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Abstract 

Background: MicroRNA (miRNA) has been shown to play a key role in the occurrence 
and progression of diseases, making uncovering miRNA-disease associations vital 
for disease prevention and therapy. However, traditional laboratory methods for detect-
ing these associations are slow, strenuous, expensive, and uncertain. Although numer-
ous advanced algorithms have emerged, it is still a challenge to develop more effective 
methods to explore underlying miRNA-disease associations.

Results: In the study, we designed a novel approach on the basis of deep autoen-
coder and combined feature representation (DAE-CFR) to predict possible miRNA-
disease associations. We began by creating integrated similarity matrices of miRNAs 
and diseases, performing a logistic function transformation, balancing positive 
and negative samples with k-means clustering, and constructing training samples. 
Then, deep autoencoder was used to extract low-dimensional feature from two kinds 
of feature representations for miRNAs and diseases, namely, original association infor-
mation-based and similarity information-based. Next, we combined the resulting fea-
tures for each miRNA-disease pair and used a logistic regression (LR) classifier to infer 
all unknown miRNA-disease interactions. Under five and tenfold cross-validation (CV) 
frameworks, DAE-CFR not only outperformed six popular algorithms and nine classi-
fiers, but also demonstrated superior performance on an additional dataset. Further-
more, case studies on three diseases (myocardial infarction, hypertension and stroke) 
confirmed the validity of DAE-CFR in practice.

Conclusions: DAE-CFR achieved outstanding performance in predicting miRNA-dis-
ease associations and can provide evidence to inform biological experiments and clini-
cal therapy.
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Background
MiRNAs are endogenous 22 nucleotide-long noncoding RNA strands that are widely 
found in plants, viruses, animals and humans [1, 2]. They manipulate gene expression 
by base pairing with partially complementary mRNA [3, 4]. Mounting evidence points 
to miRNA’s vital role in various bioprocesses, such as immune response [5], cell pro-
liferation [6], tumor invasion [7], and metabolism [8]. Predicting novel miRNA-disease 
associations can aid understanding of complex disease mechanisms, which in turn can 
help to prevent, diagnose, and treat diseases [9, 10]. Additionally, understanding the 
role of miRNA on disease pathogenesis may contribute to the development of person-
alized medicines [11, 12], and advance medical progress overall. Given its significance, 
the identification of latent miRNA-disease interactions has become a prevalent area of 
academic research [13].

MiRNAs whose expression is associated with various diseases have been investi-
gated using biological experimental methods, such as quantitative reverse transcrip-
tion, microarray analysis, and deep sequencing [14]. However, biological experiments 
are slow, laborious, and costly, with uncertain outcomes. Using a large amount of lab-
oratory-generated data, researchers have constructed many computing models to infer 
underlying miRNA-disease interactions. Of those developed thus far, these computing 
models can be basically summarized into two types: network-based and machine learn-
ing-based approaches. Network-based approaches are mainly based on the biological 
hypothesis that functionally similar miRNAs prefer to associate with phenotypically sim-
ilar diseases and vice versa [15]. Chen et al. [16] presented a model named RWRMDA 
that used restart random walk to forecast miRNA-disease interactions. The authors 
applied global network similarity measurements for the first time and implemented a 
random walk on functional similarity network of miRNA. Gu et al. [17] designed a net-
work consistent projection method (NCPMDA) to infer possible miRNA-disease pairs 
using miRNA-disease association network, miRNA similarity network and disease simi-
larity network. Qu et al. [11] developed the KATZMDA model in which the KATZ algo-
rithm was applied to a heterogeneous network composed of the association network and 
integrated similarity networks. Dai et al. [18] proposed LWBRW to infer the potential 
miRNA-disease interactions, a model that operated a logistic function transformation 
on the similarity networks and then applied bi-random walks on the miRNA and disease 
network. Ha [19] introduced SMAP, an efficient computational strategy for identifying 
miRNA-disease pairs. This approach utilized existing miRNA-disease associations to 
construct the matrix factorization model, incorporating comprehensive similarity meas-
ures for both miRNAs and diseases.

