
MFSynDCP: multi‑source feature 
collaborative interactive learning for drug 
combination synergy prediction
Yunyun Dong1*, Yunqing Chang1, Yuxiang Wang1, Qixuan Han1, Xiaoyuan Wen1, Ziting Yang1, Yan Zhang1, 
Yan Qiang2*, Kun Wu3, Xiaole Fan4 and Xiaoqiang Ren4 

Introduction
In recent years, the field of malignant tumor biology has yielded a multitude of effec-
tive anticancer drugs. However, the inherent heterogeneity of tumors and the develop-
ment of drug resistance often render single-drug therapies targeting individual markers 
ineffective [1]. In contrast, drug combination therapies [2–4] have shown great poten-
tial to improve efficacy. By acting on multiple targets and pathways, they can effectively 
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improve efficacy, reduce side effects, and overcome drug resistance [5, 6] However, there 
is a risk of antagonistic interactions or severe adverse reactions with some drug combi-
nations, posing potential threats to patient health. Oncology, as one of the largest dis-
ease areas for global drug development, it has become particularly important to predict 
effective synergistic drug combinations from the huge number of anti-tumor drugs.

Traditional methods of predicting drug combinations primarily rely on numerous 
time-consuming and expensive clinical trials [7], which may cause patients to receive 
some unnecessary treatments and cause psychological or physiological harm. With the 
development of high-throughput drug screening technologies [8–10], researchers have 
accelerated the search for drug combinations with synergistic effects by using automated 
testing platforms and large-scale compound libraries to conduct extensive drug combi-
nation screening across hundreds of cancer cell lines. However, high-throughput drug 
screening methods are mainly based on in vitro cell models or animal models, and they 
ignore the complex interaction networks between drugs, biomolecules, and signaling 
pathways. These methods are unable to fully simulate the complexity of drug interac-
tions in the human body [11]. Additionally, it is impractical to screen all possible drug 
combinations using this approach [12].

Recently, the advancement of artificial intelligence [13] and the availability of large-
scale datasets have made it feasible to explore machine learning models [14–16] or deep 
neural networks [17] for drug combination predictions, which can reduce the cost of 
drug experiments while improving the prediction of synergistic effects of drug combi-
nations. Mei [18] proposed an independent machine learning framework to simulta-
neously predict synergistic, antagonistic, and additive effects of drugs. This framework 
represents drug pairs through simple graphs of drug-targeted genes and cellular pro-
cesses, thereby effectively explaining the molecular mechanisms behind drug inter-
actions and reducing data complexity. Janizek et  al. [19] utilized feature attribution 
methods, improving the quality of explanations by using a collection of interpretable 
machine learning models, and discovered hematopoietic differentiation characteristic 
drug combinations with therapeutic synergistic effects. Julkunen et al. [20] proposed a 
machine learning framework, comboFM, for predicting responses to drug combinations 
in preclinical studies. It models high-order tensor drug interactions specific to cellular 
contexts and uses powerful factorization machines to efficiently learn the latent factors 
of the tensor, predicting responses to new combinations in cells not yet tested. However, 
training a good machine model for the prediction of drug combination synergy tasks 
requires specialized domain knowledge and experience to manually select and construct 
relevant features [21].

The rapid development of deep learning has provided new possibilities for address-
ing these challenges. Deep learning models can automatically learn high-level abstract 
features from raw data [22], eliminating the reliance on manually designed features and 
better capturing complex relationships and nonlinear patterns in data. Various neural 
network models have been employed in the field of drug combination prediction. Preuer 
et al. [23] introduced a deep learning model named DeepSynergy, which uses chemical 
and genomic information as input and employs a normalization strategy to account for 
the heterogeneity of the input data. This was the first attempt to utilize deep learning 
in this field, and the performance of this model surpassed traditional machine learning 
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methods. Rafiei et al. [24] utilized multimodal deep learning and transformer for multi-
task predictions, including drug-target interactions, toxic effects, and synergistic effects 
of drug combinations. Yang et  al. [25] proposed a deep learning model called Graph-
Synergy, by adopting space-based graph convolutional network components and atten-
tion mechanisms, encodes high-order topological relationships in the Protein–Protein 
Interaction (PPI) network of protein modules. The approach focuses on identifying cru-
cial proteins involved in biomolecular interactions within the PPI network, as well as 
interactions between drug combinations and cancer cell lines, with the aim of predicting 
synergistic drug combinations. However, these methods primarily focus on separately 
extracting features from drug molecules and cell line structures, without adequately 
considering the integration of cell line-drug combination pairs. This leads to a limita-
tion in the model’s ability to learn associated patterns from the data. Additionally, these 
methods have certain limitations in focusing on important substructures within drug 
molecules, which may pose challenges to the biological interpretation of the predictions.

Based on the considerations mentioned above, we propose a model for predicting 
the synergy of drug combinations based on multi-source feature interactive learning, 
named MFSynDCP. Specifically, we introduce a deep graph attention neural network to 
automatically learn and extract high-dimensional features of drugs. Then, we propose 
an adaptive attention mechanism graph aggregation module to capture the drug sub-
structures that are most critical for predicting the synergistic effects of drug combina-
tions. Additionally, we introduce a multi-source feature interactive learning controller, 
which incorporates a parameter self-learning gating structure within the controller to 
regulate information transfer between different data sources, thereby flexibly handling 
diverse features. Finally, we compared our method with recent deep learning prediction 
models, and the results show that our approach, MFSynDCP, has significant advantages 
in predicting drug combination synergy compared to recent deep learning models. Spe-
cifically, our model exhibits superior accuracy, enhanced predictive capabilities, and 
increased stability.

