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Abstract 

Background: With the rapid increase in throughput of long-read sequencing technol-
ogies, recent studies have explored their potential for taxonomic classification by using 
alignment-based approaches to reduce the impact of higher sequencing error rates. 
While alignment-based methods are generally slower, k-mer-based taxonomic clas-
sifiers can overcome this limitation, potentially at the expense of lower sensitivity 
for strains and species that are not in the database.

Results: We present MetageNN, a memory-efficient long-read taxonomic classi-
fier that is robust to sequencing errors and missing genomes. MetageNN is a neural 
network model that uses short k-mer profiles of sequences to reduce the impact 
of distribution shifts on error-prone long reads. Benchmarking MetageNN against other 
machine learning approaches for taxonomic classification (GeNet) showed substan-
tial improvements with long-read data (20% improvement in F1 score). By utilizing 
nanopore sequencing data, MetageNN exhibits improved sensitivity in situations 
where the reference database is incomplete. It surpasses the alignment-based Meta-
Maps and MEGAN-LR, as well as the k-mer-based Kraken2 tools, with improvements 
of 100%, 36%, and 23% respectively at the read-level analysis. Notably, at the com-
munity level, MetageNN consistently demonstrated higher sensitivities than the pre-
viously mentioned tools. Furthermore, MetageNN requires < 1/4th of the database 
storage used by Kraken2, MEGAN-LR and MMseqs2 and is > 7× faster than MetaMaps 
and GeNet and > 2× faster than MEGAN-LR and MMseqs2.

Conclusion: This proof of concept work demonstrates the utility of machine-learn-
ing-based methods for taxonomic classification using long reads. MetageNN can be 
used on sequences not classified by conventional methods and offers an alternative 
approach for memory-efficient classifiers that can be optimized further.
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Background
In recent years, there have been rapid advances in our understanding of microbial diver-
sity, the communities they form, and their impact on human health [1]. These have been 
enabled by the widespread use of high-throughput sequencing technologies, particularly 
by leveraging metagenomics to directly analyze a diverse pool of DNA and circumvent 
the limitations of microbial culture [2]. The resulting data then needs to be computation-
ally deconvolved to study the genetics of the organisms that gave rise to the DNA pool, 
with many bioinformatics tools designed to balance sensitivity, precision and resource-
intensiveness of the analysis [3].

Metagenomic analysis workflows follow one of two different paradigms: (1) de novo 
assembly and binning tools that help uncover genomes for further investigations when 
no prior knowledge of a microbial community is available, versus (2) taxonomic classi-
fication tools that match reads against a reference database and are used in applications 
where suitable references are available (e.g., pathogen detection), or where sequenc-
ing and analysis costs need to be reduced (e.g., for complex communities or large-scale 
clinical studies) [3–5]. The use of these paradigms is also dictated to an extent by the 
sequencing technologies employed, with taxonomic classification being more popular 
for short reads (<  300  bp, e.g., with Illumina sequencing) while longer reads (>  1  kbp 
using systems developed by Pacific Biosciences and Oxford Nanopore Technologies, 
ONT) are favored for de novo assembly [6]. As long-read technologies become more 
cost-effective and widely accessible, recent studies have also explored their promise for 
highly accurate and sensitive taxonomic classification (e.g., MEGAN-LR [7] and Meta-
Maps [8]). These have taken an alignment-based approach to reduce the impact of higher 
sequencing error rates (typically >1%) [6, 9]. However, alignment-based tools are gener-
ally slow and k-mer-matching tools, such as Kraken2 [10], can be used to overcome this 
limitation, but at the expense of relying on large databases. Additionally, benchmarking 
studies suggest that these tools do not generalize well for reads from genomes that are 
not in the database used, usually returning false positives from distant lineages [4].

An alternative paradigm for taxonomic classification, leveraging the strength of 
machine learning to generalize across data, is the use of deep-learning in methods such 
as GeNet [11] and DeepMicrobes [12] which were designed for accurate short reads. 
While these were innovative, they could not outperform exact k-mer matching tools 
[11–15]. The feasibility of designing machine learning-based methods that work with 
erroneous long reads and generalize well across genomes relative to other taxonomic 
classification approaches thus remains an open question.

In this work, we present MetageNN, a neural network taxonomic classification method 
robust to sequencing errors and missing reference genomes. MetageNN overcomes the 
limitation of not having long-read sequencing-based training data for all organisms by 
making predictions based on k-mer profiles of sequences collected from a large genome 
database. We use short k-mer-profiles that are known to be less affected by sequencing 
errors to reduce the “distribution shift” between genome sequences and noisy long reads. 
Comparisons using synthetic long reads demonstrate MetageNN’s efficiency and robust-
ness to sequencing errors relative to other deep-learning-based methods for taxonomic 
classification (GeNet and DeepMicrobes). Furthermore, in benchmarking experiments 
with ONT reads from bacterial isolates and pseudo-mock communities, MetageNN 
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outperforms alignment (MetaMaps and MEGAN-LR) and k-mer-based (Kraken2) clas-
sifiers in detecting potentially novel lineages (i.e. reads from species out of the database). 
Additionally, MetageNN is > 7× faster than MetaMaps and GeNet and needs < 1/4th of 
the memory required by Kraken2, MEGAN-LR and MMseqs2 for database storage.

