highest AUROC on the validation 
set, which is used on the test set to get the performance metrics.

Performance comparison

In‑domain performance evaluation

In the in-domain scenario, we use regular CAT-DTI in our experiments, so we do not 
embed the CDAN into the model. We compare CAT-DTI with six baselines in the ran-
dom split setting: SVM [10], RF [11], GraphDTA [23], TransformerCPI [29], MolTrans 
[30] and DrugBAN [31]. Table  2 shows the comparison on BindingDB, BioSNAP and 
Human datasets. The experimental results indicate that CAT-DTI demonstrates compet-
itive performance across all evaluation metrics in the in-domain scenario. Specifically, 
CAT-DTI outperforms other comparative methods in terms of evaluation metrics such 
as AUROC, AUPRC, F1, and specificity on the BioSNAP and Human datasets, which is 
attributed to its strong capability in extracting key features of drugs and proteins, effec-
tively capturing their interacting characteristics. It is noteworthy that CAT-DTI do not 
achieve the best performance on evaluation metrics such as AUROC, AUPRC, and F1 
on the BindingDB dataset. One possible reason is that the key protein information in 

(25)Accuracy =
TP + TN

TP + FP + TN + FN
,

(26)Sensitivity =
TP

TP + FN
,

(27)Specificity =
TN

TN + FP
,

(28)F1 =
2TP

2TP + FP + FN
,



Page 13 of 20Zeng et al. BMC Bioinformatics          (2024) 25:141  

the BindingDB is mainly reflected in local features, which makes it challenging for the 
Transformer part of the protein feature encoder in CAT-DTI to fully utilize its potential, 
and indirectly affects the model’s ability to capture local features, leading to a decline in 
model performance. Nevertheless, CAT-DTI still outperforms other comparative meth-
ods in most cases.

Overall, the experimental results on the three datasets all confirm the effectiveness of 
the CAT-DTI for DTI prediction. The improvement of experimental results is attributed 
to our method not only capturing protein local features but also analyzing global con-
text information for protein features. Moreover, the incorporation of the cross-attention 

Table 2 Comparison results of CAT-DTI and baselines on three datasets

Bold values indicate the best results achieved by all these competitive methods

Datasets Methods AUROC AUPRC F1 Sensitivity Specificity Accuracy

BindingDB SVM [10] 0.904 ± 
0.000

0.865 ± 
0.001

0.785 ± 
0.000

0.776 ± 
0.000

0.857 ± 
0.002

0.824 ± 0.001

RF [11] 0.942 ± 
0.001

0.923 ± 
0.001

0.844 ± 
0.002

0.840 ± 
0.002

0.893 ± 
0.002

0.871 ± 0.001

GraphDTA 
[23]

0.944 ± 
0.004

0.923 ± 
0.006

0.880 ± 
0.005

0.858 ± 
0.026

0.897 ± 
0.014

0.874 ± 0.010

Transformer-
CPI [29]

0.947 ± 
0.003

0.932 ± 
0.004

0.888 ± 
0.005

0.886 ± 
0.016

0.890 ± 
0.008

0.888 ± 0.007

MolTrans 
[30]

0.947 ± 
0.004

0.927 ± 
0.006

0.886 ± 
0.005

0.877 ± 
0.018

0.894 ± 
0.014

0.884 ± 0.007

DrugBAN 
[31]

0.961 ± 
0.001

0.948 ± 
0.001

0.903 ± 
0.001

0.894 ± 
0.011

0.908 ± 
0.009

0.901 ± 
0.003

CAT-DTI 0.960 ± 
0.001

0.947 ± 
0.001

0.900 ± 
0.001

0.884 ± 
0.010

0.913 ± 
0.009

0.896 ± 0.002

BioSNAP SVM [10] 0.819 ± 
0.045

0.839 ± 
0.038

0.827 ± 
0.053

0.665 ± 
0.046

0.835 ± 
0.054

0.750 ± 0.050

RF [11] 0.857 ± 
0.001

0.872 ± 
0.001

0.787 ± 
0.001

0.763 ± 
0.002

0.823 ± 
0.001

0.793 ± 0.001

GraphDTA 
[23]

0.871 ± 
0.001

0.870 ± 
0.005

0.807 ± 
0.005

0.761 ± 
0.015

0.838 ± 
0.011

0.800 ± 0.005

Transformer-
CPI [29]

0.876 ± 
0.004

0.881 ± 
0.007

0.803 ± 
0.006

0.768 ± 
0.024

0.827 ± 
0.012

0.797 ± 0.008

MolTrans 
[30]

0.895 ± 
0.006

0.899 ± 
0.006

0.825 ± 
0.007

0.791 ± 
0.032

0.848 ± 
0.014

0.820 ± 0.011

DrugBAN 
[31]