Materials and methods
Dataset

We used the large-scale tumor screening drug combination dataset published by O’Neil 
et al. [26] in 2016 as our benchmark dataset. This dataset involves screening of 583 dif-
ferent combinations of 22 experimental drugs and 16 approved drugs across 39 cancer 
cell lines, comprising 23,052 triplets, each consisting of two drugs and a cancer cell line. 
The Loewe Additivity [27, 28] scores for each pair of drugs were calculated using the 
Combenefit tool based on the 4 × 4 dose–response matrix in the dataset. The effect of 
each individual drug at the same dose served as a baseline, and the scores for the syn-
ergistic or antagonistic effects of drug combinations were quantitatively calculated by 
comparing the effect of the drug combination with the expected additive effect. Accord-
ing to the Loewe scores, combinations with scores greater than zero were considered 
synergistic, while those with scores less than zero were considered antagonistic. Consid-
ering the presence of noise, which results in synergy scores close to zero, we adopted a 
more stringent threshold for finer classification of these combinations. We chose 10 as 
the threshold to classify the drug pair-cell line triplets, considering drug combinations 
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with Loewe scores above 10 as synergistic and those with scores below zero as antag-
onistic. Ultimately, a balanced benchmark dataset was obtained, comprising 12,415 
unique drug pair-cell line combinations, covering 36 anti-cancer drugs and 31 human 
cancer cell lines.

In this study, the SMILES (Simplified Molecular Input Line Entry System) sequence 
data of drugs [29] were sourced from the DrugBank database [30]. We obtained the 
SMILES expressions of the required drugs from the DrugBank database and used RDKit 
[31] to convert the SMILES sequences of the drugs into corresponding molecular graph 
representations. Drug compounds are viewed as graphical structures based on interac-
tions between atoms. The transformed molecular graphs depict the overall structure 
of the molecules through a series of atoms and bonds, illustrating the connections and 
spatial arrangement of atoms. In these graphs, vertices represent the atoms in the drug 
structure, and edges indicate the chemical bonds connecting these atoms.

In this paper, relevant gene expression data for cancer cell lines were obtained from 
the Cancer Cell Line Encyclopedia (CCLE) [32]. Considering factors such as gene length 
and sequencing depth, the gene expression data were standardized using Transcripts Per 
Million (TPM) [33] to normalize expression levels. This normalization process ensures 
more accurate and reliable comparisons between different genes and cell lines. By stand-
ardizing gene expression data in this manner, it becomes feasible to conduct in-depth 
analyses across various cell lines, facilitating a better understanding of the biological 
characteristics and behaviors of different cancer types at the genetic level.

MFSynDCP

Figure  1 illustrates the end-to-end learning framework MFSynDCP proposed for pre-
dicting the synergistic effects of drug combinations. The model comprises five parts: a 
feature extraction module for drugs (Fig. 1a), a feature extraction module for cell lines 
(Fig. 1b), a graph aggregation module based adaptive attention mechanism (Fig. 1c), a 
multi-source feature interactive learning controller (Fig.  1d), and a synergy prediction 
module (Fig.  1e). The process begins with the transformation of drug SMILES strings 
into molecular structure graphs using RDKit. The input layer receives the molecular 
structure graphs of two drugs, as well as the gene expression profiles of the cell lines 
affected by these drugs. A Graph Attention Network (GAT) extracts features from the 
nodes and edges of the drug molecular graphs. The design includes an adaptive atten-
tion mechanism graph aggregation module, which dynamically focuses on key informa-
tion within the drug pair and comprehensively captures important interaction features 
between the drugs. A Multi-Layer Perceptron (MLP) encodes the genomic features of 
cancer cells, utilizing nonlinear transformations and mappings to capture and extract 
potential gene expression information. To fully consider the intrinsic correlation and 
interaction between them, their feature vectors are concatenated and processed through 
a multi-source feature interactive learning controller. This controller efficiently han-
dles the concatenated feature vectors, delving into and conveying deeper-level features, 
ensuring the smooth integration of multi-source heterogeneous data. Finally, the pro-
cessed integrated features are passed through a linear layer to output the predicted syn-
ergy scores of the drug pairs. Based on predetermined thresholds, the model determines 
whether the drug combination has a synergistic or antagonistic effect.
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Drug feature extraction based on GAT 

We use the software RDkit to convert the drug’s SMILES string into a molecular 
graph, where nodes are atoms and edges are chemical bonds between atoms. The 
drug graph is defined as G = (V ,E) , with V  being a set of N  nodes each represented 
by a d-dimensional vector, and E as a set of edges represented by the adjacency matrix 
A of the drug molecule’s topological graph. xi ∈ V  represents an atom, and eij ∈ E 
represents a chemical bond between atoms. DeepChem [34], a cheminformatics soft-
ware package that provides tools and algorithms for processing and analyzing chemi-
cal molecule data, is used to calculate atomic properties in each node of the drug 
molecular graph as initial features. Each atom xi is represented as a vector [ xi1 , xi2 , 
… xi5 ], where the elements of the vector correspond respectively to the atomic sym-
bol, the number of adjacent atoms, the atom’s implicit valence, the count of adjacent 
hydrogen atoms, and the atom’s inclusion in a benzene ring structure.

When dealing with graph structures, traditional CNN models experience a sig-
nificant decrease in performance in Euclidean space. In the task of predicting drug 
combinations, extracting feature representations of drugs from chemical molecular 
graphs is necessary, but traditional convolutional networks are not up to the task. 
Given that Graph Convolutional Networks (GCN), typically used for processing 
graph structures, treat each neighboring node as equally important and fail to capture 

Fig. 1 The workflows of the MFSynDCP model framework process. Drug molecular graphs are generated 
based on the SMILES sequences of drugs, and their feature embeddings are obtained using a GAT. 
Additionally, feature embeddings of cancer cell line gene expression profiles are acquired using a MLP. The 
embedding vectors of the drugs and cell lines are then concatenated and input into a multi-source feature 
interactive learning controller for the fusion of multi-source features. Finally, the fused features are fed into 
the prediction module for predicting the synergistic effects of drug combinations
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the varying significance between nodes, we have adopted the GAT as the primary 
model for extracting drug molecular structure. By introducing graph attention lay-
ers in its architecture and utilizing a multi-head self-attention mechanism, the GAT 
learns advanced features of nodes in the graph. It dynamically allocates attention 
weights based on the relationships between nodes and their neighbors, thereby more 
accurately capturing the differences in importance between nodes and enhancing the 
representation capability of drug features.

For each vertex atom i in the transformed drug molecular graph, the correlation 
coefficient between each neighboring atom j ∈ Ni and the atom i itself is calculated 
individually.