These results demonstrate the feasibility of machine learning methods for taxonomic 
classification using long reads, enabling predictions for a large number of taxa with lim-
ited sequencing data and providing a sensitive classification of novel lineages while being 
memory-efficient.

Results
Setting parameters for the MetageNN model

We conducted several preliminary experiments to establish parameter choices for Meta-
geNN, using the “small database” (described in section “Databases”) to enable extensive 
testing.

K‑mer size analysis

Considering computational constraints and the fact that short-k-mers are more robust 
to sequencing errors, we tested k-mer sizes ranging from 3 to 6. Three training data-
sets were constructed consisting of 2000, 4000 and 6000 sequences per genome (1kbp 
sequences) and 200 sequences per genome were sampled for the validation dataset. 
MetageNN was trained on each dataset until convergence was reached on the valida-
tion dataset (early stopping to prevent overfitting). In order to assess k-mer robustness 
to sequencing errors potentially found in long-read settings, we introduced noise pro-
files similar to ONT sequencing into the validation dataset with the BadReads tool [16], 
resulting in a synthetic long-read test dataset (the test dataset has an average accuracy 
of 95% when aligned to reference genomes). As shown in Fig.  1a, MetageNN results 
improved with larger k-mers for both error-free sequences and synthetic ONT reads and 
benefitted from having more sequences for training, and correspondingly we set k-mer 
size to 6 and further explored the impact of genome coverage.

Coverage analysis

As training time could be a limiting factor for this problem, we sought to evaluate the 
amount of read coverage needed per genome for MetageNN’s performance to saturate. 
We created eight training datasets with increasing coverage (1× to 8×) per genome. We 
report F1 scores on the validation dataset of error-free sequences and synthetic ONT 
reads dataset (same as in K-mer size analysis). As seen in Fig. 1b MetageNN’s perfor-
mance starts to saturate from around 5× coverage in both settings. Therefore, Meta-
geNN trained with a 5× coverage and above per genome is a suitable setting when 
moving to the training using the “main database” (Databases).

Sequence length analysis

To evaluate the impact of sequence lengths on model training and performance, we cre-
ated five training datasets with fixed sequence lengths of 1, 3, 5, 7, and 10kbp, respec-
tively (1× coverage), with validation and test datasets with similar length profiles but 
fewer reads (200 per genome, error-free sequences).
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Training and testing MetageNN models independently for each dataset based 
on sequence length provided the results summarized in Fig.  1c. Overall, we found 
that the highest performance was achieved for test datasets with the same or longer 
sequences than the one used for training. It is interesting to note that the longer 
the sequence used for training, the lower the observed performance for shorter test 
sequences (similar to the trends observed in previous work [17]). Therefore, using 
a shorter sequence for training seems to have an advantage, potentially due to the 
sparseness of k-mer-profiles for shorter sequences. We noted that the sequence length 
bias could potentially be eliminated by training MetageNN using data for all sequence 
lengths available, resulting in the highest mean and median accuracy results across all 

Fig. 1 k-mer size, coverage and sequence length analysis. F1 scores for error-free sequences and synthetic 
ONT reads. a MetageNN results by increasing k-mer size and sequence samples. b MetageNN results by 
coverage used. c MetageNN results for F1 scores when trained on different sequence lengths. The rows 
indicate which sequence length the model was trained on. The columns represent the test datasets for each 
sequence length
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test datasets (Fig. 1c last row). However, a potential drawback of this approach is its 
requirement for more sequences and longer training time to ensure adequate perfor-
mance across different sequence lengths.

MetageNN is more effective and robust to sequencing errors than existing 

deep‑learning‑based taxonomic classification methods

Having established MetageNN building blocks (see “Setting parameters for the Meta-
geNN model”), we move on to benchmarking against existing taxonomic classification 
methods. First, we aimed to evaluate the efficiency and robustness against sequencing 
errors of MetageNN relative to existing deep-learning-based taxonomic classification 
methods.

Existing taxonomic classifiers based on deep learning were trained and tested using 
short-read data (Genet [11] and DeepMicrobes [12]). Nevertheless, we investigated 
if these methods can work with long-read data, starting with ideal conditions, i.e., 
error-free sequences to assess the scalability of training time and classification speed. 
We also assessed robustness to sequencing errors using synthetic long-read data with 
different error rates. By using these ideal conditions on the “small database”, we were 
able to avoid posterior training using millions of sequences from a large database 
of genomes since some methods may present an unfeasible training experience. We 
report the time taken to complete one training epoch, the classification speed, and F1 
scores on noisy synthetic ONT long reads of MetageNN and existing deep-learning-
based taxonomic classification.

