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Abstract 

Background: Recent improvements in sequencing technologies enabled detailed 
profiling of genomic features. These technologies mostly rely on short reads which are 
merged and compared to reference genome for variant identification. These opera-
tions should be done with computers due to the size and complexity of the data. The 
need for analysis software resulted in many programs for mapping, variant calling 
and annotation steps. Currently, most programs are either expensive enterprise soft-
ware with proprietary code which makes access and verification very difficult or open-
access programs that are mostly based on command-line operations without user 
interfaces and extensive documentation. Moreover, a high level of disagreement 
is observed among popular mapping and variant calling algorithms in multiple stud-
ies, which makes relying on a single algorithm unreliable. User-friendly open-source 
software tools that offer comparative analysis are an important need considering 
the growth of sequencing technologies.

Results: Here, we propose Comparative Sequencing Analysis Platform (COSAP), 
an open-source platform that provides popular sequencing algorithms for SNV, indel, 
structural variant calling, copy number variation, microsatellite instability and fusion 
analysis and their annotations. COSAP is packed with a fully functional user-friendly 
web interface and a backend server which allows full independent deployment 
for both individual and institutional scales. COSAP is developed as a workflow manage-
ment system and designed to enhance cooperation among scientists with different 
backgrounds. It is publicly available at https:// cosap. bio and https:// github. com/ MBays 
anLab/ cosap/. The source code of the frontend and backend services can be found 
at https:// github. com/ MBays anLab/ cosap- webapi/ and https:// github. com/ MBays 
anLab/ cosap_ front end/ respectively. All services are packed as Docker containers 
as well. Pipelines that combine algorithms can be customized and new algorithms can 
be added with minimal coding through modular structure.

Conclusions: COSAP simplifies and speeds up the process of DNA sequencing analy-
ses providing commonly used algorithms for SNV, indel, structural variant calling, copy 
number variation, microsatellite instability and fusion analysis as well as their annota-
tions. COSAP is packed with a fully functional user-friendly web interface and a back-
end server which allows full independent deployment for both individual and insti-
tutional scales. Standardized implementations of popular algorithms in a modular 
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platform make comparisons much easier to assess the impact of alternative pipelines 
which is crucial in establishing reproducibility of sequencing analyses.

Keywords: NGS Analysis, Variant classification, Variant annotation, Copy number 
variation, Microsatellite instability

Background
Sequencing technologies become more accessible as they generate more data in less 
time for diminishing costs [1]. However, the computational requirements of processing 
NGS data are much higher than what most clinical facilities and biomedical laboratories 
have. The level of programming skills required for using mapping, preprocessing and 
variant calling algorithms efficiently is fairly high [2]. Furthermore, concordance among 
sequencing algorithms is limited especially for cancer sequencing [2]. There are many 
sequencing algorithms that can perform well in different settings and choosing the best 
combination of sequencing algorithms for a dataset is very difficult. It’s been shown that 
combining multiple algorithms improves performance and ensemble methods are devel-
oped along this aim [3, 4]. Despite this improvement, relying on a single combination 
that would work well for all possible scenarios is impossible considering the heterogene-
ity of applications in research and clinic.

There have been many previous successful efforts to provide researchers with flexi-
ble open source sequencing analysis pipelines and platforms. Galaxy [5] and Terra [6], 
which are the most commonly used platforms, harbors many of the commonly used 
algorithms for the analysis of genomics, metagenomics, transcriptomics as well as other 
omics data. Both platforms allow users to create and share workflows on the workflow 
hub. All that flexibility brings a steeper learning curve for beginners. Even though it is 
possible to deploy them locally, they are essentially used as cloud services. This brings 
a barrier for many users as local local regulations can be restrictive to share data with 
third parties over the internet. With the advancement of hardware acceleration technol-
ogy, especially GPU’s, the demand for local handling of the sequencing data is increas-
ing. These platforms are yet to respond to that demand. Moreover, provided variant 
annotations are very limited despite the platform being under development for years. 
Sarek [7] is another NGS analysis workflow which is built on Nextflow [8] workflow lan-
guage. It provides limited number algorithms for the detection and analysis of germline 
and somatic mutations. Also it does not have a user interface and backend to manage 
user files and runs. DNAScan [9] and Sequana [10] are other available predefined NGS 
analysis workflows. They have very limited interfaces just to upload data files and lack a 
broad range of algorithms for comparative analysis of variants. The Table 1 shows a sum-
mary of feature comparison of tools.