The process of calculating the correlation coefficient as follows:

where W ∈ R
K ′×K  represents a weight matrix, and the attention mechanism a is a sin-

gle-layer feedforward neural network, parameterized by the weight vector −→a T
∈ R

2K ′ . 
The feature vector hi corresponds to the features of node i . The function || concatenates 
the transformed features of atoms i and j . Normalize the attention coefficients using the 
softmax function:

Based on the calculated attention coefficients αi,j , the features are weighted and 
summed up, and then processed through the activation function σd . This process results 
in new features for each atom node i after integrating the information from its neighbor-
ing atoms, using the multi-head attention mechanism, and the formula is as follows:

The proposed method for processing drug features allows for the simultaneous con-
sideration of various aspects of feature information from neighboring atomic nodes. It 
dynamically allocates weights based on the relationships between nodes, focusing more 
on drug structures that play a key role in the synergistic interaction of drug-drug com-
binations in specific cell lines. This approach captures the interactions between different 
atomic nodes in the drug molecular graph, enhancing the representation capability of 
drug features. This improved representation is crucial during the feature fusion process, 
as it allows for a more accurate consideration of the contributions of different neighbor-
ing nodes in the drug molecular graph. Consequently, this enhances the accuracy and 
reliability of drug synergy prediction tasks.

Adaptive attention mechanism graph aggregation module (AAGAM)

To better learn the interaction information between drug pairs and gain deeper insight into 
the impact mechanisms of drug structures on cancer cell genomes, we propose a graph 
aggregation module based on an adaptive attention mechanism. This module is designed 

(1)eij = a( Whi| Whj , j ∈ Ni

(2)
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to identify which drug substructures are more crucial for predicting the synergistic effects 
of drug pairs. By assigning attention scores to each substructure and performing a weighted 
summation of embedding vectors, the module reveals the molecular mechanisms under-
lying drug combinations’ resistance or sensitivity responses in cancer treatment. These 
insights deepen our understanding of drug interactions and enable more accurate predic-
tions of synergistic effects, we are able to not only extract interactive information between 
drug pairs but also identify the significant chemical substructures within drugs. As illus-
trated in Fig. 2, an attention score is assigned to each substructure of a drug. The module 
performs a weighted summation of the embedding vectors of all nodes, thereby obtaining 
an aggregated representation of the drug in graph form. This process allows for the extrac-
tion of interaction information between drug pairs and reveals the molecular mechanisms 
behind drug combinations’ resistance or sensitivity responses in cancer treatment. The 
attention scores for the drug pairs are calculated using specific formulas as follows:

(4)SA = softmax

(∑M

j=1
tanh(ElAiWk(E

l
BWq)

T), j

)

(5)SB = softmax

(∑N

j=1
tanh(ElBiWk(E

l
AWq)

T), j

)

(6)gx = multiply(SA, EAiWv)

(7)gy = multiply(SB, EBiWv)

Fig. 2 The calculation steps for the adaptive attention mechanism in graph aggregation. Taking drug A as an 
example, it involves a weighted summation of the embeddings of all nodes to compute the final graph-level 
representation of drug A
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where El
Ai and El

Bi represent the graph embedding matrices of drugs A and B from the 
last layer of the GAT, respectively. M and N are the number of nodes in drugs A and B, 
respectively. Wk and Wv are the feature matrices learned by drug A through two linear 
layers, while Wq is the feature matrix learned by drug B through a linear layer. Attention 
scores are used to assign weights to each node vector, with SA and SB being the calcu-
lated attention scores for drugs A and B, respectively. gx represents the weighted atten-
tion scores for Wv for drug A. Gx is the normalization of the sum of the average of El

Ai 
along the first dimension and gx , yielding the final graph-level representation. Similarly, 
Gy is the final graph-level representation for drug B, obtained by normalizing the sum of 
the average of El

Bi along the first dimension and gy.

Employing a MLP for cell line feature extraction

The CCLE gene expression profile we selected contains a wealth of gene information, 
making it challenging to construct a model that predicts synergy due to the high dimen-
sionality of the feature space. To address the dimensional disparity between drug and 
cell line feature vectors, we turned to the “Landmark gene set” provided by the LINCS 
project [35]. Subsequently, our focus shifted towards identifying genes that overlapped 
between the landmark gene set and the CCLE gene expression profile for further explo-
ration. Gene annotation information from the CCLE and the GENCODE [36] anno-
tation database was utilized to remove redundant data and transcripts of non-coding 
RNA. In the end, a total of 954 genes were chosen from the initial expression profile to 
serve as input for the model.

For the collected gene expression features of cell line XC , redundant gene data is 
removed using gene annotation information from the CCLE and GENCODE databases, 
ensuring the accuracy and reliability of the gene data. This results in a cell line feature 
matrix C ∈ R

S×U , where S is the number of cell lines and U is the dimension of features 
for each cell line. The latent features v ∈ R

V  of cell line C are captured through a qc-layer 
fully connected neural network, and the formula is as follows:

where Wqc
c  represents the learnable weight parameters of the qc layer, c is the gene 

expression data of cell line features, and tanh is the activation function. After processing 
through the MLP, a new feature matrix C ′ is obtained, which is dimensionally consistent 
with the extracted drug features, facilitating their subsequent fusion.

Multi‑source feature interactive learning controller (MFIC)

Due to the involvement of multi-source data in the concatenated drug embedding 
vectors and cell line feature embedding vectors, including drug structure, biological 
activity, cell response, gene expression, etc., simply concatenating these vectors may 

(8)Gx = norm
(
mean(EAi)+ gx

)

(9)Gy = norm
(
mean(EBi)+ gy

)

(10)v = tanh
(
. . . tanh

(
cW0

c

)
. . .W

qc
c

)
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not fully utilize the information from different data sources. Additionally, with the 
increase in network layers, the multitude of parameters can make the network dif-
ficult to train. To fully integrate and deeply mine the features of drugs and cell lines 
while accelerating network training, we propose a multi-source feature interactive 
learning controller. By introducing a gating structure into the network, it can con-
trol the flow of information between different data sources, flexibly handling various 
features. This approach better facilitates the fusion of multi-source data and ensures 
smooth data transmission across multiple layers.