Network-based algorithms can mine the unknown miRNA-disease relationships by 
extracting topological information from association and similarity networks. While 
they have been proven to be effective for analyzing small-scale data, their computational 
complexity increases substantially as the network scale expands [20]. Therefore, it can 
be challenging to apply network algorithms to large-scale data, such as those involving 
miRNA-disease associations, which can comprise a considerable number of nodes and 
edges. Additionally, it is difficult to acquire an accurate prediction of the overall asso-
ciations landscape because known associations are sparse in the network and limit the 
spread of information [21].
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Machine learning-based algorithms usually use known miRNA-disease associations 
as positive samples, randomly select some unknown associations as negative samples, 
and then predict the unknown associations using training classifiers. For example, Chen 
et al. [22] developed the RFMDA algorithm to infer miRNA-disease interactions, which 
reduced dimension of sample space using a filter-based approach, and finally employed 
the random forest (RF) classifier for training. In another model, Zhao et  al. [23] used 
k-means clustering to solve sample imbalance problem in data processing and then 
proposed the ABMDA model based on the Adaptive Boosting (AdaBoost) algorithm 
to forecast miRNA-disease interactions, which enhanced the classification accuracy. 
Zhou et  al. [24] proposed GBDT-LR, which balanced the positive and negative sam-
ples by using k-means clustering, then extracted the novel features using the Gradient 
Boosting Decision Tree (GBDT) method, and finally used the Logistic Regression (LR) 
classifier to infer the scores of each miRNA-disease pair. In recent years, deep learning 
technology has developed rapidly in the field of bioinformatics. Liu et al. [25] presented 
the DFELMDA method. The authors proposed a novel feature representation strategy 
and then employed deep autoencoder for low-dimensional feature extraction for each 
miRNA and disease. Finally, the model used RF classifier to predict novel miRNA-dis-
ease pairs. Chen et al. [26] developed the DBNMDA model using deep-belief network 
(DBN) to infer miRNA-disease associations, which contained two parts: pre-training 
restricted Boltzmann machines, and fine-tuning DBN. Ha et al. [27] presented a novel 
approach called NCMD for predicting miRNA-disease associations. This method uti-
lized node2vec to create low-dimensional vector representations of miRNAs and dis-
eases. It then incorporated a deep learning framework that combined the linearity of 
generalized matrix factorization with the nonlinearity of a multilayer perceptron (MLP). 
Although these machine learning algorithms performed well, there are still several 
drawbacks. For instance, in previous studies, selecting negative samples was a problem; 
acquiring the appropriate feature representation of each miRNA-disease pair for model 
prediction is challenging.

Building on previous studies, we introduce more effective biological information, con-
sider the problem of sample imbalance, and adopt a suitable feature representation strat-
egy to enhance the model prediction ability. For the manuscript, we built a deep learning 
framework using Deep AutoEncoder and Combined Feature Representation (DAE-CFR) 
to identify hidden miRNA-disease associations. First, according to the known miRNA-
disease associations, we computed the integrated similarity of miRNAs and diseases by 
employing the Gaussian interaction profile (GIP) kernel similarity and functional simi-
larity for miRNAs, and GIP kernel similarity along with two kinds of semantic similarity 
for diseases. After applying the logistic function transformation to the two integrated 
similarity matrices, we addressed sample imbalance using k-means clustering and sub-
sequently constructed training samples. Next, the deep autoencoder method was used 
to extract latent features for miRNAs and diseases, considering two types of features: 
the original association feature and similarity feature. Finally, we combined these latent 
features to form the feature representation for each miRNA-disease pair, which were 
then fed into the LR classifier to predict unknown associations, with model performance 
measured using five and tenfold cross-validation (CV). We compared DAE-CFR with 
six popular algorithms and nine classifiers, and the experimental results showed that 
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DAE-CFR performed excellently. Additionally, our model was validated on another data-
set to ensure its robustness. Case studies on myocardial infarction, hypertension and 
stroke further illustrated its effectiveness and practicability. The final pathway analysis 
confirmed its capability to identify disease-associated miRNAs, providing insights into 
their roles in diseases.

Materials and methods
Known human miRNA‑disease associations

The known associations between miRNA and disease were downloaded from the 
HMDD v2.0 database [28], in which the associations have been experimentally validated. 
After data cleaning, 495 miRNAs, 383 diseases, and 5430 associations were obtained, as 
reported in the reference [25] (see Additional file 1). Let nm and nd denote the quantity 
of miRNAs and diseases, respectively; A = {aij}nm×nd

 represents the association matrix, 
where aij is described below:

GIP kernel similarity of miRNAs and diseases

The GIP kernel similarity is a widely used metric in the biomedical field [29]. The asso-
ciation matrix has been used to calculate the GIP kernel similarity [30]. We calculated 
the GIP kernel similarity between miRNAs mi and mj using the following formulae:

where γm controls kernel bandwidth and IP(mi) denotes the i-th row of A . Similarly, 
for disease di and disease dj , the GIP kernel similarity is computed as below:

where γd controls kernel bandwidth and IP(di) represents the i-th row of AT . We set 
γ

′

m = 1 and γ ′

d = 1 according to the references [31, 32].