Baselines

GeNet [11] is a convolutional neural network (CNN) based taxonomic classification 
model. In the first step, it employs a one-hot encoding strategy for DNA letters in the 
sequence, followed by sequencing embedding to learn representations of it, as well as 
a positional embedding approach (e.g., base positions are concatenated to the one-
hot encoding before being used as input to an embedding layer) [18]. The result of 
these two embeddings is the input to the CNN (ResNet architecture [19]). This strat-
egy is limited by its fixed read length k. In contrast to short-reads, which usually pre-
sent a fixed read length, long reads present read lengths ranging from a few hundred 
bases to thousands of kilobases [6]. Thus, information from sequences longer than k is 
ignored, while information from sequences smaller than k is padded in GeNet.

On the other hand, DeepMicrobes [12] is based on recurrent neural networks 
[20]. Specifically, this model uses a Bidirectional-LSTM [21] followed by a self-atten-
tion layer [22] to learn the feature representations, which are then used as inputs 
to a multi-layer feed-forward neural network. It encodes its input reads by divid-
ing them into fixed-size k-mers, then embedding each k-mer and using it as input 
to the Bidirectional-LSTM. Consequently, this approach may present slow training 
and inference for long reads since its forward and backward gradients’ steps depend 
on the read length that might reach thousands of bases for long-read sequencing 
technologies.
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Experimental setup

For our training data, we randomly sampled 1× coverage of sequences with a fixed 
length of 1kbp from the 47 genomes found in the “small database” (approximately 
235,000 sequences in total). Validation data was created in the same way as the train-
ing dataset, but with fewer samples (200 sequences per genome) and sampling using 
different seeds. GeNet, DeepMicrobes and MetageNN were trained and tested using 
the same machine (one GPU). We fine-tuned the baselines using the validation data-
set following the author’s recommendations for hyper-parameters in GeNet and 
DeepMicrobes and trained until convergence (early stopping based on validation 
loss). MetageNN architecture for these experiments is depicted in Fig. 5a, blue text.

In order to assess the model’s robustness to sequencing errors found in long-read 
settings, we used the BadReads tool [16] to create synthetic ONT long reads by intro-
ducing sequencing errors on the 1kbp sequences from the validation dataset. We 
generated three test datasets representing scenarios with low, moderate and high 
sequencing error rates (median accuracy 95%, 90% and 80%, respectively).

Results

Figure 2 summarizes the results. In spite of the different architectures and variety of 
parameters presented by GeNet (approximately 17 million trainable parameters) and 
DeepMicrobes (69.8 million trainable parameters), we were interested in how long 
it would take for these methods to complete their training epoch, given that once 
an architecture is selected the amount of training data can be substantial for a large 
database of genomes (millions of sequences). With this, GeNet underwent 48  s to 
complete one epoch round (Fig. 2a). DeepMicrobes is based on recurrent neural net-
works, which means that for each k-mer it will perform forward and backward prop-
agation. In these conditions, with a sequence length of 1kbp, this method required 
243 s, potentially making it computationally intractable for longer reads from a large 
database of genomes (Fig. 2a).

Furthermore, metagenomic sequencing experiments can contain millions of reads, 
thus classification speed (i.e., inference time) is an important metric. We measured 
the total number of sequences processed per second for existing methods using the 
same machine (no GPUs used). In this case, GeNet is faster than DeepMicrobes, with 
143 sequences per second compared to 19 for DeepMicrobes (Fig. 2b). These results 
corroborate that existing methods, such as DeepMicrobes or possibly methods based 
on recurrent neural networks, might not be feasible for long reads. In noisy test data-
sets (Fig. 2c–e), DeepMicrobes reported higher F1 scores than GeNet in all three set-
tings, but at the cost of classification speed and epoch run time (Fig. 2a, b).

Finally, we evaluated MetageNN (approximately 10.7 million parameters) in these 
same settings. MetageNN is based on short-k-mer profiles obtained from error-free 
training sequences (Fig.  5a). MetageNN presented the fastest epoch run time of 
approximately 20 s and a classification speed of 773 sequences per second (including 
k-mer counting time) (Fig. 2a, b). MetageNN also reported the highest F1 scores on 
the three synthetic ONT test datasets with a varying number of sequencing errors 
introduced.
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MetageNN presents a higher F1 score than GeNet, and it is more sensitive than MetaMaps, 

Kraken2, GeNet and MEGAN‑LR at the read level for bacterial isolates reads of species 

out of the database

In this section, we proceed to evaluate MetageNN and existing baselines (see “Base-
lines”) using the “main database” and ONT sequencing data derived from bacterial iso-
lates (see “Data”).