0.902 ± 
0.001

0.905 ± 
0.002

0.838 ± 
0.003

0.825 ± 
0.014

0.847 ± 
0.006

0.836 ± 0.004

CAT-DTI 0.909 ± 
0.002

0.907 ± 
0.004

0.840 ± 
0.004

0.816 ± 
0.012

0.857 ± 
0.006

0.836 ± 
0.005

Human SVM [10] 0.913 ± 
0.000

0.905 ± 
0.000

0.811 ± 
0.000

0.782 ± 
0.000

0.830 ± 
0.000

0.838 ± 0.000

RF [11] 0.939 ± 
0.002

0.927 ± 
0.001

0.848 ± 
0.005

0.833 ± 
0.006

0.893 ± 
0.007

0.866 ± 0.006

GraphDTA 
[23]

0.965 ± 
0.003

0.955 ± 
0.003

0.907 ± 
0.008

0.912 ± 
0.017

0.904 ± 
0.016

0.908 ± 0.008

Transformer-
CPI [29]

0.954 ± 
0.002

0.941 ± 
0.002

0.891 ± 
0.005

0.831 ± 
0.023

0.939 ± 
0.018

0.879 ± 0.007

Mol-
Trans[30]

0.981 ± 
0.002

0.976 ± 
0.002

0.943 ± 
0.005

0.949 ± 
0.011

0.939 ± 
0.017

0.941 ± 0.004

DrugBAN 
[31]

0.981 ± 
0.001

0.969 ± 
0.005

0.940 ± 
0.004

0.938 ± 
0.010

0.941 ± 
0.013

0.940 ± 0.003

CAT-DTI 0.983 ± 
0.001

0.976 ± 
0.003

0.944 ± 
0.002

0.929 ± 
0.007

0.957 ± 
0.008

0.942 ± 
0.002
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module enables the model to concurrently consider the impact of drug features on 
proteins and the influence of protein features on drugs. This bidirectional interaction 
empowers CAT-DTI to comprehensively comprehend and capture the intricate inter-
actions between drugs and proteins, thereby achieving the effective fusion of drug and 
protein target features.

Cross‑domain performance evaluation

In-domain classification tasks under random split are relatively simple and of limited 
practical value. In order to better simulate real-world situations, we focus on the more 
challenging cross-domain DTI prediction, where the training data and test data have dif-
ferent distribution characteristics. In order to deeply explore the knowledge transferabil-
ity in cross-domain prediction, we embed the CDAN module into the CAT-DTI model, 
which means using CAT-DTICDAN for cross-domain prediction.

We present the cross-domain performance evaluation results on BindingDB and BioS-
NAP datasets in Table 3. All methods show a significant drop compared to the previ-
ous in-domain prediction results due to the reduced information overlap between 
training and test datasets. However, our newly proposed CAT-DTI model clearly out-
performs other state-of-the-art models on both datasets. Specifically, the AUROC and 
AUPRC of CAT-DTI on the BioSNAP dataset are 10.4% and 7.1% higher than the sec-
ond-ranked DrugBAN. At the same time, the AUROC and AUPRC of CAT-DTI on the 
BindingDB dataset are 12.4% and 15.4% higher than those of DrugBAN. What’s more 
worth mentioning is that even when the CDAN module is incorporated into DrugBAN 
(i.e., DrugBANCDAN ), the performance of CAT-DTI outperforms DrugBANCDAN model. 
Experimental results demonstrate that the proposed CAT-DTI can effectively handle 

Table 3 Cross-domain performance comparison of CAT-DTI and other baselines on BindingDB and 
BioSNAP Datasets

Bold values indicate the best results achieved by all these competitive methods

Dataset Method AUROC AUPRC F1 Accuracy

BindingDB SVM [10] 0.490 ± 0.015 0.460 ± 0.001 0.162 ± 0.158 0.531 ± 0.009

RF [11] 0.493 ± 0.021 0.468 ± 0.023 0.109 ± 0.029 0.535 ± 0.012

GraphDTA [23] 0.536 ± 0.015 0.496 ± 0.029 0.668 ± 0.001 0.472 ± 0.009

TransformerCPI [29] 0.597 ± 0.041 0.562 ± 0.031 0.670 ± 0.005 0.490 ± 0.027

MolTrans [30] 0.554 ± 0.024 0.511 ± 0.025 0.668 ± 0.001 0.470 ± 0.004

DrugBAN [31] 0.576 ± 0.023 0.535 ± 0.014 0.668 ± 0.002 0.471 ± 0.012

DrugBANCDAN [31] 0.604 ± 0.027 0.570 ± 0.047 0.675 ± 0.004 0.509 ± 0.021

CAT-DTI 0.636 ± 0.013 0.573 ± 0.020 0.688 ± 0.004 0.553 ± 0.024

CAT-DTICDAN 0.678 ± 0.005 0.626 ± 0.021 0.690 ± 0.004 0.572 ± 0.016
BioSNAP SVM [10] 0.602 ± 0.005 0.528 ± 0.005 0.400 ± 0.122 0.513 ± 0.011