Functional similarity of miRNAs

According to the hypothesis that functionally similar miRNAs prefer associating with simi-
lar diseases, Wang et al. [33] calculated the functional similarity between miRNAs. These 
data can be downloaded from http:// www. cuilab. cn/ files/ images/ cuilab/ misim. zip. Let FM 
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http://www.cuilab.cn/files/images/cuilab/misim.zip
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denotes miRNA functional similarity matrix, in which the element FM(mi,mj) means the 
similarity value between miRNAs mi and mj.

Semantic similarity of diseases

We downloaded the relations of diseases from the Medical Subject Headings (MeSH) data-
base (http:// www. ncbi. nlm. nih. gov/) [33, 34]. Then, we constructed hierarchical directed 
acyclic graphs (DAGs), which are commonly applied to compute the disease semantic simi-
larity. For a given disease d, DAG(d) = (d,N (d),E(d)) , where N (d) denotes the node-set 
containing d, and E(d) represents the edge-set about d. Using two different methods from a 
previous study [35], we obtained two models of disease semantic similarity.

For disease t in DAG(d), its semantic contribution value to d is defined as

where � is the semantic contribution factor and is often set to 0.5 [33]. After traversing 
all nodes in N (d) , the calculation of semantic value of d is shown below:

For any two diseases di and dj , the more shared nodes in their DAGs, the more similar 
they are. Then the semantic similarity between di and dj is computed as follows:

However, for a given disease d, the contribution of the diseases in the same layer of the 
DAG(d) is different. If the disease t in the DAG(d) appears less in other DAGs, its contri-
bution to d is higher. Therefore, we adapted the model using another semantic similarity 
method [35] to represent t’s semantic contribution to d:

Similar to formulae (7) and (8), we obtained the following formulae:

Finally, to better describe the disease semantic similarity, the mean value of SD1 and SD2 
was calculated as follows:

(6)D1d(t) =

{
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(
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http://www.ncbi.nlm.nih.gov/
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Integrated similarity of miRNAs and diseases

Using the similarity matrices mentioned above, we built the integrated similarity matri-
ces of miRNAs and diseases, which denoted by SM and SD. SM is computed based on 
KM and FM. SD is computed using KD and SS. Therefore, the formulae for SM and SD 
are as follows:

Transformation of logistic function

Logistic function transformation has been performed successfully to adjust the similar-
ity [18, 36, 37]. The logistic function can make the small value weaker and the large value 
stronger, thereby providing more differentiated similarity information for subsequent 
predictions. The final integrated similarity of miRNAs and diseases are defined as below:

where c and d are the control parameters. In this study, we set c ∈ [−15,−1] , tuned with 
five and tenfold CV. d was set to log(9999) according to previous studies [18, 36, 37].

DAE‑CFR for identifying unknown miRNA‑disease interactions

To identify hidden miRNA-disease interactions, we developed a novel approach using 
deep autoencoder and combined feature representation (DAE-CFR). The entire compu-
tation process of DAE-CFR consisted of three steps (see Fig. 1).

Step 1 Data preprocessing.
We not only calculated similarity matrices LSM and LSD in the data preparation phase, 

but also constructed training samples. In this study, there were 189,585 miRNA-disease 
pairs consisting of 5430 known associations and 184,155 unknown associations. Here, 
known associations were defined as positive samples, whereas unknown associations 
were defined as negative samples. Since 184,155 ≫ 5430, there is a sample imbalance 
problem. To solve this problem, we introduced k-means clustering negative sampling, 
with k = 23 according to previous study [38]. First, we divided the negative samples into 
23 groups, without making changes to the positive samples. Then we randomly chose 
240 negative samples from each group so that the total number of all chosen negative 
samples was 5520, approximately equivalent to 5430. Overall, we obtained 10,950 train-
ing samples consisting of 5520 negative and 5430 positive samples.

(13)SM(mi,mj) =

{

KM(mi ,mj)+FM(mi ,mj)
2 , if FM(mi,mj) �= 0

KM(mi,mj), otherwise

(14)SD(di, dj) =

{

KD(di ,dj)+SS(di ,dj)

2 , if SS(di, dj) �= 0
KD(di, dj), otherwise

(15)LSM(mi,mj) =
1

1+ e(c·SM(mi ,mj)+d)

(16)LSD(di, dj) =
1

1+ e(c·SD(di ,dj)+d)
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Step 2 Feature extraction on miRNAs and diseases by deep autoencoder.
Based on the original association matrix A and the similarity matrices LSM and LSD, 

we obtained the feature representation. In this study, we considered two types of features 
for each miRNA and disease (see Table 1). The first type is the original association feature: 
IP(mi) represents the association information of miRNA mi related to all diseases and 

Fig. 1 Flowchart of DAE-CFR
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IP(dj) denotes the association information of disease dj related to all miRNAs. The second 
type is similarity feature: LSM(mi) represents the similar information of miRNA mi with all 
miRNAs and LSD(dj) denotes the similar information of disease dj with all diseases.