As shown in Fig. 3, the multi-source feature interactive learning controller divides 
the input data into two parts: one part undergoes nonlinear transformation, and the 
other part can pass through the layer without transformation. Based on this, the 
received information is selectively transmitted between layers, reducing the number 
of training parameters. For the vector F after concatenating drug features and cell line 
features, by setting the transformation gatingG(F) , the model can effectively control 
two possible transformations, W  andT  , on the input feature vector F  through self-
learning. Specifically, G(F) is set as a sigmoid transformation gate, converting its input 
values into probabilities between 0 and 1 to control the flow of input information. 
When the sigmoid gate output is close to 1, most of the input information undergoes 
transformationT  ; when the sigmoid gate output is close to 0, it indicates that most of 
the input information undergoes transformationQ . To simplify the model, the final 
output formula is as follows:

where the transformation W  is set as a relu function, and the transformation Q is set 
to perform a linear operation on the input. y is the final output of the module, and the 
dimensions of F  , y , G , and Q are consistent. The addition of the sigmoid gating structure 
makes the form more flexible than the original, The simplified formula is as follows:

The transformation gate G automatically learns whether to use the relu function for 
transformation or to apply a linear operation in the current state. The Stochastic Gradi-
ent Descent (SGD) algorithm is used to adjust network parameters, as shown below:

where W  represents the weight parameters, η is the learning rate, N  is the number of 
samples per training session, θ are the network parameters, and xn and yn are the input 
and output, respectively.

The gating mechanism, as an alternative to simple vector concatenation, more effec-
tively utilizes information from multiple data sources such as drug structure, biologi-
cal activity, cell response, and gene expression. It flexibly handles different features to 
achieve the fusion of multi-source data. Furthermore, by introducing a gating structure, 
it addresses the issue of increased parameter quantity making the network difficult to 
train, thereby accelerating network training and enhancing model performance.

(11)y = G(F)×W(F)+ (1− G(F))×Q(F)

(12)y =

{
relu(F), if sigmoid(F) = 1
linear(F), if sigmoid(F) = 0

(13)Wt+1 = Wt + η
1

N

∑N

n=1
θ
(
−ynWtxn

)(
ynxn

)
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Predicting the synergistic effects between drug combinations and cell lines

In our model, we utilize a GAT and an adaptive attention mechanism to process drug 
embedding vectors, and a MLP to process cell line embedding vectors. These processed 
vectors are then concatenated to form a new vector. This concatenated vector is further 
refined through a multi-source feature interactive learning controller, ensuring smooth 
data transmission across multiple layers. The fused vector is then passed through an 
MLP and a softmax layer to generate a classification for the synergistic effects of the 
drug combination. This process is depicted in Fig. 1d.

During the training process of our model, ŷ represents the predicted synergistic score 
of the drug combination by the model, and y represents the actual synergistic score. We 
use cross-entropy as the loss function to measure the difference between predicted and 
actual values, and optimize the model’s performance by minimizing this loss function. 
The specific loss function is as follows:

During the model training process, each sample is passed twice through the same net-
work architecture, resulting in two different prediction outputs, ŷi1 and ŷi2 . The adoption 
of dropout mechanism leads to the random elimination of some neurons during the net-
work propagation. Consequently,  ŷi1 and  ŷi2 represent distinct prediction probabilities 
generated by the two different subnetworks formed by the network’s two passes. This 
methodological approach of employing dual sub-networks introduces variability in the 
predictions, which substantially aids in enhancing the model’s generalization capacity 
and reducing the risk of overfitting.

To regularize the predictions from the two sub-networks, we minimize the Kull-
back–Leibler (KL) divergence between their respective output distributions. The KL 
divergence quantifies the difference between the probability distributions of  ŷi1  and ŷi2 , 

(14)Li1 = −
[
yilogŷi +

(
1− yi

)
log

(
1− ŷi

)]

Fig. 3 The Data Processing Process of MFIC
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measuring how much one distribution deviates from the other. This regularization term 
encourages the two sub-networks to generate similar output distributions, promoting 
consistency and reducing uncertainty in the model’s predictions, as shown below:

Furthermore, the cross entropy loss takes into account both predictions ŷi1 and ŷi2 by 
averaging their combined values. The final loss function can be represented as follows:

where α is a learnable parameter. We consider both the prediction error and the differ-
ence between the model’s output distributions. By optimizing the final loss function, we 
encourage the model to better fit the training data, thereby improving the model’s gener-
alization ability and robustness.

Evaluation metrics

For the task of predicting drug combination synergy, the following metrics are used for 
evaluation: the area under the receiver operator characteristics curve (AUROC), the area 
under the precision − recall curve (AUPR), accuracy (ACC), balanced accuracy(BACC), 
precision (PREC), true positive rate (TPR), the Cohen’s Kappa value (KAPPA). ACC is 
used to describe the model’s ability to distinguish between synergistic and antagonistic 
drug combinations. BACC and KAPPA are two metrics that consider the model’s pre-
dictive ability for both synergistic and antagonistic drug combinations and are suitable 
for handling imbalanced datasets. TPR and TNR respectively represent the model’s pre-
dictive accuracy for positive and negative samples. PREC measures the accuracy of the 
model in predicting drug pairs as synergistic combinations. Generally, the higher these 
metrics, the stronger the predictive ability of the model. The calculation formulas for 
these metrics are as follows:

(15)KL(ŷi1||̂y
i
2) =

∑N

i=1
[(ŷi1)(log(ŷ

i
1)− log(ŷi2))]

(16)Li = 1/2[(Li1ŷ
i
1 + Li1ŷ

i
2)+ α(KL

(
ŷi1|

∣∣∣ŷi2
)
+ KL

(
ŷi2|

∣∣∣ŷi1
))]

(17)ACC =
TP+ TN

TP+ FP+ TN+ FN

(18)TPR =
TP

TP+ FN

(19)TNR =
TN

FP+ TN

(20)BACC =
TPR+ TNR

2

(21)PREC =
TP

TP+ FP
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where TP , FP , TN  , and FN  respectively represent the number of correctly identified 
synergistic drug combinations, the number of antagonistic drug combinations incor-
rectly identified as synergistic, the number of correctly identified antagonistic drug 
combinations, and the number of synergistic drug combinations incorrectly identified 
as antagonistic. po is the ratio of the number of correctly classified samples to the total 
number of samples for each category, i.e., the overall classification accuracy. pe is the 
ratio of the sum of the products of the actual and predicted quantities for each category 
to the square of the total number of samples, representing the rate of chance agreement. 
These metrics evaluate the model’s ability to accurately recognize different types of sam-
ples and the consistency of the labeling task, reflecting the overall performance of the 
model and helping us judge the reliability of the model in predicting the synergy of drug 
combinations.

