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Abstract 

Background: Taxonomic classification of reads obtained by metagenomic sequenc-
ing is often a first step for understanding a microbial community, but correctly assign-
ing sequencing reads to the strain or sub-species level has remained a challenging 
computational problem.

Results: We introduce Mora, a MetagenOmic read Re-Assignment algorithm 
capable of assigning short and long metagenomic reads with high precision, even 
at the strain level. Mora is able to accurately re-assign reads by first estimating abun-
dances through an expectation-maximization algorithm and then utilizing abundance 
information to re-assign query reads. The key idea behind Mora is to maximize read 
re-assignment qualities while simultaneously minimizing the difference from estimated 
abundance levels, allowing Mora to avoid over assigning reads to the same genomes. 
On simulated diverse reads, this allows Mora to achieve F1 scores comparable to other 
algorithms while having less runtime. However, Mora significantly outshines other 
algorithms on very similar reads. We show that the high penalty of over assigning reads 
to a common reference genome allows Mora to accurately infer correct strains for real 
data in the form of E. coli reads.

Conclusions: Mora is a fast and accurate read re-assignment algorithm that is modu-
larized, allowing it to be incorporated into general metagenomics and genomics 
workflows. It is freely available at https:// github. com/ AfZhe ng126/ MORA.
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Background
When analyzing microbial communities through metagenomic sequencing, a funda-
mental task is to determine which reference genome a specific sequencing read origi-
nates from [1]. This gives information about microbial composition and allows for 
mapping-based analysis of genetic variation. A common first step in a processing pipe-
line is to use a fast taxonomic read classifier such as Kraken2 [2], CLARK [3], Centri-
fuge [4] or others. While such methods are extremely fast, they are not sensitive enough 
to assign reads to the strain level. Since strain-level resolution has important functional 
implications [5–7], sensitive methods that are able to resolve reads at the strain level are 
needed.
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To resolve reads at the level of strains, a naive approach would be to more sensitively 
align the read to a set of candidate reference genomes using a read aligner such as Bow-
tie2 [8], Minimap2 [9], or CORA [10] (no relation to Mora) and then take the best refer-
ence genome as the correct assignment. However, strain-level reference genomes share 
large regions of similarity, so many ambiguous mappings are inevitable. To overcome 
this limitation, one can statistically calculate abundance information of the candidate set 
of reference strains and only use references that have high enough abundances [11–14]. 
Afterward, one can re-assign reads to the “correct” references, i.e. reference strains that 
seem to be abundant in the metagenomic sample. This approach has been used to guide 
short-read strain-level disambiguation of skin metagenomes [15]. It is currently used in 
long-read taxonomic profiling with least common ancestor approaches to better quan-
tify profiling ambiguity [16].

However, re-assigning reads to the correct references while maintaining abundance 
estimates is non-trivial. For example, if one were to assign a multi-mapped read to the 
most abundant reference strain with a putative mapping, all reads coming from a region 
of similarity between two strains will be mapped to only one strain—in this case the 
most abundant one. This is not an accurate assignment of the reads and will skew the 
abundance. Importantly, not all algorithms do abundance estimation and read assign-
ment; some algorithms calculate only abundances and do not output re-assigned reads 
[17–19].

In this paper, we present Mora, a tool that allows for sensitive yet efficient metagen-
omic read re-assignment and abundance calculation at the strain level for both long and 
short reads. Given an alignment in SAM or BAM format and a set of reference strains, 
Mora calculates the abundance of each reference strain present in the sample and re-
assigns the reads to the correct reference strain in a way such that abundance estimates 
are preserved. We rigorously formulate this problem as an optimization problem and 
give provable guarantees on our heuristic algorithm. We show that Mora is more effec-
tive than Pathoscope2 [12], a state-of-the-art read re-assigner, at disambiguating simi-
lar strains present in a sample on simulated data for short reads while being an order 
of magnitude faster. Furthermore, we show that Mora has similar F1 scores compared 
to Pathoscope2, Kraken2, and Clark while taking less time and RAM on simulated long 
read data. We then verify our results on real data as well.

Results and discussion
Pipeline of Mora

Mora’s pipeline consists of two main steps (Fig. 1): abundance estimation and read re-
assignment. Like other metagenomic abundance estimators [19, 20], it first utilizes a 
standard generative probabilistic model on input mappings and performs inference using 
the expectation maximization (EM) algorithm, augmented with a set cover algorithm 
to filter out spuriously abundant genomes [19]. Mora’s novelty comes from the subse-
quent step, where we re-assign reads in a manner dependent on the calculated abun-
dances. Though optimization with constraints has been used in abundance estimation 
before [21], our constraints and our specific reassignment procedure are novel. Mora 
models the problem of maximizing correct read assignments while minimizing the dif-
ference between predicted abundance levels and final abundance levels as a non-linear 
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minimization problem (“Re-assignment of reads” section and Fig. 2). Although we use a 
greedy heuristic, we prove that the heuristic is guaranteed to improve the minimization 
score. Finally, Mora outputs a (re-)assignment of each read to a reference genome that is 
consistent with the calculated abundances.