To represent the features more appropriately and reduce the computational complex-
ity for subsequent prediction, we applied autoencoder to extract the low-dimensional 
feature representation of miRNAs and diseases. Autoencoder is an unsupervised model 
to recognize implicit biological patterns [39]. The autoencoder includes two phases: the 
encoder and the decoder [25]. In the encoding phase, the original data with high-dimen-
sional features are compressed to low-dimensional features. In the decoding phase, the 
original inputs are reconstructed by mapping from the hidden layer to the output layer. 
The goal is to reduce the difference between the reconstructed and original data to a 
minimum. The autoencoder has a symmetric structure; that is, in the encoding phase, 
there are the same hidden layers as in the decoding phase. In this work, we used a deep 
autoencoder with three hidden layers to extract the latent and nonlinear features for 
each miRNA and disease. The deep autoencoder was implemented in the TensorFlow 
framework. The reduced dimensionality L of the latent features was set to 8, 16, 32, and 
64, and we chose the proper dimensionality by comparing the effects of different L val-
ues. We set the batch size to 100 and used the Adam optimizer.

Step 3 Combination of features for each miRNA-disease pair and prediction of 
unknown associations.

The low-dimensional and latent features of miRNAs and diseases were extracted by 
deep autoencoder in the last step, which we denoted as IP1(mi) , LSM1(mi) , IP1

(

dj
)

 and 
LSD1(dj) corresponding to the four features in Table 1, respectively. Then, we concat-
enated the four parts and obtained the feature representation for each miRNA-disease 
association as follows:

The dimension of Vec
(

mi, dj
)

 is 4L, as each part is L-dimensional.
Finally, the above constructed features for each miRNA-disease pair were entered into 

the LR classifier to infer possible associations. These associations were then ranked by 
their predicted scores, with higher scores giving a higher rank. Pairs with higher scores 
are considered more likely to exist.

Results
Performance evaluation

K-fold CV has been widely used to assess model performance. In k-fold CV, the dataset 
is divided into k equal parts at random, with one part for testing and the residual parts 

(17)Vec
(

mi, dj
)

= [IP1(mi), LSM1(mi), IP1

(

dj
)

, LSD1(dj)]

Table 1 Feature representation of each miRNA and disease

The type of features Feature representation Notation Dimension

miRNA mi Original association feature The i-th row of A IP(mi) 383

Similarity feature The i-th row of LSM LSM(mi) 495

disease dj Original association feature The j-th column of A IP(dj) 495

Similarity feature The j-th column of LSD LSD(dj) 383
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for training. Each part takes turns as a test set, and once all k parts have served as the 
test set, the average result of all k test sets is used as the final evaluation. Here, we used 
five and tenfold CV. AUC was used as the model evaluation index and AUC ∈ [0, 1] . A 
larger value of AUC indicates better model performance. Beyond AUC, we adopted sev-
eral well-established metrics. These include the F1 score, which balances precision and 
recall; Accuracy (ACC), indicating the proportion of correctly predicted observations to 
the total observations; Area Under the Precision-Recall Curve (AUPR), reflecting both 
the precision and recall of the model; and the Matthews Correlation Coefficient (MCC), 
for comprehensive class performance assessment. Together, these metrics offer a multi-
faceted evaluation of the model’s predictive performance and effectiveness.

Parameters analysis

There are two parameters in the overall model: c ∈ Z
− in the logistic function transfor-

mation and L ∈ Z
+ in the deep autoencoder. In this work, we considered the following 

value ranges: c ∈ [−15,−1] [18] and L ∈ {8, 16, 32, 64} , and repeated the experiment 10 
times. The grid search algorithm was adopted to choose the best parameter values. After 
performing the calculations and comparing the results, we obtained the optimal param-
eters for fivefold CV framework: c = − 8 and L = 8 (see Additional file 3: Table S1). In 
tenfold CV (see Additional file 3: Table S2), the best parameters were found to be c = − 8 
and L = 16. When c = − 8 and L = 8, the AUC value ranked second. Therefore, for the 
convenience, we set c = − 8 and L = 8 both in five and tenfold CV.