Baselines

We selected five taxonomic classifiers that are representative of different approaches. As 
alignment-based taxonomic classifiers methods designed for long-read technologies, we 
selected MetaMaps [8] and MEGAN-LR [7] (alignments to reference nucleotides were 
created with minimap2 [23] as proposed in [24] and named as MEGAN-LR-nuc in that 
work). According to two existing taxonomic classification benchmark analyses using long 
reads, MetaMaps delivered the lowest number of false positive results for pseudo-mock 
communities [4] and MEGAN-LR for empirical mock communities [24]. Although a tax-
onomy classifier for metagenomic contigs, we also included MMseqs2 (nucleotide-based 

Fig. 2 An analysis of existing deep-learning-based taxonomic classification methods and MetageNN for 
long-read settings. For each method, we a show the epoch run time elapsed and b display the inference 
time in reads-per-second. c, d and e show the results for F1 score on three test datasets simulating higher, 
moderate and lower rates, respectively. As compared to existing approaches, MetageNN has the shortest 
epoch run time, the highest speed and the highest F1 scores demonstrating its robustness to sequencing 
errors present in long-read data
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database) [25] as this tool was included in previous benchmarking for long-read data 
[24]. As a representative of k-mer matching methods, we selected Kraken2 [10], a widely 
used tool that can be applied to long-read data as well [26]. Finally, as a representative 
of deep-learning methods, we selected GeNet [11] as it provides a reasonable tradeoff 
between training and inference time.

Experimental setup

MetageNN was trained with a dataset having 8× coverage of genomes from the “main 
database” to predict the genus of origin for a read. For validation, we generated a dataset 
containing 200 sequences for each of the 516 genomes. To accommodate the complexity 
of the model that needed to be trained, MetageNN model’s capacity was approximately 
doubled in terms of the number of neurons per layer (Fig. 5a, green text). There were 
approximately 17 million samples in the training dataset. MetageNN was trained using 
four GPUs and converged (early stopping) after three days of training. To reduce training 
time and need for computational resources only 1kbp sequences (see “Sequence length 
analysis”) were used, and predictions on ONT reads were obtained by segmenting into 
non-overlapping 1 kbp chunks and using a majority voting strategy (tie broken by high-
est mean prediction probability). Then, predictions with a probability score greater or 
equal to 0.5 were considered as classified. MetageNN’s performance could therefore be 
improved further by direct training on reads with different read lengths (see “Sequence 
length analysis”).

GeNet was trained on the same training dataset as used by MetageNN. GeNet, in this 
case, also relies on a majority voting strategy and a probability threshold cutoff (0.5 as 
default). We extended GeNet to have a similar capacity (number of parameters) as Meta-
geNN so that the difference between the two methods is primarily in how they encode 
long reads. GeNet training converged in approximately six days with four GPUs. We 
fine-tuned the hyperparameters of GeNet and MetageNN using the 1× dataset (see 
“Coverage analysis”).

We built all non-machine-learning taxonomic classifier indices using the genomes in 
the “main database” and these tools were run using its default settings.

Evaluation metrics

We report classification performance in terms of sensitivity, precision and F1 scores. 
Specifically for each taxon, sensitivity describes the proportion of reads originating from 
it that is classified as such; precision indicates the proportion of correctly classified reads 
for that taxa, and F1 is the harmonic mean of precision and recall. With this, we report 
the average sensitivity, precision and F1 score across bacterial isolates per dataset tested. 
We also employed Wilcoxon’s Rank Sum Test to compare MetageNN’s performance rel-
ative to the baselines and report statistical significance for these comparisons.

Results for all genomes

In this section, we provide overall results involving both test datasets (“Species in the 
database” and “Species out of the database”). This scenario represents what may occur 
in metagenomic sequencing experiments in which species with reference genomes and 
those without are both present, though the relative proportions may vary. Figure  3a 
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presents the results. For F1 and sensitivity scores, MMseqs2 achieved the highest aver-
age with 0.85 and 0.81, respectively, followed by Kraken2 with 0.83 and 0.79, respectively. 
MetageNN presented significantly higher F1 and sensitivity scores when compared to 
GeNet. For precision MEGAN-LR presented the highest scores, while MetageNN sur-
passed GeNet.

Results for “Species in the database” settings

Here we present results based on the ONT read dataset “Species in the database” 
(described in “Data”). Results are presented in Fig. 3b.

As supported by previous benchmarking experiments [4, 27], alignment and k-mer-
based classification methods are effective in the scenario where the correct reference 
genome of interest is included in the database. Kraken2, MetaMaps, and MEGAN-LR 
presented the best average F1, sensitivity, and precision scores, outperforming Meta-
geNN, while MetageNN significantly improved over GeNet in all metrics tested.