In order to address the above-discussed limitations of the sequence analysis tools, 
in this paper, we propose Comparative Sequencing Analysis Platform (COSAP) as 
an alternative analysis platform. COSAP offers multiple options for each step of the 
analysis pipeline and allows users to compare the effect of these choices by producing 
multiple VCF files each representing a particular combination. COSAP simplifies plan-
ning and running sequencing pipelines both for skilled developers and non-technical 
users. COSAP can run locally or be deployed on a server to be accessed by many users 
from their local devices via a web interface. Users can create desired pipelines from 
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pre-installed algorithms for mapping/aligning, pre-processing, variant calling and anno-
tation. COSAP first creates a template file that contains all of the information that is 
needed to execute every step. Execution can be done in two ways. First, most users can 
utilize COSAP’s user-friendly web interface to upload their files and run analysis by 
selecting dropdown menus, monitor the progress of running analyses as well as visual-
ize the results. Second, advanced users can take this a step further and use COSAP’s 
underlying Python API. This API allows the construction of more complex pipelines. 
New pipeline steps can be introduced by coding them into COSAP’s codebase with a 
streamlined process due to COSAP’s intuitive software design. Since constructing and 
running pipelines are decoupled, template files can be created from the API and then 
run from UI and vice versa.

Available tools
Fastq preprocessing and short read mapping

Preprocessing and quality checking of raw reads is the first step in most NGS analysis. 
Fastp [11] which is an all-in-one tool for fastq file quality control and filtering is used for 
these tasks in COSAP. For the short read mapping, BWA [12] and Bowtie2 [13] are the 
most commonly used tools and are available in COSAP. The newer and faster version of 
BWA is also included [14].

Aligned read preprocessing and filtering

There are several BAM preprocessing steps before variant calling recommended in the 
GATK Best Practices guidelines [15]. COSAP utilizes GATK4 [16] and Samtools [17] 
to handle these steps. Sort, index and mpileup commands from Samtools and, all tools 
from GATK are currently available.

SNV, Indel and structural variant discovery

Variant calling is one of the most extensively studied areas in the NGS research and a 
whole raft of variant callers are developed and utilized in the literature. Currently, 
COSAP supports 11 variant callers and 1 deep learning based variant refinement tool 
[18]. These callers are HaplotypeCaller [19], Varscan2 [20], Strelka2 [21], and DeepVari-
ant [22] for germline samples. The included somatic variant callers are Mutect2 [19], 

Table 1 Comparison of features of similar tools

Tool Scope Computing 
environment

User interface features Hardware acceleration

Sequana DNA-seq/RNA-seq Local Pipeline creation N/A

DNAScan DNA-seq Local Pipeline creation N/A

Sarek DNA-seq/RNA-seq Cloud/Local Pipeline creation N/A

Galaxy Extensive from 
genomics to 
metagenomics

Cloud/Local Pipeline creation and exten-
sive analysis on output data

N/A

Terra Bio DNA-seq/RNA-seq Cloud Pipeline creation and exten-
sive analysis on output data

GPU Acceleration via Clara 
Parabricks

Cosap DNA-seq Cloud/Local Pipeline creation and detailed 
inspection of results and 
reports

GPU Acceleration via Clara 
Parabricks
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Varscan2 [20], Varnet [23], MuSe [24], VarDict [25], Octopus [26], SomaticSniper [27]. 
The structural variants are called with Manta [28].

Variant annotation

The variant annotation is an essential step to extract meaningful information from 
the variant sets. Variants are annotated by using many tools depending on the sample 
type, variant type and the need of the researcher. COSAP supports Ensembl VEP [29], 
SnpEFF [30], Annovar [31] for functional annotations of SNV’s. The AnnotSV [32] is 
used to annotate structural variants and ClassifyCNV [33] is the tool of choice for anno-
tating copy number variations. Germline and somatic variants are automatically clas-
sified according to ACMG/AMP [34, 35]guidelines by InterVAR [36] and CancerVAR 
[37] accordingly. GenomeNexus [38] which is a tool to annotate variants from multiple 
sources is also available with COSAP.