Comparison with other algorithms

To illustrate the excellent performance, DAE-CFR was compared with six popular algo-
rithms: ABMDA [23], GBDT-LR [24], DFELMDA [25], KATZMDA [11] NCPMDA [17], 
and LWBRW [18]. We chose specific parameter settings for each model as described in 
the original study and all model parameters were listed in Additional file 3: Table S3.

We conducted fivefold CV on the dataset and the AUC values are shown in Fig.  2. 
The AUC of DAE-CFR reached 0.9691, which exceeded the AUCs of other algorithms 
(ABMDA: 0.8831, GBDT-LR: 0.9364, DFELMDA: 0.9479, KATZMDA: 0.9034, NCP-
MDA: 0.8625, LWBRW: 0.9123). The results of all methods across various metrics 
were presented in Additional file  3: Table  S4. The table highlighted the best-perform-
ing values for each metric in bold. From this comparison, it was evident that DAE-CFR 

Fig. 2 ROC curves and AUCs of seven algorithms



Page 10 of 19Liu et al. BMC Bioinformatics          (2024) 25:139 

outperformed all other methods evaluated. We then performed tenfold CV and obtained 
the AUC values of 0.9701, 0.8688, 0.9357, 0.9488, 0.9044, 0.9092, and 0.9137 for DAE-
CFR, ABMDA, GBDT-LR, DFELMDA, KATZMDA, NCPMDA, and LWBRW, respec-
tively. Therefore, our proposed DAE-CFR method exhibited excellent performance both 
in five and tenfold CV.

In addition, to ensure the robustness of the results, we repeated the experiment 10 
times. The mean and standard deviation of AUCs for each method in five and tenfold 
CV were calculated and shown in Table 2. Here, DAE-CFR exhibited stable and superior 
performance compared to the six other methods, evidenced by low standard deviations 
and consistently higher AUC scores. This combination of reliability and effectiveness 
highlights its robustness in accurately predicting miRNA-disease associations, illustrat-
ing its value in biomedical research.

Comparison with other classifiers

In our model, we used LR classifier in the final step. To test the effectiveness of this 
choice, we replaced LR with the following nine common supervised learning classifi-
ers: K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), 
RF, GBDT, eXtreme Gradient Boosting (XGBoost), AdaBoost, Naive Bayesian (NB) and 
MLP. Through calculations and subsequent comparisons, we derived the AUCs for vari-
ous classifiers, as shown in Fig. 3. The computational results indicated that DAE-CFR 
outperformed the other nine classifier models, demonstrating that LR is particularly 
well-suited for DAE-CFR. We also repeated the experiment 10 times (see Table 3), and 
the results showed the stability of each method, further emphasizing the superiority of 
our method.

Table 2 Average AUCs of seven algorithms with 10 repeats

AUC (fivefold CV) AUC (tenfold CV)

DAE-CFR 0.9692 ± 0.0014 0.9696 ± 0.0012

ABMDA 0.8776 ± 0.0080 0.8639 ± 0.0080

GBDT-LR 0.9358 ± 0.0018 0.9362 ± 0.0017

KATZMDA 0.9032 ± 0.0005 0.9042 ± 0.0002

DFELMDA 0.9478 ± 0.0013 0.9484 ± 0.0020

NCPMDA 0.8638 ± 0.0014 0.9091 ± 0.0003

LWBRW 0.9130 ± 0.0004 0.9140 ± 0.0002

Fig. 3 The ROC curves of different classifiers
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Ablation study

In the work, we constructed the feature representation of each miRNA and disease 
using two types of features: the original association feature and the similarity feature. 
We compared DAE-CFR with the following two models: (1) a model with only the 
original association feature; (2) a model with only the similarity feature. The com-
bined information achieved the best performance in inferring the underlying miRNA-
disease pairs, as depicted in Fig.  4. Furthermore, the results confirmed the stability 
with 10 repeats (see Table 4).

In the paper, we conducted the logistic function transformation in the similarity 
calculation, greatly enhancing model’s performance. To illustrate this, we performed 
experiments without the logistic function transformation, as presented in Fig.  5, 
where DAE-CFR still performed best. The results with logistic function transforma-
tion in Fig. 4 surpassed those in Fig. 5, demonstrating the critical importance of the 
logistic function transformation in model building for better performance.