Fig. 1 The pipeline for Mora to output re-assignments from query and reference FASTA files. Mora’s 
processing steps are enclosed by the dark green rectangle. The abundance estimation step includes the 
Expectation Maximization (EM) algorithm and a set cover algorithm to filter out spuriously abundant 
genomes [19]. The re-assignment step uses the estimated abundance from the previous step to re-assign 
reads

Fig. 2 An example of Mora’s approach to read re-assignment. The exact algorithm is outlined in 
“Re-assignment of reads” section. R1–R4 are four reference genomes labelled with colours, and the 8 reads 
shown have colour content proportional to the mapping scores with respect to each coloured reference 
genome. Grey boxes are not reads, but available read assignments based on Mora’s estimated abundances. 
Step 1: As shown in the red arrows, Mora cannot assign the last read due to the lack of space in R2 and R4 
from to the abundance constraint Step 2: shown in the black arrow, we move a more ambiguously assigned 
read in R2 to R3 instead, opening space in R2. Step 3: We move the un-assigned read to R2, where there is 
now space
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Benchmarking details

We benchmarked Mora using simulated short and long reads against Pathoscope2 
[12], Kraken2 [2], and Clark [3]. Pathoscope2 can identify strains, compute abun-
dance levels, perform re-assignments, and output informative result summaries. It 
has seen usage in numerous studies [22–25], and its algorithm has also been incor-
porated into other taxonomic classification pipelines [16]. Kraken2 and Clark are 
two taxonomic classifiers that classify reads by assigning them a taxonomic ID. In 
the case of Kraken2, it may classify reads to the least common ancestor of the pos-
sible taxons to reduce the chance of false assignments. For Clark, the taxonomic 
IDs can be manipulated for strain-level assignments. This was also attempted for 
Kraken2, but errors were encountered when trying to build a custom database. 
Hence, Kraken2 was unable to work at the strain level. When aligning simulated 
reads to the bacteria RefSeq database, Clark was unable to correctly build the cur-
rent 2024 January version from NCBI. A 2019 version of the RefSeq bacteria data-
base was attempted as well, but in this case it could not even finish building the 
database. Hence, CLARK’s standard 2024 database version was used even though 
it gave very low scores (see “Large-scale simulated short read re-assignment at the 
species and genus level” section). However, Clark still was able to build smaller sized 
custom databases (REF-1).

All algorithms except Pathoscope2 were run using their default parameters, which 
would not run due to the high number of strains. Instead, certain parts in Patho-
scope2’s code had to be augmented to allow it run correctly. Its initial library con-
struction code no longer works and must be replaced with code from MetaScope 
[26]. The output step also had to be fixed to allow for large number of reads. These 
changes did not affect how Pathoscope2 re-assigns reads, so the only change should 
be being able to run on large datasets and a decrease in runtime. We now denote 
the augmented Pathoscope2 as AugPatho2, and the augmented code can be found in 
same repository as the Additional file 1: Appendix files. Given these caveats, Patho-
scope2 appears to be the current practical state-of-the-art.

We also considered MetaMaps [14] and Sigma [13], two other re-assignment tools, 
but they were not included in this comparison as the software are no longer actively 
maintained and parts of both software are no longer functional; other studies also 
had issues with these two programs [17, 27].

For initial aligners, we mainly use Pufferfish/Puffaligner [28] and Bowtie2 for 
short reads. Pufferfish is faster and more memory efficient compared to Bowtie2, 
but at the cost of being less sensitive. These were chosen to see how well Mora and 
AugPatho2 performs based on very sensitive aligner compared to very fast aligners. 
Minimap2 is used for long reads due to its popularity and ease of use.

F1 score, sensitivity, and precision are used to evaluate the accuracy of the final 
read re-assignment at three different taxonomic ranks: strain, species, and genus 
(see “Evaluation metrics” section). For the purpose of this paper, two DNA sequences 
are of the same species/genus if their NCBI taxID corresponds to the same species/
genus name. Two DNA sequences are of the same strain if their accession number is 
the same.
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Re‑assignment of reads to similar strains

To test strain identification, 58 E. coli reference genomes were obtained from NCBI 
and 950,000 short 150 bp pair-end reads were generated for 3 of those strains, so each 
strain has about 30x coverage. We aligned the reads with Pufferfish/Puffaligner [28], 
a very efficient read alignment method. We then used Mora and AugPatho2 to re-
assign the reads, and we report the number of assigned reads for each strain. We also 
performed assignment using Clark and Bowtie2 with their default parameters. The 
results are shown in Fig. 3. AugPatho2 is programmed to perform an initial assign-
ment by calling Bowtie2 with pathoMAP. To allow the use of other alignment algo-
rithms, we generated the SAM file independently of AugPatho2 and ran pathoID and 
pathoMAP on it. Since all the strains had the same taxonomic ID, Kraken2 could not 
be benchmarked on this dataset. To run Clark, the taxonomic IDs were changed to be 
unique from each other.