Implementation

There is a plethora of NGS algorithms available for preprocessing, mapping, alignment, 
variant calling and annotation. Unfortunately, many of these algorithms are not well-
documented and new methods or algorithms are developed that fulfills various needs 
regularly. Therefore we developed a fully customizable and open source platform and 
integrated the popular algorithms into this platform. This level of customizability is 
achieved by several design decisions.

COSAP has been built around the principle of modularity of pipeline steps. Every step 
is abstracted into a Python class where the dependencies and algorithms involved in that 
step are all included. These Python classes work in sync with whichever algorithm or 
algorithms they need to call and only exit once the processes are either finalized or an 
exception is encountered. The encapsulation of all pipeline steps with identical method 
signatures means that can move blocks around and build complex networks of algo-
rithms without knowing the internal workings, like building Lego blocks.

COSAP comes with the most popular algorithms used around the built-in NGS pipe-
lines. This way for most use cases no new pipeline needs to be defined. These predefined 
steps are mainly targeted at somatic and germline pipelines. COSAP also includes pre-
defined libraries for exome and genome panels. Custom libraries can be added in any 
location as long as their path is known to COSAP. The available tools, their outputs and 
general workflow of the COSAP pipeline is shown in Fig. 1.

We also implemented fully functional web and backend applications as part of COSAP. 
The web application communicates with the backend via REST API. COSAP Docker 
containers are bound to the same storage with the backend and can work as celery work-
ers which consume messages from the backend application. There may be multiple 
workers on the network which brings scalability to the platform. The message queuing 
architecture is shown in Fig. 2.

Software design

COSAP is a Python based modular tool that is designed to create NGS pipelines. Each 
pipeline step (aligning, variant calling, annotation, etc.) is written in its own classes 
following an abstract format. This abstraction allows each step to be created and run 
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separately from each other. Custom steps can be written following the same abstract 
pattern. This means pipelines with any length and tool can be created like a graph. 
COSAP analysis consists of two major parts.

Fig. 1 Predefined pipeline steps have multiple algorithm/tool choices. The input and output of each step 
must be a list of files. The file names are for humans to understand, and steps know which file to read from a 
config file
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The first part contains the API that allows the user to define input files and pipeline 
steps, and then form one or more pipelines using these steps. The output of this creation 
is a pipeline state file in JSON format. This file contains all the information required to 
execute each step. It includes all input and inflight file names, location of algorithms and 
reference files, parameters for algorithms, timestamps and version information. The API 
has classes for complicated parameters to be passed along to algorithms and some pre-
defined classes that can create most commonly used pipelines with a single or few lines 
of code.

The second part handles the running of the pipelines. This accepts a pipeline state file 
which is created by the first step automatically or manually edited by hand. There are 
two essential ways that a pipeline state file can be run. The legacy method runs each 
pipeline step defined in the state file in a sequence. The second method uses Snakemake 
[39] to optimize the resource usage (CPU and memory) by running steps in parallel if 
their requirements are satisfied. These requirements are essentially sufficient resources 
being available for the step to be run and files needed by the step are finalized or ready. 
Explained in detail in the performance section.

The decoupling of these two parts allows them to be assigned to different systems. The 
creation of pipeline states is not a resource heavy operation and can be handled by a 
smaller server whereas the second part (execution) can be split into clusters.

Results
Performance

Executing NGS pipelines may require large amounts of processing time and optimizing 
pipelines to leverage the full potential of modern hardware is extensively studied in the 
literature. Currently, hardware based accelerations such as NVIDIA Clara Parabrics [40] 
and Illumina Dragen [41] offer the best performance in terms of speed. These claim up 

Fig. 2 COSAP Docker container as a celery worker which consumes pipeline messages from the backend 
application
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to 80 × speed gain over the baseline GATK [16] tools. They also don’t make a concession 
of variant calling accuracy as DRAGEN short-read call set was the top performer in Pre-
cisionFDAv2 [42] as well as other studies [43] and Parabricks performed comparably in 
the benchmark study of Franke et al. [44]. The main of this approach is the requirement 
of specialized hardware such as FPGA and GPU which are inaccessible to many users. 
Software optimizations mostly aim for algorithmic improvements and better utilization 
of the hardware by adapting modern dataflow architectures and hyperthreading and 
may reach up to 16 × speed gain [45–47]. The problem with that approach is the modi-
fications on the tools’ original code bases in order to make them compatible with other 
frameworks. These modifications are both error prone and forces users to stick to a spe-
cific version. In a previous study, Ahmad et al. [47] suggested that parallelizing GATK 
over RamDisk performed slightly worse than modified tools achieving ~ 3.5 × speed. 
Because of these reasons, we decided to utilize shared memory of Linux systems for in 
memory parallelization.