Experiment implementation

We use an RTX Nvidia 3090 GPU and is based on the PyTorch framework for training 
and testing. The Adam optimizer is used to update the model parameters. In the experi-
ments, the batch size is set to 128; learning rate is set to 0.0001; dropout is set to 0.1; and 
cross-entropy is used as the loss function to measure the difference between the pre-
dicted results and the true labels.

Results and discussion
Performance comparison with other models

To evaluate the effectiveness of our model, it was compared with several existing meth-
ods on a benchmark dataset. These included methods based on machine learning for 
predicting drug combination synergy, such as Extreme Gradient Boosting(XGBoost), 
Random Forest(RF), Gradient Boosting Machines(GBM), Adaboost, Multilayer 
Perceptron(MLP), Support Vector Machines(SVM) and those based on deep learning, 
like DeepSynergy [23], TranSynergy [37], MGAE-DC [38], SDCNet [39], PRODeepSyn 
[40], DFFNDDS [41] and Deep Tensor Factorization(DTF) [42]. To delineate the distinc-
tions between MFSynDCP and other deep learning-based approaches, we make the fol-
lowing summary for each deep learning model:

• DeepSynergy: DeepSynergy is a deep learning model that utilizes the chemical prop-
erties of two drugs and the gene expression of a cell line to forecast synergy scores. It 
utilizes a feedforward neural network to capture the potential pharmacological syn-
ergy between combinations of drugs.

• TranSynergy: TranSynergy integrates a Self-Attention Transformer to analyze drug 
synergy. It leverages input features such as drug-target interaction profiles, gene 
expression, and gene dependency profiles to compute a synergy score indicative of 
the effect of drug combinations on cell lines.

• MGAE-DC: The MGAE-DC framework utilizes a multi-channel graph autoen-
coder approach, with three distinct input channels designed to capture the effects 
of synergistic, additive, and antagonistic interactions among drugs. By employing 

(22)KAPPA =
po − pe
1− pe
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a graph convolutional network, it acquires drug embeddings and applies an atten-
tion mechanism to amalgamate these embeddings across various cell lines, aiming 
to forecast drug synergies.

• SDCNet: SDCNet, a novel encoder-decoder architecture, is crafted to forecast 
cell line-specific Synergistic Drug Combinations (SDCs). It employs a Relational 
Graph Convolutional Network (R-GCN) for the acquisition and amalgamation of 
deep drug representations from various cell lines, utilizing an attention mecha-
nism to refine the learning of features.

• PRODeepSyn: The PRODeepSy model integrates protein–protein interaction (PPI) 
networks with omics data via Graph Convolutional Networks to predict antican-
cer drug synergies.

• DFFNDDS: DFFNDDS is a deep learning model that predicts synergistic drug 
combinations by integrating a fine-tuned pretrained language model with a dual 
feature fusion mechanism, merging drug and cell line features at both bit-wise and 
vector-wise levels. This innovative approach ensures DFFNDDS establishes itself 
as a dependable tool for identifying effective drug combinations.

• DTF: DTF integrates a tensor-based framework with deep learning techniques to 
forecast the synergistic effects of drug pairs, primarily utilizing tensor factoriza-
tion and a deep neural network for its predictions.

We divided the dataset into a training set and a test set, accounting for 90% and 10% 
of the data, respectively. Five-fold cross-validation was used in experiments on the 
training set, where training samples were randomly divided into five roughly equal 
subsets. Four subsets were used as the training dataset, and the remaining one served 
as a validation set for assessing the model’s performance and tuning the hyperparam-
eters. To further ensure the model’s generalization ability and prevent overfitting, 
early stopping was applied during the training process. Specific results are shown in 
Table 1.

Compared to other methods, our model achieved higher values in metrics such 
as AUROC, AUPR, ACC, BACC, TPR, KAPPA, indicating superior performance in 
the classification task of drug combination synergy prediction. Our model achieved 
an AUROC value of 0.930 ± 0.005, demonstrating a stronger ability to distinguish 
between synergistic and non-synergistic drug combinations. The AUPR value also 
reached 0.929 ± 0.005, indicating that the model maintains a high recall rate while 
achieving a high precision rate. In terms of the accuracy score (ACC), the model 
achieved a value of 0.855 ± 0.006, exhibiting higher accuracy compared to other meth-
ods. In terms of precision (PREC) and recall rate (TPR), the model reached a value of 
0.867 ± 0.012, signifying its ability to correctly identify drug combinations with syn-
ergistic effects. To address the issue of class imbalance between synergistic and antag-
onistic drug combinations in the dataset, balanced accuracy (BACC) and KAPPA 
coefficient were used as evaluation metrics and reached values of 0.863 ± 0.004 
and 0.709 ± 0.012, respectively. These performance metrics provided a comprehen-
sive evaluation of various aspects of the model. Here, it is noteworthy that MGAE-
DC, SDCNet and the classical machine learning methods, such as XGB, also obtain 
competitive performance, but nevertheless still inferior to our method. Overall, our 



Page 14 of 24Dong et al. BMC Bioinformatics          (2024) 25:140 

method achieves superior performance on most evaluation metrics compared to the 
advanced deep learning methods and classical machine learning methods.