Results for “Species out of the database” settings

Frequently the correct genome of interest may not be part of the reference database, and 
a classifier’s ability to appropriately handle this scenario is an important attribute (i.e., a 
taxonomic classifier tool may be able to identify its rank above, in the case of a species, 
its genus). In contrast to existing conventional tools, we hypothesize that MetageNN 

Fig. 3 Results at the genus level of taxonomic classification methods applied to ONT data. Bar plots (error 
bars represent standard deviation across ONT bacterial isolates) showing results for MetaMaps, Kraken2, 
GeNet, MEGAN-LR, MMseqs2 and MetageNN. Average values of sensitivity, precision and F1 are shown on the 
top along with statistical significance bars on top, where * stands for digits after the decimal p-value point i.e., 
“****” signifies 1e−4. a Results aggregating all ONT isolates tested. b Results for the “Species in the database” 
dataset. c Results for the “Species out of the database” dataset. Bottom: Results stratified by the number of 
species sharing the same genus. Results for d “exactly one”, e “two or three” and f “more than three” groups 
based on the “Species out of the database” dataset
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offers an advantage in this regard through its use of the generalization properties of neu-
ral networks and its formulation of using short k-mer profiles of 6mers, which can help 
learn features shared across members of a taxonomic group. Therefore, we report the 
results (Fig. 3c) on the test dataset “Species out the database”.

Overall, MetageNN presented the highest sensitivity scores along with MMseqs2, sig-
nificantly improving over MetaMaps, Kraken2, GeNet and MEGAN-LR by 100%, 23%, 
17% and 36%, respectively. In addition to significantly improving over MetaMaps and 
GeNet in F1 scores, MetageNN presented higher F1 scores than most tools, except 
MMseqs2. The precision scores for MetageNN were slightly lower (non-significant 
results except for MEGAN-LR) than those for MetaMaps, Kraken2, and MMseqs2, but 
higher than those for GeNet.

To further characterize these results, we stratified them into three groups based on the 
number of references available for the taxa being tested (Fig. 3, bottom). We noted that 
all tools had a lower performance for groups having three or fewer references (Fig. 3d, e). 
For the strictest setting of “exactly one” species sharing the same genus, MetageNN and 
MMseqs2 presented the highest F1 and sensitivity scores (with MetageNN significantly 
outperforming MetaMaps). Results for precision displayed MEGAN-LR outperforming 
all tools. For the group of “two or three”, the same trend of results was observed (Fig. 3e). 
Following that, all methods had their respective best results in the setting where there 
were “more than three” species per genus (Fig. 3f ). Potentially due to its generalization 
ability and reliance on short k-mer profiles that might be shared across genera, Meta-
geNN again achieved the best results, having the highest F1 and sensitivity scores of 0.88 
and 0.87, respectively (significantly higher when compared to MetaMaps, GeNet and 
MEGAN-LR for both metrics and when compared to Kraken2 for sensitivity scores).

In summary, MetageNN has notable utility in settings where the correct genome might 
not be in the database, providing an alternative to conventional tools such as MetaMaps, 
Kraken2 and MEGAN-LR which have lower sensitivity in these cases.

MetageNN is more sensitive than MetaMaps, Kraken2, GeNet and MEGAN‑LR 

at the community‑level for ONT pseudo‑mock communities

This section focuses on evaluating taxonomic classifiers on ONT pseudo-mock com-
munity samples. These communities, in contrast to the bacterial isolates in the previous 
section, are used to simulate metagenomic sequencing experiments and to report results 
at the community level (also known as detection-level) [4, 24].

Experimental setup

In order to obtain community-level results, we created ONT pseudo-mock communi-
ties from the reads of the bacterial isolates. Unlike experimental communities such as 
ZymoBIOMICS Microbial Community Standards1 with only 10 species, using pseudo-
mock datasets we can develop distinct community profiles with an increased and diverse 
number of species. We created 30 pseudo-communities consisting of ONT reads from 
species out of the database. The number of species in each pseudo-mock was randomly 

1 https:// loman lab. github. io/ mockc ommun ity/.

https://lomanlab.github.io/mockcommunity/
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selected between 20 and 34 species in the “Species out of the database” list and we sam-
pled a maximum of 100,000 reads log-distributed across the species (to reduce compu-
tational resources for some tools). We refer to this dataset as “Mock—Species out of DB”.

We tested the same tools used in Baselines (except GeNet due to its poor performance 
presented in Fig.  3) in the 30 pseudo-mock communities datasets. Following [24], we 
reported results using two approaches. The first one is the percentage of reads classified 
per tool (read classification). The second one is sensitivity, precision and F1 scores at the 
community level for the genus rank (i.e., the presence or absence of a genus based on 
a predefined threshold of cumulative read counts). We used a percentage threshold of 
0.001, 0.1 and 1% of the total number of reads in each dataset (which provides approxi-
mately 1, 100, and 1000 minimum reads per threshold). We also employed Wilcoxon’s 
Rank Sum Test to compare MetageNN’s performance relative to the baselines and report 
statistical significance for these comparisons.

Read classification results

We report the average percentage of reads classified for all mocks in Fig.  4a. Here, 
MetageNN outperformed all existing tools classifying 93.26% of the reads from species 
out of the database at the genus level. This result was followed by MMseqs2, Kraken2, 
MEGAN-LR and MetaMaps with 85.49%, 64.90%, 53.06% and 37.30%, respectively.