RF [11] 0.590 ± 0.015 0.568 ± 0.018 0.018 ± 0.010 0.499 ± 0.004

GraphDTA [23] 0.618 ± 0.005 0.618 ± 0.008 0.672 ± 0.003 0.535 ± 0.024

TransformerCPI [29] 0.645 ± 0.022 0.642 ± 0.032 0.681 ± 0.009 0.558 ± 0.025

MolTrans [30] 0.621 ± 0.015 0.608 ± 0.022 0.675 ± 0.006 0.546 ± 0.032

DrugBAN [31] 0.630 ± 0.007 0.622 ± 0.018 0.671 ± 0.004 0.537 ± 0.034

DrugBANCDAN [31] 0.685 ± 0.044 0.713 ± 0.041 0.677 ± 0.010 0.565 ± 0.056

CAT-DTI 0.708 ± 0.008 0.718 ± 0.009 0.695 ± 0.008 0.618 ± 0.031

CAT-DTICDAN 0.729 ± 0.010 0.733 ± 0.016 0.699 ± 0.008 0.633 ± 0.021
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cross-domain DTI prediction problems. Compared with previous methods, CAT-DTI 
not only exhibits improved accuracy but also demonstrates strong cross-domain gen-
eralization capability. We attribute the superiority of CAT-DTI in cross-domain gen-
eralization to its unique framework design and the collaborative interaction of key 
components. The introduced cross-attention module enables CAT-DTI to simultane-
ously consider drug and protein features, establishing bidirectional information corre-
lation and aiding in a more comprehensive and accurate capture of interactions across 
different domains. This feature fusion method enhances the adaptability of CAT-DTI to 
diverse data distributions, thereby improving cross-domain generalization performance. 
Additionally, the protein feature encoder combines CNN and Transformer to provide 
CAT-DTI with comprehensive modeling capability for local and global information 
within protein sequences.

In recent years, domain adaptation techniques have attracted extensive attention in 
academia due to their excellent cross-domain knowledge transfer capabilities. In our 
work, we explore and improve cross-domain DTI prediction by combining CAT-DTI 
model with CDAN. As shown in Table 3, the proposed CAT-DTICDAN model has a sig-
nificant performance improvement after integrating the domain adaptation module. 
Specifically, compared with the CAT-DTI model, CAT-DTICDAN improves AUROC and 
AUPRC on the BindingDB dataset by 6.6% and 9.2% and also has a gratifying improve-
ment on the BioSNAP dataset. In order to more clearly observe the improvement effect 
of adding the domain adaptation module CDAN to CAT-DTI, we draw the prediction 
results of CAT-DTI and CAT-DTICDAN on BindingDB and BioSNAP datasets as radar 
charts, as shown in Fig.  3. In this way, we can more intuitively observe the positive 
impact of the CDAN module on cross-domain tasks. By reducing cross-domain dis-
tribution bias, CAT-DTI demonstrates a substantial enhancement in its generalization 
performance with the incorporation of the CDAN module. These experimental results 
further confirm the significant superiority of CAT-DTI in cross-domain generalization 
ability.

Fig. 3 Cross-domain performance comparison of CAT-DTI with and without CDAN module on BindingDB 
and BioSNAP datasets
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We analyze that the cross-domain generalization performance of CAT-DTICDAN has 
been improved is attributed to CAT-DTICDAN can better optimize feature alignment and 
effectively reduce the distribution differences between different domains after introduc-
ing the CDAN module. Through the adversarial learning mechanism, CAT-DTICDAN is 
able to adjust the feature representations of the source domain and the target domain 
to make them statistically more similar, thereby improving the model’s performance on 
the target domain. This domain adaptation mechanism enables CAT-DTI to better adapt 
to new and unseen domain data and enhances the generalization ability of the model. 
Specifically, the introduction of the CDAN module helps reduce domain differences and 
makes CAT-DTI more robust when processing new drug and protein interaction data, 
thus improving its prediction accuracy and adaptability.

Ablation experiments

To explore the effect of CNN combined with Transformer for protein feature extrac-
tion, DTI  feature captured by cross-attention module and domain adaptation module 
CDAN on model prediction performance, we perform ablation experiments. In the in-
domain task, we compare the experimental results of CAT-DTI with three variant mod-
els, including CAT-DTI using only CNN for protein feature encoder after removing the 
Transformer (i.e., Without Transformer), the model using only Transformer for protein 
feature encoder after removing the CNN (i.e., Without CNN) and the model remov-
ing the cross-attention module (i.e., Without cross-attention). In the cross-domain 
task, in order to evaluate the efficacy of CDAN, we compare the evaluation results of 
CAT-DTICDAN with CDAN module removed (i.e., CAT-DTI) and DrugBAN fused with 
CDAN (i.e., DrugBANCDAN ). The experimental results are illustrated in Fig. 4.