To further confirm the statistical significance of the superiority of our model, we 
conducted t-tests for a statistical analysis on three important metrics: AUROC, 
AUPR, and ACC, comparing the performance differences between our model and 
other benchmark models. As shown in Table 2, the obtained p-values consistently fall 
below the standard significance level of 0.05, indicating that our model significantly 
outperforms all compared models in a statistical sense. These results further show-
case the exceptional performance of our model, MFSynDCP, on the aforementioned 

Table 1 Performance comparison of MFSynDCP and competitive methods on fivefold cross 
validation

Methods AUROC AUPR ACC BACC PREC TPR KAPPA

Ours 0.930± 0.005 0.929± 0.0050.855± 0.006 0.855± 0.006 0.867± 0.0120.863± 0.004 0.709± 0.012

MGAE-DC 0.922± 0.0050.675± 0.010 0.851± 0.012 0.778± 0.0050.723± 0.006 0.562± 0.003 0.603± 0.012

SDCNet 0.921± 0.007 0.920± 0.0050.846± 0.007 0.832± 0.005 0.871± 0.0050.795± 0.002 0.678± 0.008

DFFNDDS 0.912± 0.003 0.882± 0.0050.821± 0.007 0.811± 0.0030.821± 0.017 0.831± 0.013 0.661± 0.021

XGBoost 0.921± 0.005 0.922± 0.0050.844± 0.0050.844± 0.0050.843± 0.007 0.840± 0.002 0.688± 0.009

PRODeep-
Dyn

0.899± 0.0050.922± 0.006 0.853± 0.007 0.853± 0.0050.859± 0.007 0.856± 0.012 0.703± 0.003

TranSynergy 0.896± 0.007 0.892± 0.006 0.827± 0.013 0.827± 0.0130.842± 0.006 0.801± 0.003 0.642± 0.013

DTF 0.892± 0.009 0.881± 0.0080.814± 0.0090.814± 0.009 0.822± 0.008 0.772± 0.0310.633± 0.042

DeepSyn-
ergy

0.881± 0.0050.874± 0.009 0.803± 0.007 0.803± 0.007 0.814± 0.0110.752± 0.009 0.591± 0.048

GBM 0.852± 0.010 0.850± 0.0070.772± 0.010 0.772± 0.010 0.773± 0.0080.745± 0.014 0.544± 0.020

Random 
Forest

0.861± 0.0100.850± 0.014 0.783± 0.012 0.783± 0.0120.794± 0.016 0.751± 0.022 0.566± 0.024

Adaboost 0.828± 0.007 0.832± 0.010 0.743± 0.009 0.743± 0.009 0.746± 0.0120.728± 0.006 0.486± 0.018

MLP 0.652± 0.024 0.640± 0.033 0.557± 0.0450.560± 0.0430.531± 0.0420.924± 0.134 0.119± 0.085

SVM 0.586± 0.011 0.563± 0.0110.542± 0.010 0.540± 0.0100.534± 0.016 0.502± 0.067 0.081± 0.020

Table 2 P-value comparison of MFSynDCP and comparative methods using t-test

Methods p‑value t‑test of AUROC p‑value t‑test of AUPR p‑value t‑test of ACC 

MGAE-DC 7.28× 10
−3

7.73× 10
−27

4.72× 10
−3

SDCNet 4.42× 10
−2

5.13× 10
−3

3.56× 10
−5

DFFNDDS 2.13× 10
−6

1.01× 10
−11

5.03× 10
−13

XGBoost 1.36× 10
−3

4.87× 10
−4

1.22× 10
−5

PRODeepDyn 7.22× 10
−9

3.73× 10
−3

6.71× 10
−3

TranSynergy 9.63× 10
−9

7.67× 10
−12

1.15× 10
−3

DTF 8.72× 10
−10

3.25× 10
−12

1.71× 10
−10

DeepSynergy 5.34× 10
−13

4.69× 10
−13

3.28× 10
−15

GBM 3.19× 10
−13

7.21× 10
−16

7.98× 10
−16

Random Forest 6.01× 10
−13

3.54× 10
−10

1.66× 10
−13

Adaboost 3.37× 10
−14

9.82× 10
−16

5.16× 10
−17

MLP 9.69× 10
−18

8.65× 10
−20

1.77× 10
−13

SVM 6.76× 10
−24

1.49× 10
−24

1.52× 10
−25
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performance metrics, validating its effectiveness in predicting synergistic cancer drug 
combinations.

In the experiments, selections were made for hyperparameter values, including the 
learning rate, dimension of the GAT layer, dropout ratio, and batch size. Notably, when 
the learning rate was set to 0.001, the dimension of the GAT layer to 64, the dropout 
ratio to 0.1, and the batch size to 128, the model was more effective in extracting drug 
features. This combination of parameters not only improved the model’s performance 
on the training set but also demonstrated good generalization ability on the validation 
set. Further, it was found that fine-tuning the dimension of the GAT layer significantly 
impacts the model’s sensitivity in handling complex drug molecular structures. An 
appropriate dropout ratio helps prevent overfitting, ensuring the stability of the model’s 
training.

Evaluation on independent test dataset

To further validate the generalization ability of our model on new datasets, the study 
also employed a large drug combination dataset released by AstraZeneca [43] in 2019 
as an independent test set to evaluate the performance of MFSynDCP and other bench-
mark methods. This dataset is the result of the AstraZeneca-Sanger Drug Combination 
Prediction DREAM Challenge, a collaboration between AstraZeneca and the Sanger 
Institute, aimed at exploring fundamental characteristics of effective combination ther-
apy and synergistic drug behavior. The dataset consists of 668 novel drug-drug-cell line 
triplets, comprising 57 drugs and 24 cell lines.By training on the benchmark dataset and 
testing on this independent test set, as shown in Fig. 4, our model demonstrated favora-
ble performance, correctly predicting 492 drug combination pairs. Moreover, our model 
outperformed other comparison methods across all evaluation metrics.

To more intuitively demonstrate the effectiveness of our model, we selected three 
deep learning approaches and four machine learning methods for the plotting of ROC 
curves, as shown in Fig.  5. The graphical representation clearly illustrates that our 
model achieved a significant AUROC score of 0.701± 0.12 , surpassing other competing 

Fig. 4 Performance of MFSynDCP and its variants on the independent test dataset released by AstraZeneca
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models. In contrast, the ROC curves of some benchmark models closely resembled ran-
dom predictions, indicating their limited predictive accuracy for drug combinations. 
However, our model consistently exhibited exceptional performance on the test set of 
this challenge, thereby further validating its excellent generalization capability and prac-
tical applicability.