Community‑level results

We report in (Fig. 4b) the average sensitivity, precision and F1 scores at the community-
level for all pseudo-mock communities used. In this setting, MetageNN presented higher 
sensitivities (along with MMseqs2) for all thresholds and statistically outperformed Meta-
Maps and MEGAN-LR in all thresholds and Kraken2 for 0.1 and 1% thresholds. In terms 
of precision, MEGAN-LR delivered the best results at all thresholds, with MetageNN 

Fig. 4 Results at the community-level (genus) of taxonomic classification methods applied to ONT 
pseudo-mock community data. a Average percentage of reads classified per tool for all mocks. b Bar plots 
showing results for MetaMaps, Kraken2, MEGAN-LR, MMseqs2 and MetageNN. Average values of sensitivity, 
precision and F1 are shown on the top. Statistical significance bars are displayed on top, where * stands for 
digits after the decimal p-value point i.e., “****” signifies 1e−4
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outperforming MMseqs2 at 0.001 and 0.1%. Finally, for F1, MEGAN-LR delivered the 
best results for 0.001 and 0.1% with MMseqs2 showing the optimum F1 score for the 1% 
threshold, while MetageNN surpassed MetaMaps. These results are in agreement with 
(Fig. 3c) and demonstrate the utility of MetageNN in situations where the exact genome 
reference is not available, since MetageNN can detect more reads in this case.

MetageNN is faster and requires less storage than alignment and k‑mer‑based tools, 

respectively

In this section, we analyzed the memory requirements to store its database and the clas-
sification speed obtained by all baselines. Results are depicted in Table 1.

To classify many organisms, conventional taxonomic classification methods require 
large databases and computational resources. When selecting a tool, the memory needed 
to store its database is a critical consideration. For example, Kraken2 requires a large 
amount of memory due to its formulation of storing pairs of the canonical minimizers 
of k-mers and their lowest common ancestors. As a result, Kraken2 showed a memory 
requirement to store its database of 3.7 GB. Similarly, MetaMaps uses a reference data-
base of approximately 2.2 GB, followed by MEGAN-LR with 5.1 GB and MMseqs2 with 
27.8 GB to store its indices. Since MetageNN is a neural network model, its final product 
is its learned weights. In this context, MetageNN needed 0.839 GB, decreasing the mem-
ory requirements for database storage by 77%, 61%, 83% and 96% compared to Kraken2 
and MetaMaps, MEGAN-LR and MMseqs2 respectively. GeNet presented a similarly 
compact model with a memory requirement of 0.758 GB.

We also focussed on another important aspect of taxonomic classification tools i.e. clas-
sification speed. Due to the large volume of data produced by high-throughput sequenc-
ing technologies, this is an important feature to consider. In this study, MetageNN and 
existing tools were evaluated regarding the number of reads processed per second. We 
allowed four CPUs to be used by all tools as a representative of a commonly available sys-
tem. Kraken2, including its database loading time, delivers the highest number of reads 
processed per second, with 13,471 reads per second. MetageNN presented a rate of 1424 
reads per second, including its k-mer counting and dataset loading time. MetaMaps, a 
mapping tool, delivers a speed of 194 reads per second, followed by MEGAN-LR and 
MMseqs2 with 606 and 588 reads per second. GeNet, a CNN-based model, processed 
134 reads per second, providing the slowest tool among the ones tested, perhaps due to 
its execution on CPUs [28]. When considering the use of GPUs, deep-learning-based 
tools can offer a much higher speed but potentially at a higher cost for computing time.

Table 1 Memory requirements for database storage and speed for each method on ONT data

Bold values indicate the best performer

Method Memory (GB) Speed (reads/sec)

MetageNN 0.839 1424

GeNet 0.758 134

Kraken2 3.7 13.471
MetaMaps 2.2 194

MEGAN-LR 5.1 606

MMseqs2 27.8 588
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Discussion and conclusion
In this work, we explored the use of a machine learning approach for taxonomic clas-
sification of long-read data, and the need to address several challenges including the lack 
of training data for all species and the need to be robust to sequencing errors. Meta-
geNN uses short k-mer-profiles (6mers) and relies on the availability of large databases 
of genomic sequences to learn features that can be transferred to the taxonomic classifi-
cation of reads from long-read technologies.

We aimed to use a large training dataset of long-read-like sequences from genomes, 
and thus an architecture that would provide a feasible training time, reduced compu-
tational resources, and adequate classification speed is required. As a result, we dem-
onstrated the effectiveness of MetageNN’s architecture in comparison with more 
sophisticated existing deep-learning-based taxonomic classification methods. Further-
more, a taxonomic classification model should be robust to sequencing errors originat-
ing from long-read technologies. Using synthetic long-reads with different sequencing 
error rates, MetageNN surpassed existing deep-learning-based tools demonstrating its 
robustness to sequencing errors (Fig. 2).