In Fig. 3, Mora, AugPatho2, and Pufferfish were able to identify the presence of all 
three strains. Mora had a F1 score of 45.02, much higher than 29.01, 32.48, 18.35, 
32.28, the F1 scores of AugPatho2, Pufferfish, Clark, and Bowtie2 respectively. Aug-
Patho2 mapped most reads to the strain C41(DE3), a strain whose average nucleotide 
identity to C43(DE3) is 99.94% according to OrthoANI [29]. This may be caused by 
how Pathoscope2 incorporates reference length into its calculations of read align-
ment scores. The length of strain C43(DE3) was 56,061 base pairs shorter than strain 
C41(DE3), making the alignment scores to C41(DE3) higher than those to C43(DE3). 
As most high mapping scores were equal in value, selecting the primary alignment 
without regard of abundance levels is likely the reason for Pufferfish’s high false posi-
tive rate. Clark was unable to align 81% of the reads while Bowtie2 assigned almost 

Fig. 3 Relative assignment abundancies of Mora, AugPatho2, and Pufferfish of 950,000 synthetic short 150 
bp pair-end reads to 58 E. coli strains. The synthetic short reads were simulated from the three E. coli strains: 
2009C-3133, SQ110, and C43(DE3). The strains listed had at least 2000 assigned reads from at least one of 
the algorithms. Relative assignment percentages of the final assignments from three different algorithms are 
represented by the different coloured bars. The real abundance levels of the strains are represented by the 
red dots. AugPatho2 is Pathoscope2 but with slight changes in the code to make it able to run and output 
results. Assignment by Pufferfish and Bowtie2 were done by choosing the primary alignment in the SAM file, 
while assignment by Mora and AugPatho2 was done using Pufferfish as the initial aligner. Clark and Bowtie2 
were run without any additional algorithms. Mora’s assignments are closest to the real abundances
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equal amounts of reads to all strains. The number of reads assigned to each strain can 
be found in Additional file 1: appendix Table A.1.

Large‑scale simulated short read re‑assignment at the species and genus level

We used the complex Illumina 400 dataset of 400 different microbial genomes and its 
corresponding simulated 26.6 million 75 bp paired-end short reads [30] to test the accu-
racy of short read alignment. We consider two cases: when there is a good guess of which 
genomes the reads come from, and when there is no information at all. For the first case, 
we built a reference library (REF-1) from the bacterial_data.txt file (478 genomes) that 
was used to simulate the reads. For the second case, we built a reference library (REF-
2) using the complete bacterial genomes from NCBI RefSeq (6487 genomes). Impor-
tantly, REF-2 does not contain all references in REF-1. REF-2 contains 26% of the strains, 
73% of the species, and 81% of the genera of REF-1. When using REF-2 as the reference 
genomes, scores for the strain rank are not reported due to the low number of strains 
from REF-1 included in REF-2.

When aligning to REF-1, Pufferfish was unable to map 12.7 million reads while Bow-
tie2 was unable to map 4.1 million. When aligning to REF-2, Pufferfish was unable to 
map 15.7 million reads while Bowtie2 was unable to map 9.7 million.

As shown in Tables 1 and 2, AugPatho2 performed only slightly better than Mora for 
both aligners, but the difference is within 3 points. However, it was much slower in runt-
ime due to the pathoREP module in AugPatho2. For large data sets, the pathoREP mod-
ule wasn’t able to output the final XML file due to lack of memory. We had to split the 
SAM file into 3–5 smaller files and change the XML output script to accommodate this 
problem. As seen in Table 3, Mora was over 19 times faster than AugPatho2, while only 
having a 3 times increase in RAM usage. Using Bowtie2 increased scores significantly 
due to its ability to map more reads than Pufferfish, but did result in a large increase in 
runtime. On REF-1, Clark had slightly better scores than Mora when using Bowtie2 at 
the species and genus level, but had low scores at the strain level. Kraken2 performed 

Table 1 Scores of algorithms when aligning short reads to REF-1

Both Mora and AugPatho2 were able to improve the scores of the initial aligner, though AugPatho2 appears to have a slight 
systematic edge

Algorithm Strain Species Genus

F1 Sensitivity Precision F1 Sensitivity Precision F1 Sensitivity Precision

Pufferfish 62.12 47.27 90.58 66.04 50.25 96.29 67.92 51.68 99.05

Mora + 
Pufferfish

66.20 50.37 96.53 67.04 51.01 97.75 68.49 52.11 99.87

AugPatho2 + 
Pufferfish

66.62 50.69 97.14 66.90 50.90 97.55 68.49 52.11 99.87

Bowtie2 84.54 78.04 92.20 88.94 82.11 97.01 91.21 84.21 99.48

Mora + 
Bowtie2

87.59 80.86 95.54 89.22 82.37 97.32 91.48 84.46 99.79

AugPatho2 + 
Bowtie2

89.03 82.19 97.10 89.64 82.76 97.77 91.50 84.47 99.80

Kraken2 NA NA NA 88.19 83.57 93.36 92.36 87.52 97.77

Clark 59.38 55.21 64.23 91.12 84.71 98.57 92.04 85.58 99.57
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better than Mora for both aligners on REF-2 but was worse than Mora when using Bow-
tie2 at the species level on REF-1.

Re‑assignment of long reads

To test Mora on long reads, we used badreads [31] v0.4.0 with parameters for nanop-
ore2020 reads at length 2500, standard deviation 1500 on REF-1 to simulate 203 thou-
sand long nanopore reads. When using Minimap2 to perform the initial alignment to 
REF-1, 4 thousand reads could not be aligned. When using Minimap2 to align to REF-2, 
30 thousand reads could not be aligned.