Ablation study

To investigate the importance and contribution of each component in the model, we 
conducted an ablation analysis by removing or replacing some model components. 
Specifically, we compared the results of MFSynDCP under the following conditions: 
(i) the proposed MFSynDCP, (ii) replace MLP with Variational Autoencoder (VAE) in 
MFSynDCP, (iii) replace GAT with GCN in MFSynDCP, (iv) replace GAT with Graph 
Isomorphism Network (GIN) in MFSynDCP, (v) replace GAT with GNN in MFSynDCP 
(vi) MFSynDCP without AAGAM, (vii) replace AAGAM with the global mean pool-
ing (GMP) in MFSynDCP, (viii) MFSynDCP without MFIC. We conducted a fivefold 
cross-validation test based on the training dataset for comparison. The results on the 
benchmark dataset are summarized in the figure below. Figure 6 shows the experimental 
results of our model MFSynDCP compared with the other four variants.

The results indicate that the complete MFSynDCP framework achieved the best pre-
dictive performance in the 7 evaluation metrics, demonstrating its effectiveness. Spe-
cifically, we observed that GAT outperforms GCN, GIN, and GNN in extracting key 
chemical features. Through the adaptive attention mechanism of GAT, it can better cap-
ture important features and interaction information among drugs, thereby improving 

Fig. 5 ROC curves of MFSynDCP and competitive methods on independent test dataset
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the predictive performance of the model. In contrast, GCN, GIN, and GNN exhibit limi-
tations in utilizing the complex relationships among drugs in certain aspects.

As can be observed in Fig. 6, in terms of encoding the genomic features of cancer cells, 
the use of MLP outperforms VAE. A possible reason for this could be the flexible net-
work architecture and feature learning capability of MLP, which allows it to capture the 
key nonlinear relationships and complex features within the cancer cell genome more 
effectively than VAE.

Notably, the complete framework scored lower on the TPR metric compared to the 
model without the AAGAM, which might be due to the class imbalance between syn-
ergistic and antagonistic drug combinations in the dataset. To address this issue, BACC 
and KAPPA coefficients can be used for assessment, where the complete model achieved 
the highest performance scores.

The experimental results prove that the AAGAM in our model performs better than 
the versions without adaptive attention mechanisms and those using global mean pool-
ing for graph aggregation. This is likely because, for molecular graphs, the global mean 
pooling method treats every substructure as equally important and simply averages the 
embeddings of all nodes. In contrast, our proposed AAGAM utilizes the interaction 
information of drug pairs, not just the molecular graph of a single drug, to obtain atten-
tion scores for each substructure, thereby achieving better performance compared to the 
other two comparison models.

Furthermore, it can be concluded that the models without the AAGAM and those 
replacing AAGAM with GMP did not show a significant difference in the AUROC, 
AUPR, ACC, BACC, TPR, and KAPPA metrics, and their performance was lower than 
the predictive indicators of our proposed model. This underscores the important role 
of our proposed adaptive attention mechanism in the graph aggregation module within 
this model. Simultaneously, the MFIC design makes a greater contribution to learning 
drug features compared to the AAGAM proposed in our study, possibly due to its effec-
tive handling and integration of feature information from different sources, including 
both drugs and cell lines. The MFIC led fusion module plays a key role in ensuring high-
quality predictions of drug synergistic effects. The experimental results according to 

Fig. 6 The performance of our proposed MFSynDCP and its variants
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AUROC, AUPR, ACC, BACC, TPR, and KAPPA indicate that the absence of MFIC led 
to a significant drop in model performance, suggesting that the MFIC-led fusion mod-
ule effectively captures the synergistic effects between features. The higher scores in the 
PREC metric could also confirm the imbalance in the dataset; if there are fewer positive 
samples and more negative samples, the model may be biased towards predicting sam-
ples as negative to achieve a higher accuracy rate. Moreover, we observed that the com-
plete MFSynDCP framework outperformed the other ablation scenarios in six metrics, 
further validating the importance of each component.

In summary, the experimental results clearly demonstrate that the adaptive attention 
mechanism and the MFIC-led fusion module play a crucial role in enhancing model per-
formance. Their combination is capable of more comprehensively capturing the features 
of drug synergistic effects.

The impact of the input sequence of drug combination data on predictive performance

To mitigate the impact of drug order on the model’s prediction results, during the 
training process, we treated [drug A, drug B, cell line] samples and [drug B, drug A, 
cell line] samples as two distinct input samples. This approach allowed us to examine 
the effect of different input feature orders on predicting synergy scores. As shown in 
Fig. 7, we observed that the prediction results under different input feature orders are 
concentrated near the diagonal line, with a Pearson correlation coefficient reaching 
0.9. This indicates that our model is not sensitive to the order of drug combinations; 
accurate predictions are generated regardless of whether it’s drug A-drug B or drug 
B-drug A. This further verifies the robustness and reliability of our model. Addition-
ally, we observed that both the ROC AUC (Area Under the Receiver Operating Char-
acteristic Curve) and PR AUC (Precision-Recall Area Under Curve) for [drug A, drug 

Fig. 7 Scatter plot of collaborative scores obtained based on different input orders of two drugs
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B] and [drug B, drug A] reached or were close to 0.93, further proving the excellent 
performance of our model in this study.

The revelation of crucial chemical substructures in drugs

Deep learning models are often viewed as black boxes, and their lack of interpret-
ability limits their further application in many fields, especially in practical scenarios 
of computational-aided drug discovery. To address this issue and explore the key sub-
structures in drug combination prediction, we utilized the attention mechanism to 
visualize the critical substructures of drug pairs.

The MFSynDCP model proposed in this study employs a message-passing mech-
anism between nodes to update each node’s information. This allows each node to 
capture information from its neighboring nodes and gradually accumulate and inte-
grate information from surrounding nodes, enriching its feature representation. 
In this model, each neuron in the GAT network is connected to neighboring nodes 
from the previous layer through a set of learnable weights, enabling the neuron to 
acquire information from its neighbors and incorporate it into its feature expression. 
Furthermore, we introduced an adaptive attention mechanism-based graph aggre-
gation module. This module assigns attention scores to each substructure of a drug 
and performs a weighted summation of all nodes’ embedding vectors, resulting in a 
graph-aggregated representation of the drug. This process reveals the key chemical 
substructures that play a crucial role in synergy prediction. Therefore, the final drug 
feature representation actually contains information about the surrounding chemi-
cal substructures, including valency, solubility, and other physicochemical proper-
ties. This inspired our exploration of the attention mechanism in revealing important 
chemical substructures.