One of the most time consuming operations is the serialization and deserialization 
process, especially writing and reading files from the disks between pipeline steps. 
COSAP can be configured to use previously mentioned shared memory for these inter-
mediate files. This means pipeline steps still need to perform serialization but the in 
memory read write speeds are incomparably higher than of reading from a disk. This 
kind of approach has two caveats. First, the memory requirement for naive algorithms 
is already high. When this is used along with pipeline step parallelization, the mem-
ory requirement will be a lot higher. The second issue is in case of a system failure, the 
memory (hot storage) may lose the data and pipeline steps would have to be run again. 
COSAP circumvents the second issue by writing the file into disk in a parallel thread. 
This momentarily slows down the computational capability of the system as the default 
compression and serialization algorithms used, usually heavily relies on CPU. However, 
compared to the alternative this hold up is negligible.

The scatter–gather method utilized in the COSAP achieves significant performance 
gains even when run on slow disk (~ 800 MB/s) (Fig. 3). The speed increases by a fac-
tor of 2 when the COSAP DNA pipeline runs on a NVMe drive (~ 2.8 GB/s). Ramdisk 

Fig. 3 Performance of parallelized versions of the tools on different disk speed settings in comparison with 
the baselines
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performs the best in all parallelized tools with up to 8 × speed gain compared to default 
implementation of the tools. COSAP currently accommodates parallelized versions of 
Mutect2, HaplotypeCaller from GATK toolset as well as Varscan2 [20] and SomaticS-
niper [27]. Other available variant callers have built-in multithreading support. The per-
formance benchmarks are performed on an Intel Xeon E5-2680 v4 chip with 128 GB of 
memory using WES data from Sequencing Quality Control 2 [48] datasets with acces-
sion numbers of SRR7890850 and SRR7890851.

Python API

Python is a widely used programming language that can tackle both high and low level 
problems at the cost of performance in most cases. Since many of the applications and 
algorithms popular in NGS pipeline are coded in higher performing languages, Python 
language can be used to wrap around these libraries and only used for an adapter layer 
for enabling research. COSAP’s Python API allows Keras-like networks of NGS pipeline 
steps to be created. Custom or predefined pipeline step classes can be connected to cre-
ate these networks.

Comparing pipelines and benchmarking

COSAP’s comparison and benchmark module help users to analyze their pipelines 
deeper and finetune accordingly. Users may have different motivations to make com-
parison and benchmarking analyses such as ensuring the instrument is working as 
expected or targeted methods capture all of the variants in clinically relevant regions, 
as Olson et al. argues [49]. They also present an “Overview first, zoom and filter, details 
on demand” framework for variant visualizations. COSAP’s comparison module follows 
a similar path where it visualizes the overall pipeline intersection and similarity which 
gives general understanding. It also gives users an option to draw double and triple venn 
diagrams of the pipelines or tools of their choice. Figure 4 shows an example comparison 
of variant callers on previously described seqc2 WES data.

Depending on availability of the baseline variant set, COSAP can calculate precision 
and recall values to assess performance of each pipeline Fig. 5d. This option allows users 
to pick the best performing combination depending on their sensitivity and specificity 

Fig. 4 Upset plot depicts the intersection between variant sets of several variant callers, and variant allele 
frequency distribution of each intersection
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needs. When a genome stratification bed file is supplied, the comparison and bench-
marking module creates two of each graph enabling the user to see the effect of filtering 
on intersection and precision/recall values.

Lastly, the comparison module can create bed files for any intersection including TP, 
TN, FP and FN sets and load them into IGV along with vcf tracks for detailed inspection 
of variants which might be needed especially for indels and structural variants (Addi-
tional file 1: Fig. 1).

User interface

The user interface of COSAP is implemented as a web application using ReactJS and 
MaterialUI design components and hosted at cosap.bio/portal. Although it is suggested, 
users can discover the COSAP web application and utilize it without creating an account. 
It should be noted that the main purpose of cosap.bio is to demonstrate strengths of the 
application and when the demand is high there could be long waiting times for jobs to 
start. The interface provides an easy way of creating projects with the available tools and 
presents workflow results in an understandable way. With the help of backend services 
which are powered by Django-Python, users can inspect the results broadly and deeply, 
modify their results and save them for future analyses. The user interface is also packed 
with igvJS [50] to help users to visually inspect variants. The main page which displays 
available services and latest actions is depicted in Fig. 4. On this page, the user can select 
the analysis type and navigate through other pages.