From Tables  4 and 5 we see that Mora’s scores on long reads for REF-1 are very 
similar to AugPatho2, and was slightly better when looking at the scores for REF-2. 
However, Table 6 shows that Mora performs at least four times faster and uses up 
to 10 fold less RAM compared to AugPatho2 on long reads. The main bottleneck 
for AugPatho2 was again PathoREP. Even after the augmentations of PathoREP to 
reduce its runtime and memory usage, AugPatho2 still had higher runtime and RAM 
usage than Mora for long reads. Kraken2 had lower F1 scores than Mora in REF-1, 

Table 2 Scores of algorithms when aligning short reads to REF-2

On both aligners, Mora performed just a bit worse than AugPatho2, with scores having a difference of at most 1 when using 
Bowtie2. Mora’s scores are consistently better than the aligners, showing that the re-assignment step is beneficial. Kraken2 
was able to map more reads compared to Mora and AugPatho2 due to mapping more reads than Pufferfish and Bowtie2. 
Clark has an asterisk to signify that its low scores are due to an issue with building the bacteria database

Algorithm Species Genus

F1 Sensitivity Precision F1 Sensitivity Precision

Pufferfish 46.23 32.61 79.38 55.54 39.18 95.36

Mora + Pufferfish 47.79 33.72 82.06 56.00 39.50 96.15

AugPatho2 + Pufferfish 48.40 34.14 83.11 56.11 39.58 96.34

Bowtie2 64.08 52.36 82.58 74.96 61.24 96.59

Mora + Bowtie2 65.23 53.29 84.06 75.17 61.41 96.87

AugPatho2 + Bowtie2 66.10 54.01 85.18 75.27 61.24 96.99

Kraken2 70.28 66.32 74.73 88.54 83.55 94.15

Clark* 13.78 7.80 59.11 20.13 11.39 86.37

Table 3 Wall clock time (s) and maximum RAM usage (GB) for algorithms on assigning simulated 
short reads (SR)

Other than using more RAM on short reads to REF-2, Mora consistently used fewer resources than AugPatho2 and was 
substantially faster. Time cannot be directly compared between the Mora/AugPatho2 and Kraken2/Clark as they require the 
output from one of the initial aligners. Clark has an asterisk to signify that had errors in building the REF-2 database, which 
resulted in less resources used. CPU time and other information can be found in Additional file 1: appendix Table A.4. All 
algorithms were run with 8 threads on a Google cloud virtual machine instance of type c2-standard-60

Algorithm SR to REF‑1 SR to REF‑2

Time (s) RAM (GB) Time (s) RAM (GB)

Mora 477.15 47.24 657.80 47.52

AugPatho2 28588.09 51.58 29278.85 15.99

Pufferfish 101.64 10.89 325.29 10.54

Bowtie2 726.44 2.91 894.84 26.85

Kraken2 73.48 2.40 70.54 24.33

Clark* 300.97 45.69 272.01 41.17
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but had better scores in REF-2. Clark had low scores at the strain level for REF-1, 
while its scores for REF-2 were low due to an error in its database (see “Benchmark-
ing details” section).

Results on real sequencing data

To show applicability to real sequencing data, we ran Mora on two sets of real data, 
each representing a different scenario.

Table 4 Scores between Minimap2, Mora, AugPatho2, Kraken2, and Clark when aligning long 
simulated reads to REF-1

Both Mora and AugPatho2 increase the scores of Minimap2, but their scores are very similar

Algorithm Strain Species Genus

F1 Sensitivity Precision F1 Sensitivity Precision F1 Sensitivity Precision

Minimap2 77.94 76.49 79.44 92.56 90.83 94.34 96.50 94.70 98.36

Mora 78.45 76.98 79.97 93.08 91.34 94.88 96.64 94.84 98.51

AugPatho2 78.95 78.87 79.02 94.26 94.17 94.35 97.68 97.01 97.78

Kraken2 NA NA NA 84.15 78.17 91.13 89.01 82.68 96.30

Clark 45.62 41.55 50.58 86.13 78.44 95.49 88.19 80.32 97.78

Table 5 Scores between Minimap2, Mora, AugPatho2, Kraken2, and Clark when aligning long 
simulated reads to REF-2

Both Mora and AugPatho2 increase the scores of Minimap2. Mora slightly outperforms AugPatho2 at the species level but 
has slightly lower F1 and sensitivity scores at the genus level. Clark has an asterisk to signify that had an issue with building 
the database, which resulted in the low scores

Algorithm Species Genus

F1 Sensitivity Precision F1 Sensitivity Precision

Minimap2 65.65 60.32 72.01 83.74 76.95 91.86

Mora 68.86 63.26 75.55 83.96 77.13 92.11

AugPatho2 67.93 63.05 73.62 84.21 78.16 91.27

Kraken2 73.10 68.65 78.16 85.19 80.01 91.09

Clark* 22.97 14.83 50.98 36.10 23.30 80.12

Table 6 Wall clock time (s) and maximum RAM usage (GB) for algorithms on assigning simulated 
long reads (LR)

Mora used significantly fewer resources than AugPatho2 and was substantially faster. Time and RAM cannot be directly 
compared between the Mora/AugPatho2 and Kraken/Clark as Mora and AugPatho2 requires Minimap2 to give them an 
output file. Clark has an asterisk to signify that had errors in building the REF-2 database, which resulted in less resources 
used. All algorithms were run with 8 threads on a Google cloud virtual machine instance of type c2-standard-60

Algorithm LR to REF‑1 LR to REF‑2

Time (s) RAM (GB) Time (s) RAM (GB)