By analyzing the experimental results, we observed an enhancement in the predic-
tive performance of CAT-DTI when the model integrated the complete module, which 
confirms the effectiveness of the mechanism that combines CNN and Transformer for 
protein feature extraction, highlights the efficient interactive capabilities of the cross-
attention module, and indicates the improvement in cross-domain performance of CAT-
DTI with the introduction of the CDAN module.

Fig. 4 AUROC and AUPRC for random split and clustering-based split strategies on BindingDB and BioSNAP 
datasets
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Case study

In order to further verify the effectiveness of CAT-DTI, we selected two repre-
sentative targets for case study, namely P00519 (Tyrosine-protein kinase ABL1) 
and P35228 (Nitric oxide synthase, inducible). Based on the testing result from the 
test set of BindingDB, we select drug-target pairs containing P00519 and P35228, 
and then rank the candidate drugs for each protein in descending order according 
to their predicted interaction scores, choosing the top 6 for each target as depicted 
in Table  4. After detailed review, the drug and target pairs listed in the table have 
been confirmed to have interactions in the Drugbank database. Taking the example 
of the drug-target pair involving the target protein P00519 and its first candidate 
drug DB08901 (Ponatinib) from Table  4, the tyrosine-protein kinase ABL1 plays a 
pivotal role in various processes related to cell growth and survival. It coordinates 
actin cytoskeleton dynamics by regulating protein tyrosine phosphorylation. On the 
other hand, DB08901 (Ponatinib) is a novel Bcr-Abl tyrosine kinase inhibitor that has 
been proven to inhibit the tyrosine kinase activity of Abl and is used to treat chronic 
myelogenous leukemia. Therefore, the drug numbered DB08901 has been verified as a 
ligand for the target protein numbered P00519.

Table 4 Top-ranked list of predicted drugs for two proteins

Protein Drug Prediction score

P00519
(Tyrosine-protein kinase ABL1)

DB08901 1.0000

DB08896 0.9967

DB01254 0.9831

DB08350 0.9520

DB12267 0.9438

DB08043 0.9118

P35228
(Nitric oxide synthase, inducible)

DB07002 0.9930

DB02044 0.9912

DB07318 0.9862

DB07405 0.9810

DB09237 0.9444

DB07388 0.9293

Table 5 DTI prediction results for five drugs

Drug Protein Prediction score

DB00786 (Marimastat) P51512 0.9983

P08253 0.9935

P39900 0.9703

DB01254 (Dasatinib) P12931 0.9862

P00519 0.8722

DB06155 (Rimonabant) P21554 0.9990

DB00482 (Celecoxib) P35354 0.9980

DB00481 (Raloxifene) Q92731 0.9359
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Furthermore, we have selected additional 5 drugs to expand our case study, includ-
ing DB00786 (Marimastat), DB01254 (Dasatinib), DB06155 (Rimonabant), DB00482 
(Celecoxib), and DB00481 (Raloxifene). Based on the testing results, we once again 
selected drug-target pairs from the test set of BindingDB dataset that contain the 
aforementioned drugs and have higher predicted interaction scores, as shown in 
Table 5. Similarly, all drug-target pairs in Table 5 can be found in the DrugBank data-
base, indicating that evidence of interactions for these drug-target pairs can be found 
in the DrugBank database. For example, DB01254 (Dasatinib) is a tyrosine kinase 
inhibitor that can inhibit the activity of P00519 (Tyrosine-protein kinase ABL1) and 
P12931 (Proto-oncogene tyrosine-protein kinase Src).

The above cases demonstrate that our proposed CAT-DTI can effectively predict poten-
tial drug-target pairs, possessing the capability to identify potential candidate drugs and 
thus improving the virtual screening stage of drug discovery.

Conclusion
In this work, we propose a deep learning model named CAT-DTI, which is based on cross-
attention and Transformer to enhance the accuracy of predicting drug-target interactions. 
We employ GCN for extracting drug features, while the acquisition of protein target fea-
tures uses CNN combined with Transformer, which can not only capture local features of 
proteins, but also take into account global context information. The introduction of the 
cross-attention module effectively facilitated bidirectional feature interactions between 
drugs and proteins, leading to the extraction of more critical DTI features. Furthermore, 
with the help of CDAN, our model exhibits good adaptability and predictive performance 
in cross-domain task, which enhances the generalization performance of CAT-DTI. 
Compared with other state-of-the-art models and traditional machine learning models, 
experimental results show that CAT-DTI improves DTI prediction performance in both in-
domain and cross-domain setting, especially making promising progress in cross-domain 
prediction tasks.
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