Fig. 5 a Double venn diagram of chosen variant callers. b Triple venn diagram of chosen variant callers. c 
Jaccard similarities of each variant caller. d Precision and recall plot when ground truth set is available
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After selecting the analysis type, the user is directed to the project creation page 
where the name of the project, required files and desired algorithms are submit-
ted. An example somatic project creation page is shown in Fig. 5. This page slightly 
changes depending on the required files and algorithms by analysis types.

On the project listing page which is shown in Fig. 6, users can track status of pro-
jects and see their details. Navigation to the project creation page is also possible.

Once the project run is finished, the user can navigate to the project results page 
on Fig. 7. On this page, a summary of results which includes quality control statis-
tics, number of variants and MSI score is shown on top of the page. All the SNVs, 
INDELs, SVs, CNVs are listed on the page which allows users to filter the variants 
based on all available annotations. An example filter is shown in Fig. 8 (Figs. 9 and 
10).

Fig. 6 Main page of the web application where users choose the analysis they want to perform and see their 
recent activity

Fig. 7 Project creation interface to create projects with input files and desired algorithms
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Conclusions
COSAP enables technical and non-technical scientists to sequence and analyze DNA 
by predefined pipelines and with an easy to use UI. Among many other pipeline and 
sequencing platforms COSAP stands out with availability of comparative analyses, 
ease of use via the web UI, Python API and, reproducibility via Docker containers and 
pipeline config files. These design choices and good software practices remove obsta-
cles that come with a plethora of algorithms that are loosely meant to fit together. 
Automatic generation of command line arguments completely eliminates human 
errors such as overwriting existing results or running the same experiment twice.

Fig. 8 Interface to track status of projects and manage them

Fig. 9 Results page where basic stats of the run is displayed alongside with the detailed variant descriptions 
and classifications
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One of COSAP’s strengths lies in its software design. COSAP can be conveniently 
extended with future algorithms which means it will be very difficult for COSAP to be 
outdated. DNA sequencing requires a lot of computational power which is expensive 
and unaffordable for most research institutes. We have designed COSAP to be deploy-
able to every system possible with Docker containers. The container can be config-
ured to be run on a laptop or on a cluster of computers with a large pool of resources. 
Multi-container setup controlled by Celery allows multiple users to run sequences of 
jobs or a huge number of jobs to be queued and run automatically over an extended 
period of time. This can all be managed from a simple web app with very low resource 
requirements.

As the area of genomics is in its infancy, there are a lot of algorithms with eccentric 
configurations. COSAP handling the execution of all algorithms means each algorithm’s 
parameters, logging and error handling needs to be done for each algorithm. These algo-
rithms have a huge range of methods on these problems varying from logging every 
debug, info, warning and error to giving successful run results for failed runs. Some 
algorithms can even cause segmentation faults. As in its current state COSAP can’t han-
dle these types of problems. Another technical difficulty is to configure a cluster of com-
puters to run COSAP containers. There are many solutions for distributed systems and 
supporting all of them is an impossible task. Therefore, distributed systems and multi-
container setups require technical know-how.

In the future, addressing the problems mentioned above is a priority. Even though log-
ging and exception handling is a ceaseless hassle, it can be improved to make debugging 
more comfortable. Some examples regarding cloud setup aimed at helping configuring 
multi-container setups are also in the works. Along with examples of infrastructure-
as-a-code will be provided in order to make cloud deployment as painless and quick as 
possible.

Availability and requirements

Project name: COSAP.
Project home page: https:// github. com/ MBays anLab/ cosap
Operating system(s): Linux or Other via Docker.
Programming language: Python, JavaScript.

Fig. 10 Variant filtering example

https://github.com/MBaysanLab/cosap
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Other requirements: GATK Grch38 bundle and any other database access.
License: MIT.
Any restrictions to use by non-academics: None.

Abbreviations
COSAP  Comparative Sequencing Analysis Platform
NGS  Next generation sequencing
SNV  Single nucleotide variant
SV  Structural variant
CNV  Copy number variation
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