Mora 56.32 0.77 98.72 2.04

AugPatho2 341.93 21.52 429.23 22.522

Minimap2 1074.89 11.228 8696.29 20.048

Kraken2 193.08 2.58 326.09 25.01

Clark* 56.68 40.80 51.31 36.65
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Disambiguating E. coli strains from real short reads

In the first case, we look at real short E. coli reads from three different assemblies. 
Mora and AugPatho2 (with Pufferfish as the initial aligner) were run on 1481219 pair-
end short reads of average length 250 bp. These reads were composed of reads from 
three SRA runs representing the assembly genomes of INF13/18/A, INF191/17/A, and 
INF32/16/A (see Additional file 1: Appendix Table A.7), while the references were the 
58 E. coli strains used previously with the addition of the three new strains. The aver-
age nucleotide identity (ANI), calculated by skani [32], of the three strains to each other 
were between 96.4 and 96.57 (see Additional file  1: Appendix Table A.7). As seen in 
Fig.  4, Mora was able to assign more reads to the three INF strains compared to the 
other algorithms. The left subfigure shows that Mora has the smallest l1 error, while the 
right subfigure shows that every other strain had very low read assignments from Mora. 
AugPatho2 assigned a lot of reads to a different complete genome assembly: JJ2434. The 
ANI between JJ2434 and INF191/17/A was 99.39, but its complete genome (i.e. one sin-
gle contig) sequence length was 3.4 million bps longer than the longest scaffold in the 
assembly for INF191/17/A. This is the likely reason for the large error in AugPatho2, 
which uses reference lengths for scoring. Pufferfish assigns a lot of reads to the three INF 
strains equally, but also assigns a sizable amount of reads to another complete genome 
assembly: C41(DE3). Mora had an F1 score of 67.77 while AugPatho2 and Bowtie2 had 
F1 scores of 19.08 and 30.06 respectively.

Disambiguating real long‑read community

In the second case, we test Mora on real long reads, but of different species (Fig.  5). 
The PacBio HiFi reads of medium length 8.3 kb are from the ATCC MSA-1003 mock 
community, comprised of 20 bacteria species in staggered abundances (5 at 18%, 0.18%, 
0.018%, and 0.002% abundance levels), with two genera have two different species. The 

Fig. 4 Comparison of assignment percentages of real short E. coli reads from the three assemblies: 
INF32/16/A, INF13/18/A, and INF191/17/A by Mora, AugPatho2, and the initial aligner Pufferfish. The real 
abundance levels of the strains are represented by the red dots. The left subfigure shows the real abundances 
as red dots, which are at 2.5% 46.18%, and 51.20% respectively. This highlights that Mora has the smallest l1 
error. Mora assigns 3% of reads to INF32/16/A while AugPatho2 assigns 1% of reads to it. The right subfigure 
shows 10 of the other strains that had the highest assignments from Mora. AugPatho2 and Pufferfish assigns 
a lot of reads to a wrong strain
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reference database is composed of the bacteria, archaea, fungi, viral, protozoa libraries 
from NCBI RefSeq. As theses were long reads, Minimap2 was used as the initial aligner 
for Mora and AugPatho2.

As we do not know the true identity of each read in the data, we compare the dif-
ferent algorithms by looking at if they were able to detect the presence of the 20 spe-
cies which theoretically comprises the sample. A species or genus is detected if at least 
0.01% of reads were assigned to it. Of the 20 species, Kraken2 and Bracken were able to 
detect 18 of them, while the rest were only able to detect 16. Minimap2 aligns no reads 
to Bacillus cereus, one of the 20 species, while Kraken2 aligns 2.3 thousand reads to it. 
However, they both aligned more than 49 thousand reads to Bacillus pacificus. This dif-
ference resulted in Mora and AugPatho2 not detecting B. cereus at all, while Kraken2 and 
Bracken do. This also explains another one of the species. At the genus level, Kraken2 
and Bracken detected 16 of the 18 genera, while the other three algorithms only detected 
15 of the 18 genera. The difference is most likely caused by the difference in alignments 
by Kraken2 and Minimap2.

As seen in Table 7, while Mora’s F1 score is low (primarily due to downstream effects 
from minimap2’s false positives), it still has a higher F1 score compared to Minimap2, so 
it is an improvement to just using the initial aligner. It is important to note that species 
detection is not the best use-case for Mora and that the F1 score is sensitive to the initial 
aligner’s mismappings. For l1 scores, Mora’s l1 error is 0.650, compared to Braken which 
has the lowest l1 error of 0.568 at the species level. At the genus level, Mora’s l1 error is 
0.545 which is comparable to the the lowest l1 error of 0.531 achieved by Bracken. The 
full results can be found in Table A.11 in the Additional file 1: appendix file.

Mora’s runtime and memory usage is much lower than the other methods on this data-
set. As seen in Table 8, Mora is more than 200 times faster than AugPatho2 while using 

Fig. 5 Species and genus abundance based on final read assignments of 5 different algorithms on the ATCC 
MSA-1003 mock community. Different coloured blocks in each column represent a different species/genus. 
The sub-figure on the left shows 24 of the most abundant species detected by the algorithms, with the light 
blue block at the top representing the other species. The sub-figure on the right shows the 18 genera that 
theoretically make up the mock community, with the blue block at the top of the columns representing the 
other genera. The initial aligner for Mora and AugPatho2 was Minimap2 after performing a pruning step of 
low quality reads with MAPQ score less than 5. Assignments for Minimap2 were done by picking the primary 
strain
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around 10 times less RAM. Though these values are not comparable due to requiring 
alignment prior to usage, its ability to only require a SAM/BAM file can make it more 
modular and faster if the SAM/BAM file already exists.