Table 3 Comparison of ten classifiers with 10 repeats

AUC (fivefold CV) AUC (tenfold CV)

LR (DAE-CFR) 0.9692 ± 0.0014 0.9696 ± 0.0012
KNN 0.9036 ± 0.0074 0.9082 ± 0.0050

DT 0.9243 ± 0.0041 0.9216 ± 0.0037

SVM 0.9649 ± 0.0014 0.9658 ± 0.0010

RF 0.9651 ± 0.0017 0.9617 ± 0.0018

GBDT 0.9644 ± 0.0022 0.9639 ± 0.0021

XGBoost 0.9642 ± 0.0015 0.9606 ± 0.0017

AdaBoost 0.9199 ± 0.0236 0.9148 ± 0.0197

NB 0.9619 ± 0.0011 0.9619 ± 0.0011

MLP 0.9435 ± 0.0231 0.9542 ± 0.0097

Fig. 4 The ROC curves in the ablation study

Table 4 The result of the ablation study with 10 repeats

AUC (fivefold CV) AUC (tenfold CV)

Only original association feature 0.9293 ± 0.0050 0.9330 ± 0.0039

Only similarity feature 0.9586 ± 0.0009 0.9583 ± 0.0011

DAE-CFR 0.9692 ± 0.0014 0.9696 ± 0.0012



Page 12 of 19Liu et al. BMC Bioinformatics          (2024) 25:139 

Robustness of DAE‑CFR on another dataset

To test its ability to maintain outstanding performance, we applied the DAE-CFR model 
to an additional dataset. For this validation, we utilized the HMDD v3.2 database [40] 
to extract known interactions between miRNAs and diseases. Following the data refine-
ment, a total of 8,968 known interactions involving 374 diseases and 788 miRNAs were 
selected, as detailed in the reference [41]  (see Additional file  2). Implementing the 
same experimental setup as before, the results shown in Fig. 6 indicated that DAE-CFR 
achieved an AUC of 0.9829 in fivefold CV, surpassing the AUCs of ABMDA (0.8567), 
GBDT-LR (0.9517), DFELMDA (0.9524), KATZMDA (0.9289), NCPMDA (0.8346), 
and LWBRW (0.9222). In tenfold CV, DAE-CFR reached an AUC score of 0.9840, out-
performing the AUCs of ABMDA (0.8858), GBDT-LR (0.9580), DFELMDA (0.9512), 
KATZMDA (0.9292), NCPMDA (0.8670), and LWBRW (0.9232). The superior perfor-
mance achieved on the HMDD v3.2 database highlights the consistency and robustness 
of our model.

Case studies

To further verify the accuracy and validity of DAE-CFR, we conducted case studies on 
myocardial infarction (MI), hypertension (HTN) and stroke. In the study, after calculat-
ing the predicted scores, we ranked all unknown pairs and listed the top 10 miRNAs for 
each of the three diseases in Table 5. Subsequently, the predicted miRNAs were verified 
using the RNADisease database [42].

MI is a significant component of the global cardiovascular disease burden, leading to 
increased hospital admissions and substantial financial implications all over the world 

Fig. 5 The ROC curves without the logistic function transformation in the ablation study

Fig. 6 The ROC curves of seven models using the HMDD v3.2 database
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[43]. MiRNAs have been found to be circulating biomarkers for the diagnosis and pre-
vention of MI [43–46]. The top 10 predicted MI-related miRNAs were shown in Table 5, 
with 9 out of 10 verified by the RNADisease database. The “unknown” miRNA hsa-let-7a 
maybe a MI-related biomarker. We conducted a literature search on PubMed and found 
two articles for hsa-let-7a related to MI. Du et al. [47] found that hsa-let-7a controls the 
expression of β1-AR and establishes a negative feedback mechanism within the β1-AR 
signaling pathway in cases of ischemic heart failure. This discovery offers a fresh per-
spective on the differences in β1-AR expression between the early and later stages of MI. 
According to Gan et al. [48], the circRNA-101237/let-7a-5p/IGF2BP3 axis, which plays 
a role in controlling cardiomyocyte death, presents potential as a promising therapeutic 
target for addressing cardiovascular diseases, including MI. These two clues imply that 
hsa-let-7a is a promising biomarker of MI and may be confirmed by further biological 
experiment.

The impact of HTN on public health and the economy is far beyond the scope of HTN 
treatment [49]. HTN, as a common chronic disease that affects the aging population 