We further trained MetageNN using a large dataset of approximately 17 mil-
lion sequences and performed a comprehensive evaluation against representative 
taxonomic classification methods using real ONT reads. As a whole, MetageNN 
yielded an F1 score that significantly improved over GeNet when evaluating over all 
genomes (Fig. 3a).We also demonstrated the utility of MetageNN when the reference 
genome of the organism of interest is unavailable. MetageNN was more accurate 
(highest sensitivity scores along with MMseqs2) in identifying taxa of interest rela-
tive to existing methods in our dataset of bacterial isolates (Fig. 3c). MetageNN also 
demonstrated the same trend when evaluated on pseudo-mock communities hav-
ing a higher sensitivity to all thresholds employed (Fig. 4b). Compared to MMseqs2, 
another tool with high sensitivity, MetageNN is memory-efficient, faster (Table 1), 
classified more reads (Fig. 4a) and is less prone to generate false positives (Fig. 4b, 
MetageNN displayed higher precision than MMseqs2 in more thresholds).

There are several possible ways in which MetageNN’s performance could be 
improved. Firstly, training using a range of read lengths would likely improve Meta-
geNN’s performance further in the “main database” setting and could bridge the gap 
observed relative to Kraken2 and MetaMaps when the genome of interest is in the data-
base (Fig. 3b). Combined with a feature selection step based on the initial list of kmers, 
this could further improve MetageNN’s performance. Another possibility is to bridge 
the distribution shift from genomes to error-prone reads by supplementing the train-
ing data with sequences that contain synthetically introduced errors during training. 
A further extension of this would involve applying domain adaptation ideas based on 
adversarial training [29] with bacterial isolate sequencing data being used for training.

Prior work for using machine learning in taxonomic classification either relied on 
testing with simulated reads [14, 15, 30] or did not show advantages compared to 
conventional k-mer-matching and mapping-based approaches and real data [11, 13].  
MetageNN is, to the best of our knowledge, the first machine learning-based method 
that shows improvements relative to conventional tools with real long-read data, 
when assessing performance for genomes that are not in the database.
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Due to its neural network formulation, MetageNN has a smaller memory require-
ment than conventional tools. However, MetageNN in its current unoptimized form 
was slower than Kraken2. There are some potential directions for improving these 
results, including pruning [31] and quantization [32], which would increase speed 
and decrease memory usage. For this proof-of-concept work, MetageNN was trained 
for hundreds of species, but future directions include expanding it to predict thou-
sands of species and exploring embedding-based classification to maintain memory 
efficiency [33]. In addition, assuming access to appropriate computational resources, 
GPUs could also contribute to an increase in MetaGeNN’s classification speed by a 
considerable amount, and could thus be an important future direction to investigate. 
Generally, MetageNN offers a useful tradeoff between good F1 scores (Fig. 3a), par-
ticularly for taxa for which we don’t have genomes, smaller memory footprint rela-
tive to conventional tools, and faster prediction speed compared to mapping tools. 
These results demonstrate the feasibility of using machine-learning-based methods 
to further improve taxonomic classification accuracy and sensitivity in challenging 
real-world settings. Additionally, this work complements previous benchmarking [4, 
24] for long-read taxonomic classifiers by exploring how existing methods perform 
for reads of species out of the database, a direction not explored previously. Apart 
from demonstrating MetageNN’s utility when conventional tools are unable to clas-
sify reads, the databases and carefully selected test datasets used in this study can be 
used for benchmarking to advance the application of machine-learning techniques 
for taxonomic classification.

Methods
MetageNN model

Machine learning has gained considerable popularity over the past few decades, with 
several breakthrough results observed in settings with a wide range of test domains 
with similar distributions of training data [34]. In the present case, to train a machine 
learning-based taxonomic classification method, we would ideally train on long-read 
sequencing data from all organisms of interest. For microbial genomes, this is not fea-
sible, as only a very small fraction of species have corresponding sequencing data, e.g. 
SRA2 has ONT data for only 489 unique bacterial species. In comparison, the RefSeq 
[35] database has complete genomes for > 6800 unique bacterial species (May 2022), 
potentially allowing for the detection of many more species when used for training. An 
even larger set of species have genomes if we consider draft genomes and metagenome-
assembled genomes [36]. Therefore, a major assumption behind MetageNN is that 
we can explore large genomic databases such as RefSeq, and leverage the information 
learned by transferring it for long-read taxonomic classification.

To overcome the distribution shift between relatively error-free sequences from 
genomes and reads from long-read technologies, we transfer the features learned from 
k-mer profiles (also known as k-mer counts) of sequences sampled from RefSeq and 
adapt them to potentially erroneous long reads. This adaptation is aided by the use of 
small values for k (e.g. 6), as such k-mer-profiles are more robust to sequencing errors 

2 https:// www. ncbi. nlm. nih. gov/ sra.

https://www.ncbi.nlm.nih.gov/sra
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(a single base error affects fewer k-mers). Furthermore, we hypothesize that using k-mer 
profiles can be a useful encoding strategy for long-read sequencing data as they are read-
length agnostic [6].