Methods
We define mapping score as some positive value associated to each alignment that meas-
ures how good the alignment is. In practice, we use the AS:i secondary flag that is pre-
sent in most read aligners, but our theory holds for any such score.

Initial read mapping

The input to Mora is a SAM/BAM file with an initial alignment of the reads. After fil-
tering out unaligned reads, the remaining reads are fed into Mora. At minimum, Mora 
only requires a SAM file with header information to output read (re)assignments. Mora 
optionally allows for the inclusion of taxonomic information of reference genomes in the 
final output by using accession and taxonomic information from NCBI.

For convenience, Mora is also implemented with a read mapping module using Snake-
make [33], allowing the user to use Mora from a set of input reads and references. The 
mapping modules allow the user to use Pufferfish, Bowtie2, or Minimap2. However 
other programs can be used as long as their generated SAM contains a header with the 
reference genomes and the AS:i secondary mapping flag is available in each alignment 
record. After the SAM file is generated, the reads that could not be assigned are filtered 
out. These reads are later added to the final output with the “NO ALIGNMENT” string 
being assigned to them.

Table 7 F1 scores for species and genus detection of ATCC MSA-1003 mock community by 5 
different algorithms

Kraken2 has the highest F1 score for both species and genus levels. Mora and AugPatho2 improve minimap2’s 
classifications, although their value is lower than Kraken2/Bracken

 Algorithm Species Genus

F1 Sensitivity Precision F1 Sensitivity Precision

Minimap2 26.67 80.00 16.00 47.62 83.33 33.33

Mora 37.64 80.00 24.62 55.56 83.33 41.67

AugPatho2 41.02 80.00 27.59 58.82 83.33 45.45

Kraken2 55.38 90.00 40.00 65.31 88.90 51.61

Bracken 52.94 90.00 37.50 64.00 88.90 50.00

Table 8 Wall clock time (s) and maximum RAM usage (GB) for algorithms on assigning long reads 
from ATCC MSA-1003 mock community

Mora used fewer resources than AugPatho2 and was substantially faster. Time cannot be directly compared between the 
Mora/AugPatho2 and Kraken2 as they require the output from Minimap2. Bracken is not included as it is instantaneous 
once the Kraken2 result files are created. CPU time and other information can be found in Additional file 1: appendix Table 
A.4. All algorithms were run with 8 threads on a google c2-standard-60 machine type virtual machine

Algorithm Time(s) RAM(GB)

Mora 67.17 2.97

AugPatho2 15713.15 1.78

Minimap2 34712.47 23.87

Kraken2 522.15 76.79
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Abundance estimation

We solve the problem of estimating the abundance levels of reference genomes by adapt-
ing the common model from calculating RNA transcript abundances used by Agamemnon 
[19] and RSEM [34]. In this model, each read is generated by first selecting a reference and 
then a position on that reference. Assuming the same model for all the reads, we have the 
following likelihood function for observing a set of reads from a set of reference genomes.

where M is the number of references, Q is the set of reads, θ is the abundance estimation, 
Pr(Rj|θ) is the prior probability of selecting reference Rj , and Pr(ri|Rj) is the conditional 
probability of generating read ri from reference Rj.
Pr(ri|Rj) is computed by normalizing the mapping score between read ri and reference 

Rj over all mapping scores from ri . The estimation of θ is done with an EM algorithm. To 
reduce the number of iterations needed by the EM algorithm to converge, the reads are 
reduced to a set of equivalent classes where two reads ri1 and ri2 are equivalent if they align 
to the same set of references.

After every 10 iterations, we implement Agamemnon’s idea of using a set cover algorithm 
to remove redundant references with low abundances from the rest of the iteration process. 
This results in better-estimated abundances of leftover references while also increasing the 
convergence rate. These algorithms are implemented based on the Cedar algorithm used by 
Agamemnon. For more information, please consult Agamemnon’s original paper.

Re‑assignment of reads

Mora then adds to the functions of Agamemnon by using the estimated abundance levels 
to perform read re-assignment. The assignment of reads based on their mapping scores 
while trying to stay true to the estimated abundance levels can be modeled as a vari-
ant of the Weapon-Target Assignment (WTA) problem [35]. Given different weapons 
that are to be fired on a set of different targets, the objective is to find which weapons 
should be assigned to which targets to minimize the expected remaining health of the 
targets. Formulating it as a non-linear problem, let {T1,T2, . . . ,TN } be the set of targets 
and {W1,W2, . . . ,WM} be the set of different weapons. For each weapon type Wi , there 
are wi number of it and each has probability pij to destroy the target Tj . After assigning 
xij of weapon Wi to target Tj , the probability that Tj survives is M

i=1(1− pij)
xij . Thus the 

WTA problem aims to minimize the following non-linear problem with constraints:

Instead of selecting which weapons to assign to which targets to maximize expected 
damage, we are selecting which reads to assign to which references to maximize like-
lihood. Let Rj represent a reference genome, ri represent a read, and pij represent the 

L(θ |Q) =
∏

ri∈Q

M
∑

j=1

Pr(Rj|θ)Pr(ri|Rj),

minG(x) =min

( N
∑

j=1

M
∏

i=1

(1− pij)
xij

)

,

N
∑

j=1

xij ≤ wi, xij ∈ Z
+.
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probability that ri comes from Rj is true, calculated in the same way as for abundance 
estimation. To model our metagenomic problem as the WTA problem, we have three 
assumptions: 

1. Every reference Rj appears aj ·M times in the set of references, where aj is the esti-
mated abundance of Rj and M is the total number of reads. The value of aj ·M is 
approximated to the nearest integer.