Table 5 Top 10 miRNAs related to three diseases predicted by DAE-CFR

Diseases Rank MiRNA Predicted score Evidence

Myocardial Infarction 1 hsa-mir-146a 0.9895 RNADisease

2 hsa-mir-221 0.9867 RNADisease

3 hsa-mir-125b 0.9855 RNADisease

4 hsa-mir-145 0.9839 RNADisease

5 hsa-mir-17 0.9784 RNADisease

6 hsa-mir-16 0.9770 RNADisease

7 hsa-mir-222 0.9721 RNADisease

8 hsa-mir-200c 0.9711 RNADisease

9 hsa-let-7a 0.9709 Unknown

10 hsa-mir-181a 0.9664 RNADisease

Hypertension 1 hsa-mir-146a 0.9862 RNADisease

2 hsa-mir-34a 0.9821 RNADisease

3 hsa-mir-221 0.9815 RNADisease

4 hsa-mir-125b 0.9801 Unknown

5 hsa-mir-126 0.9752 RNADisease

6 hsa-mir-16 0.9686 RNADisease

7 hsa-mir-222 0.9623 RNADisease

8 hsa-mir-200c 0.9609 Unknown

9 hsa-let-7a 0.9607 Unknown

10 hsa-mir-143 0.9603 RNADisease

Stroke 1 hsa-mir-21 0.9995 RNADisease

2 hsa-mir-146a 0.9824 RNADisease

3 hsa-mir-34a 0.9771 RNADisease

4 hsa-mir-221 0.9759 RNADisease

5 hsa-mir-125b 0.9744 RNADisease

6 hsa-mir-126 0.9684 RNADisease

7 hsa-mir-20a 0.9640 RNADisease

8 hsa-mir-17 0.9624 RNADisease

9 hsa-mir-16 0.9598 RNADisease

10 hsa-mir-29a 0.9545 RNADisease
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[50], is a risk factor for many diseases including cardiovascular disease [51], chronic kid-
ney disease [52] and so on, which severely threatens human life and health. Several miR-
NAs have been identified as potential HTN biomarkers [53, 54]. In the study, 7 out of 
10 HTN-related miRNAs confirmed by the RNADisease database, as shown in Table 5. 
The “unknown” miRNAs (hsa-mir-125b, hsa-mir-200c and hsa-let-7a) may be novel 
biomarkers. We conducted a search on PubMed and identified one paper on hsa-let-7a 
related to HTN. Through an investigation into the roles of brain microvascular pericyte-
derived extracellular vesicle miRNAs in HTN, Wu et al. [55] identified specific miRNAs 
like miR-21-5p, let-7c-5p, and let-7a-5p that showed abnormal expression in spontane-
ously hypertensive rats compared to normotensive rats. This study sheds light on the 
connection between brain microvascular pericytes and HTN. It suggests that hsa-let-7a 
is a more likely biomarker for HTN.

Stroke is a significant global cause of both mortality and disability, affecting people 
worldwide [56]. Notably, 87% of all strokes are ischemic in nature [57]. Researchers have 
explored the potential of miRNAs as biomarkers for diagnosing, predicting outcomes, 
and assessing brain injury in ischemic strokes [58–60]. Here, we employed DAE-CFR 
to identify miRNAs associated with stroke and selected the top 10 candidates. Conse-
quently, all of the 10 miRNAs were confirmed by the RNADisease database (see Table 5).

Pathway analysis

Inspired by references [61] and [19], we recognized the importance of in-depth path-
way analysis in understanding the role of miRNAs in disease incidence. Therefore, we 
employed DIANA-miRPath v4.0 [62], an online platform for miRNA target and path-
way analysis, to explore the regulatory functions of miRNAs and their impact on various 
pathways, shedding light on their connections to diseases. Specifically, we illustrated, 
using stroke as an example, how the majority of miRNA targets identified through the 
DAE-CFR method are linked to biological processes and functionalities relevant to 
stroke. Details of the top 10 enrichment results for stroke-associated candidate miR-
NAs were listed in Table  6. Research has underscored the neuroprotective role of the 
PI3K-Akt signaling pathway in ischemic stroke [63]. Furthermore, an association has 
been found between hepatitis B virus infection and a decreased risk of ischemic stroke 
[64]. In Fig. 7, a heatmap was presented, created using miRpathDB v2.0 [65], to show 

Table 6 TOP 10 Enrichment results for Stroke-related candidate miRNAs

KEGG pathway p‑value

Pathways in cancer 1.24e-126

MicroRNAs in cancer 1.22e-86

PI3K-Akt signaling pathway 1.05e-72

Breast cancer 1.14e-70

Hepatitis B 1.22e-70

Pancreatic cancer 1.23e-70

AGE-RAGE signaling pathway in diabetic complications 1.27e-70

EGFR tyrosine kinase inhibitor resistance 1.08e-67

Proteoglycans in cancer 9.42e-67

Prostate cancer 3.76e-65
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the associations between miRNA targets and their respective pathways, where a darker 
shade indicated a stronger association with pathway functions. This pathway analysis 
not only validated the reliability and efficiency of the DAE-CFR method in identifying 
disease-related candidate miRNAs but also provided valuable insights into the role of 
miRNAs in diseases.