Specifically, the attention scores calculated using formulas 4 and 5 are used to repre-
sent the importance levels of corresponding substructures. These substructures’ impor-
tance is visualized using different colors. Figure 8 displays the visualization results for 
three randomly selected drug pairs (ABT-888 and SORAFENIB, 5-FU and Erlotinib, 
L778123 and TEMOZOLOMIDE). In the initial stages of training, the attention scores 
show a more uniform distribution, indicating that the model has not yet focused on key 
structures with significant influence. However, as training progresses, the model gradu-
ally starts to assign higher importance to certain specific structures compared to others. 
Fig. 8a1–c1 presents the visualization results obtained after the model’s training is com-
plete, where deeper colors reflect more important substructures.

Taking Fig. 8b and b1 as examples for explanation: A427 [44] is a human non-small cell 
lung cancer cell line, while 5-FU [45] and Erlotinib [46] are two drugs commonly used in 
lung cancer treatment. These drugs can be used in combination therapy. 5-FU and Erlo-
tinib have been shown to have a more effective growth inhibitory effect on the A427 cell 
line. Our model successfully identified the amide group as an important chemical struc-
ture, which plays a key role in biomolecules, including many clinically approved drugs. 
Amides are widely present in drugs, not only because of their stability but also because 
their polarity allows drugs containing amide groups to interact with biological receptors 
and enzymes. This result demonstrates the good interpretability of our model.
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The prediction of new synergistic drug combinations

The pursuit of innovative and effective drug combinations remains a cornerstone 
in the fight against cancer, presenting a complex yet crucial challenge in medical 
research. We introduce a refined methodological approach aimed at identifying syn-
ergistic drug combinations, effectively capitalizing on the sophisticated capabilities 
of the MFSynDCP model. Our approach integrates computational modeling with 
clinical predictive analysis, aiming to identify novel drug combinations that have the 
potential to alter current treatment modalities, thereby offering new research path-
ways and therapeutic strategies in the field of cancer treatment.

To assess the model’s potential in discovering new synergistic drug combinations, 
we trained our MFSynDCP model using the O’Neil drug combination dataset. To 
generate candidate drug combinations, we selected 25 small-molecule anticancer 
chemical drugs approved by the U.S. Food and Drug Administration (FDA), removing 
drug combinations that duplicated those in the benchmark dataset. We then used our 
MFSynDCP model to predict the synergy of the final candidate drug pairs. Extensive 
literature searches were conducted to validate whether the model could identify new 
synergistic drug combinations.

Fig. 8 The visualization results for three randomly selected drug pairs are presented. Figure 8a-8c display the 
visualization of attention scores for these three drug pairs before training. Figure 8a1-c1 shows the visualization 
of attention scores for these three drug pairs during the model training process, where deeper colors indicate 
more important substructures
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In this study, new drug combinations were predicted using the widely studied A375 
cancer cell line [47], forecasting unknown [drug, drug, cell line] triplets. We focused par-
ticularly on the top 7 ranked untested triplets in the prediction scores and conducted a 
non-exhaustive literature search. We found that 3 of the predicted drug combinations 
were consistent with previous research or clinical trial observations. For instance, the 
combination of Erlotinib and Regorafenib was used for the treatment of hepatocellular 
carcinoma, successfully overcoming the interference of epidermal growth factor [48]. 
These examples illustrate that MFSynDCP can successfully predict drug combinations 
consistent with previous research or clinical trial observations, further validating its 
potential in discovering new synergistic drug combinations.

The predicted new synergistic drug combinations each consist of two drugs, and each 
combination is assigned a predictive score reflecting its potential synergistic efficacy. Addi-
tionally, the predictive scores for all listed drug combinations are exceptionally high (close 
to 1), indicating these combinations show substantial potential for synergy in the model. At 
least three of these predicted drug combinations are consistent with existing research or 
clinical trial observations, enhancing the reliability of the predictions. All these predictions 
are made for the A375 cancer cell line, a melanoma (skin cancer) cell line. This specificity 
suggests that these combinations may not be equally effective against other types of cancer 
cells. Future research could focus on validating the actual efficacy and potential synergistic 
mechanisms of those combinations that are supported by literature but have not yet entered 
clinical trial stages, as well as those completely unsupported by existing literature. Over-
all, Fig.  9 demonstrates the capability of the MFSynDCP model in predicting potentially 
effective new synergistic drug combinations. It offers a promising beginning for further 
experimental and clinical research, highlighting the model’s utility in guiding hypothesis 
generation and decision-making in drug development and personalized medicine.

Fig. 9 The top 7 novel synergistic combinations predicted on A375 cancer cell line
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Conclusions
In this paper, we proposed a deep graph neural network model named MFSynDCP, 
which is guided by a multi-source feature interactive learning controller and employs 
an adaptive attention mechanism for predicting the synergy of anticancer drug com-
binations. Specifically, the SMILES features of drugs are first transformed into drug 
molecular structure graphs, and a Graph Attention Network (GAT) is used to extract 
structural information from drug pairs. An adaptive attention mechanism-based 
graph aggregation module was designed to unearth the most critical chemical sub-
structures for synergy prediction. Additionally, an innovative multi-source feature 
interactive learning controller was constructed to enhance the representation of drug 
pairs, enabling the fusion of multi-source data from drugs and cell lines and learning 
the interaction information between them. We also explored the learning process of 
MFSynDCP, uncovering the mechanisms of drug synergy among substructures, which 
provided a level of interpretability to the model and supported the explanation of 
drug synergy mechanisms. Our performance comparison experiments demonstrated 
that MFSynDCP outperforms other competitive methods.

However, the MFSynDCP model has certain limitations. The study focused solely 
on features of drugs and cell lines for synergy prediction, without considering the 
potential of biomedical knowledge graph methods in predicting effective combina-
tions for diseases. In the future, we plan to integrate biomedical knowledge graphs 
to further enhance the overall performance of predicting synergistic anticancer drug 
combinations. Additionally, we recognize the importance of exploring gene contri-
butions in synergy prediction and plan to incorporate this aspect into our future 
research endeavors. This will allow us to gain a more comprehensive understanding 
of the factors influencing synergy prediction and improve the predictive capabilities 
of our model.
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