2. Every read maps to some reference genome.
3. Every read is unique, so wi = 1 for i = 1, . . . ,M.

These three assumptions result in the re-assignment problem being formulated as the 
following minimization problem with constraints:

The second sum shows that there are aj ·M of reference Mj and the xi,(j,k) is how much 
of read ri we assign to the kth copy of reference Mj . This model is more punishing against 
undershooting compared to overshooting as over-assigning reads to a reference does not 
decrease the objective function F(x). This is desirable as it is better to identify all the low-
abundance genomes and undershoot the most abundant genome than to not identify the 
low-abundance genomes. As leaving a read un-assigned and assigning it to a very wrong 
reference both contribute a value of 1 to the objective function F(x), the assumption that 
every read maps to some reference is needed to prevent large numbers of false positives. 
Using Eq. (1), we can now use optimization methods to get exact solutions, though this 
is not very practical given the bad runtime scaling for large data sets.

As this is an NP-hard problem [35], Mora uses a greedy algorithm that finds a relatively 
good solution. Mora views each reference as a bin with a fixed space capacity. Every 
time a read is assigned to a reference, the available capacity of the reference decreases. 
Once the capacity of a reference is full, no other read can be assigned to that reference 
unless something is taken out. The capacity Cj of a reference Rj is Cj = aj + 1/M . As the 
amount of space each read takes up is 1/M, this implies that Mora at most over-assigns 
a single read to each reference. As reads get assigned to the references, the references Ri 
can be represented as a list of assignments A(Ri) containing the reads that have already 
been assigned to it.

where rik represents a read, sik ,i is the corresponding mapping score between rik and Ri , 
and n is the current number of reads that have been assigned to Ri . The list is ordered 
using sik ,i ≥ si(k+1),i and the capacity limitation is nM < Ci . If n+1

M ≥ Ci , we say that the ref-
erence Ri is full. Similarly, the reads rj can be represented as a list of potential mappings 
M(rj).

(1)

min F(x) =min





N
�

j=1





aj ·M
�

k=1

M
�

i=1

(1− pij)
xi,(j,k)









N
�

j=1

aj ·M
�

k=1

xi,(j,k) ≤ 1, xij ∈ Z
+.

(2)A(Ri) = {(ri1 , si1,k), (ri2 , si2,k), ..., (rin , sin,k)}
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where the list is ordered such that sj,jk ≥ sj,j(k+1)
 . The total score of a read rj is defined to 

be

which gives us, by definition, that pij =
si,j

T (ri)
.

Mora assigns the reads in terms of priority. A read ri is given priority 1 if the read 
maps to only one reference. A read ri is given priority 2 if the ratio of the second best 
score to the best score is less than a threshold. By default, this threshold is 0.5 but can 
be changed. A read is given priority 3 if it doesn’t satisfy the conditions of being prior-
ity 1 or priority 2. Once priority values are assigned, the priority 1 reads are assigned, 
followed by priority 2 reads, and then priority 3 reads.

Priority 1 reads are assigned to the unique reference they map to. For priority 2 
reads, they are first sorted from highest best mapping score to lowest best mapping 
scores. In this order, the reads are assigned to the reference with the best mapping 
score if that reference has space. If the reference is at full capacity, the read is rela-
beled as a priority 3 read. When assigning priority 3 reads, all mappings between the 
priority 3 reads and references that still have space are sorted in terms of the score 
into a list. The reads are then assigned in order of this list, or left over for a second 
round of assignment if all of its potential references are full. After the initial assign-
ment is done, Mora will try to “open up space” in a reference to assign leftover reads.

Definition 1 For a read ri and (Rj , si,j) ∈ M(ri) , Rj can open up space for ri if it is 
full and there exists a (rk , sk ,j) ∈ A(Rj) such that rk can be moved to another reference 
(Rl , sk ,l) ∈ M(rk) with the condition that

Using the notation in this definition, we have the following theorem.

Theorem 1 If ri is a read and Rj is a reference that can open up space for ri by re-assign-
ing rk to another reference Rl , then doing so and then assigning ri to Rj decreases the value 
of F(x) from Eq. (1).

Proof The act of performing this re-assigning rk from Rj to Rl and then assigning ri to 
Rj is equivalent to changing from [xij , xkj , xkl] = [0, 1, 0] to [x∗ij , x

∗
kj , x

∗
kl] = [1, 0, 1] . Since 

pij =
si,j

T (ri)
 , the last condition of being able to open up space gives us that

The right side can be written as

(3)M(rj) = {(Rj1 , sj,j1), (Rj2 , sj,j2), ..., (Rjm , sj,jm)}

T (ri) =
∑

(Ra,si,a)∈M(ri)

si,a

(4)
si,j

T (ri)
−

sk ,j

T (rk)
≥

sk ,j

T (rk)
−

sk ,l

T (rk)
.

pij − pkj ≥ pkj − pkl =⇒ (1− pij)+ (1− pkl) ≤ 2(1− pkj) ≤ 1+ (1− pkj).