Discussion
In this study, we developed a novel deep learning framework DAE-CFR for predicting 
hidden associations between miRNAs and diseases. The computational results indicated 
that DAE-CFR achieved outstanding performance in both five and tenfold CV. There 
are several reasons why DAE-CFR performed excellently. First, we introduced more 
biological information into the model. We computed integrated similarity of miRNAs 
and diseases using two sources of miRNA similarity and three types of disease similar-
ity, respectively. Second, we applied the logistic function transformation to the two inte-
grated similarity matrices to improve the discrimination of the similarity information. 
Third, we adopted k-means clustering negative sampling, which is simple and efficient 
for large-scale datasets. Fourth, the use of deep autoencoder achieved feature dimen-
sion reduction and improved computational efficiency. We considered both the original 
association feature and similarity feature for miRNAs and diseases and found that the 
combined features outperformed the singular features in the ablation study. Due to all of 
these factors, our model significantly enhanced forecasting performance.

Despite its numerous strengths, DAE-CFR has limitations that require further explo-
ration and refinement. First, GIP kernel calculations are essentially based on current 
miRNA-disease associations. The limited number of known interactions could bias the 
predictive results. This scarcity of confirmed associations might lead models to over-
value the few recognized links, potentially neglecting unexplored or novel interactions. 
Second, we treated known associations as positive samples and considered all unknown 

Fig. 7 The heatmap of Stroke-related miRNAs
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associations as negative samples, facing the challenge of acquiring credible negative sam-
ples, inherently difficult to obtain in biological systems. This strategy may risk neglect-
ing or misclassifying potential interactions, further illustrating the limitations of relying 
only on known miRNA-disease relationships. Third, in our method, we did not consider 
how changes in the relationships between miRNAs and diseases might affect model per-
formance. This consideration is crucial for ensuring that our model remains effective as 
association data are updated. Forth, our analysis has focused solely on miRNAs as the 
biological determinant in disease pathogenesis, overlooking the roles of other biological 
entities, such as proteins and lncRNAs, which also influence disease mechanisms. Future 
research should not only extend this methodological framework to more miRNA-dis-
ease association datasets and more prediction challenges but also aim to include sensi-
tivity analysis to evaluate how variations in these associations affect model performance. 
Additionally, we plan to broaden the investigative scope to encompass a wider array of 
biological entities and their interactions. This comprehensive approach will enrich our 
understanding and enhance the accuracy of our predictions.

Conclusion
Previous studies have found that miRNAs are critical in disease processes. Inferring 
unknown miRNA-disease interactions can increase our understanding of the pathogen-
esis of complex human diseases, contributing to their prevention and therapy. In recent 
years, the identification of miRNA-disease associations has increased significantly owing 
to the growth of experimental technologies. However, laboratory methods can be time-
consuming and laborious. Therefore, many researchers have developed algorithms to 
forecast potential miRNA-disease pairs. In this research, we proposed the DAE-CFR 
method, which employs deep autoencoder for complex feature extraction and utilizes a 
combined feature representation technique. First, we computed the integrated similar-
ity of miRNAs and diseases using GIP kernel similarity, miRNA functional similarity, 
and two types of disease semantic similarity; applied the logistic function transforma-
tion to obtain the final integrated similarity; balanced the positive and negative samples 
by k-means clustering and then constructed training samples. Second, we used deep 
autoencoder to extract latent features from two types of feature representation for each 
miRNA and disease: the original association feature and the similarity feature. Finally, 
we combined these latent features to form the feature representation for each miRNA-
disease pair, and then applied the LR classifier to forecast unknown pairs. To verify 
the superiority of DAE-CFR, we compared it with six other popular models: ABMDA, 
GBDT-LR, DFELMDA, KATZMDA, NCPMDA, and LWBRW in five and tenfold CV 
frameworks, finding that DAE-CFR showed the best results with AUCs of 0.9691 and 
0.9701, respectively. In our model, we chose LR classifier in the final prediction, which 
was superior to the other nine common classifiers. Subsequently, the robustness was 
affirmed through its validation on another dataset. Furthermore, we conducted case 
studies on three diseases and found that the accuracy of the top 10 predicted miRNAs 
for MI, HTN and Stroke was 90%, 70% and 100%, respectively. The final pathway analy-
sis validated the DAE-CFR method’s effectiveness in identifying disease-related miRNAs 
and offered insights into miRNAs’ roles in diseases, enhancing our model’s predictive 
accuracy and biological understanding. In summary, DAE-CFR presented powerful 
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performance in identifying miRNA-disease associations, demonstrating its significant 
potential in the field.
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