As training for a large number of genomes and corresponding sequence data can be 
computationally intensive, we investigated a straightforward and effective architecture 
for MetageNN, i.e., a three-layered feed-forward neural network with canonical k-mer 
profiles as input (accounting for different strands of sequencing reads [37]. We used 
the k-mer counting algorithm developed in [17] to enable rapid generation of k-mer 
profiles). For the network, while the first two layers of the network are used to extract 
features, the third layer was used to do multi-class taxonomic classification. To learn 
non-linear patterns, each layer in MetageNN is followed by a ReLU activation function 
[38]. To avoid overfitting, dropout [39] was applied to regularize the network. The model 
was trained using cross-entropy loss as follows:

where y represents the true values and yˆ the predictions. Figure 5 schematically illus-
trates the workflow for MetageNN. Relative to methods with more complex network 
architectures, MetageNN offered significant improvements in inference speed, training 
time, and accuracy (see “MetageNN is more effective and robust to sequencing errors 
than existing deep-learning-based taxonomic classification methods”), and hence we 
used this simpler architecture for the proof-of-concept results using longread sequenc-
ing data established in this study.

(1)LMetageNN = −

N

k=1

y log ŷ

Fig. 5 MetageNN framework for pre-training on long sequences from genomes and its direct application 
to long read data. a MetageNN utilizes the extensive collection of reference genomes available to sample 
long sequences. As a means of dealing with a different distribution of noisy long reads, MetageNN relies 
on computing short-k-mer profiles (6mers), which are more robust to sequencing errors and are used as 
input to the MetageNN architecture (gray rectangles represent layers). Parameters in blue are used for the 
small database and parameters in green for the main database (see “Databases”). A textual representation 
of activation functions and dropouts is provided between layers. b Once MetageNN training is completed, 
its learnt features are expected to be more robust to sequencing noise and thus can be directly transferred 
to long-read data (no fine-tuning needed). The classification of long-read data is based on a majority voting 
strategy



Page 16 of 18Peres da Silva et al. BMC Bioinformatics          (2024) 25:153 

Data
Test datasets

To evaluate MetageNN and existing tools on long-read sequencing data, we scanned 
NCBI’s Sequence Read Archive (SRA)3 for suitable ONT datasets (R.9.4.1 flow cell). For 
selecting bacterial isolates to download, we first identified those species with reference 
sequences (genomes) available in the NCBI RefSeq database.4 We then confirmed that 
the strain name for the sequenced isolates had a corresponding match among the refer-
ence genomes available. Finally, we ensured that the match was correct by assembling 
(Flye [40] followed by two rounds of polishing with medaka)5 the read data and verifying 
that the average nucleotide identity (ANI) to the reference was > 99% (using the fastANI 
tool [41]). Following this process, we obtained ONT reads and corresponding genomes 
for 81 bacterial strains. In our settings, these strains belong to only one species in our 
databases used and for the remaining work, we refer to these strains as species or bacte-
rial isolates. With this curated and verified list of ONT data, we developed two test data-
sets. The first dataset is to reflect the scenario in which the genome for a species is in the 
reference databases. We included reads from 47 species (out of 81) in this dataset that 
we refer to as the “Species in the database” dataset. The second dataset simulates the 
scenario in which the test reads are from a species whose genome is not in the reference 
database, referring to this as the “Species out of the database” dataset. In this case, we 
used the reads from the remaining 34 isolates. To reduce the computational resources 
required, we subsampled reads to have around 20,000 per bacterial isolate used. When 
evaluating taxonomic classifiers, these bacterial isolate-derived test datasets offer a con-
trolled environment for obtaining ground truth in different settings.

Databases

To perform a fair evaluation, all baselines used the same database of genomes. Here, we 
devised two lists of genomes to include in their respective databases. We refer to the 
first database as the “small database” and it includes only genomes of the 47 species (47 
genomes) listed in the “Species in the database” in the previous section (Test datasets). 
The purpose is to test various design choices for MetageNN’s model (see “Setting param-
eters for the MetageNN model”), to tune the hyperparameters for it, and to benchmark 
against existing deep-learning taxonomic classification methods which might otherwise 
be too computationally expensive to train and test on larger databases.

We refer to the second database as the “main database”. Here, we expanded the initial 
list of genomes from the “small database” approximately 10 times by randomly selecting 
additional genomes from the RefSeq representative genomes list. This resulted in a list of 
516 genomes (belonging to 505 species and 311 genera). We devised this database to be 
used by all taxonomic classification methods to report the results when tested for “Spe-
cies in the database” and “Species out of the database”.

3 https:// www. ncbi. nlm. nih. gov/ sra.
4 https:// www. ncbi. nlm. nih. gov/ refseq/.
5 https:// github. com/ nanop orete ch/ medaka.
.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/refseq/
https://github.com/nanoporetech/medaka
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