(1− pij)
x∗ij + (1− pkj)

x∗kj + (1− pkl)
x∗kl ≤ (1− pij)

xij + (1− pkj)
xkj + (1− pkl)

xkl .
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Since there is space in Rl , changing the three values xij , xkj , xkl doesn’t result in the invali-
dation of any constraints and doesn’t affect any other terms in the sum of F(x). Thus, 
performing the re-assignment causes a decrease in the value of F(x).   �

If space cannot be opened up in Rj1 , Mora will try to open up space in Rj2 , and so on. If 
space cannot be opened for any of the references the read maps to, the read will be left 
to the end and be left un-assigned.A simple example of this greedy algorithm is shown 
in Fig. 2.

Evaluation metrics

Genomes are classified as the same species or genus depending on the taxonomic infor-
mation listed in NCBI. Taxonomic information of the data is obtained from NCBI 
Taxonomy’s FTP database (/pub/taxonomy/accession2taxid/) using the live and dead 
nucleotide sequence records. Genomes are classified as the same strain if their accession 
numbers are the same. The calculation of the accuracy metrics only considers reads that 
were successfully aligned by the first assignment algorithm. This allows us to evaluate 
the re-assignment algorithms without having the results be affected by the first assign-
ment algorithms.

Read assignment accuracy on the simulated data sets is measured using F1 score, sen-
sitivity, and precision. Let ri be a read generated from a reference Ri . At any taxonomic 
rank, ri is labeled as a true positive if it is mapped to reference Rj that agrees with Ri 
at that taxonomic rank. If Ri and Rj do not agree at that rank, then ri is labeled a false 
positive. If ri is not assigned to anything, it is not labeled as anything. For example, a read 
generated from Escherichia coli with accession number CP0001, assigning it to Escheri-
chia coli with accession number CP0005 would be a true positive for the species and 
genus rank, but a false positive at the strain rank. Assigning it to Escherichia fergusonii 
with accession number CP1001 would be a true positive at the genus rank, but a false 
positive at the strain and species rank.

For a taxonomic rank, let TP be the total number of true positives for that rank and let 
FP be the total number of false positives for that rank. We define

where M is the total number of reads. The F1 score is defined to be the harmonic mean 
of sensitivity and precision. The l1 score for final abundances is the sum of absolute value 
of the differences between the resulting abundance levels and the real abundance levels.

Data simulation and availability

30 E. coli genomes assemblies were downloaded from NCBI Assembly and combined 
to form 58 E. coli strains. The three strains 2009C-3133, SQ110, and C43(DE3) were 
chosen randomly to simulate short reads 1.37 million 150 bp pair-end short reads. 
The reads were simulated according to a uniform distribution using art_illumina [36] 
with the default parameters for pair-end reads. The simulated 26.6 million 75 bp pair-
end short read data from REF-1 was obtained from [30], where it was simulated using 

Sensitivity =
TP

M
, Precision =

TP

TP + FP
.
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iMESS_Illumina with a skewed distribution. For the simulation of long reads, Badread 
[31] was used with the default parameters corresponding to mediocre Oxford Nanop-
ore2020 reads with quantity 100 M. The read distribution is uniform and proportional to 
the length of the references.

The real E.coli data for the strains INF32/16/A, INF191/17/A, and INF13/18/A can be 
found at SRR15443628, SRR15497613, and SRR10587526 respectively. The ATCC MSA-
1003 mock community dataset (PRJNA546278: SRX6095783) can be found on SRA.

For a use-case, the E. coli reads and references are available at https:// github. com/ 
AfZhe ng126/ MORA- data. The full Additional file 1: appendix tables of scores, time, 
and memory usage for the different simulations are also available in the same reposi-
tory as the E. coli reads/reference data.

Conclusion
In this work, we presented Mora, a new flexible algorithm and pipeline for assigning 
reads at the strain level. Mora takes as input an alignment file and re-assigns the reads 
to strains by (1) estimating abundance information and (2) modelling the re-assignment 
problem as a discrete non-linear minimization problem for which Mora’s heuristic solu-
tion has provable guarantees. We showed that Mora performs well compared to other 
read assignment algorithms, but truly shines on reads from very similar strains.

Additionally, we showed that Mora is fast and practical to use, even on large data-
sets, with speeds and memory usage several times better than AugPatho2. Though the 
speed of the full pipeline is slower than Kraken2 and Clark and has lower scores at the 
species and genus level, it makes up for it this with higher F1 scores at the strain level 
on all types of reads, especially on reads from similar strains.

We found that there is a surprising lack of well-engineered tools that deal with the 
specific problem of sensitive read re-assignment to the strain level. Thus we designed 
Mora using general mathematical formulations, leading to it working well on many 
kinds of data. Furthermore, Mora is engineered to be modular and easy to use—the 
minimal input required is just a single SAM/BAM file. Thus we believe that Mora will 
be a useful tool for researchers interested in studying strain-level read information 
from metagenomic sequencing data.
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