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Background
Proteins are the most significant components of living organisms and have very 
important biological functions, participating in gene regulation, cellular metabo-
lism, and are the main bearers of biological life activities. Proteins are subdivided into 
essential and non-essential proteins, among which, essential proteins are particularly 
important for life activities, and their absence can lead to the failure of the organism 
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to survive [1]. In addition, essential proteins are associated with human disease-caus-
ing genes, and their identification and analysis can help in the design of drug targets.

Early studies of essential proteins were mainly conducted by wet experimental 
methods such as RNA interference [2], single gene knockout [3] and conditional gene 
knockout [4], which often have the drawbacks of being expensive and time-consum-
ing, therefore, the identification of essential proteins by computational methods has 
become the current trend.

Node ranking methods are commonly used to identify essential proteins in the pro-
tein–protein interaction network (PIN). Initially, researchers used network-based 
centrality methods to identify essential proteins in the original PIN (static PIN) [5], 
such as degree centrality (DC) [6], local average connectivity centrality (LAC) [7], 
node clustering centrality (NC) [8], maximum neighborhood component density cen-
trality (DMNC) [9], topological potential centrality (TP) [10], neighbor interaction 
density centrality (LID) [11], closeness centrality (CC) [12], betweenness centrality 
(BC) [13], pagerank centrality (PR) [14], leaderrank centrality (LR) [15], etc.

However, the centrality methods only use the topological features of protein inter-
action networks for assessing the importance of proteins, and thus it’s difficult to 
obtain desired predictive performance. In recent years, researchers tended to inte-
grate multiple biological information of proteins to help identify essential proteins 
more accurately. For example, Li [16] et al. and Tang [17] et al., proposed the PeC and 
the WDC methods by integrating the degree of co-expression between protein pairs 
in gene expression profiles and the edge clustering coefficients of their interactions. 
Qin et  al. [18] proposed the LBCC method, which is based on network topological 
features and protein complex; Li et al. [19] pointed out that proteins in complex are 
more likely to be essential than proteins not present in the complex, and they pro-
posed the UC method by combining protein complexes and topological features of 
PINs. Lei et al. [20] proposed the PCSD method that fuses the degree of protein com-
plex involvement and subgraph density. Zhong et al. [21] used a dynamic threshold 
method to binarize gene expression values and proposed the JDC method to combine 
the co-expression states and edge clustering coefficients of protein pairs at multiple 
times.

Although these node ranking methods have made great progress in identifying essen-
tial proteins, most of them require the use of topological information of proteins in the 
PIN for identification of essential proteins, especially network-based centrality methods, 
which are highly dependent on the accuracy of the underlying PINs. However, most of 
the PINs obtained from high-throughput experiments have been found to contain false 
positives or false negatives [22], which may somewhat interfere with the identification 
accuracy of essential proteins by most node ranking methods.

To improve the identification accuracy of essential proteins, some researchers used 
biological information of proteins to filter out unreliable interactions between proteins 
in the PIN, thereby constructing a refined PIN to identify essential proteins for node 
ranking methods. For example, based on static PIN (S-PIN), Xiao et  al. [23] removed 
from it some unreliable interactions by determining whether protein pairs were activated 
at the same time in terms of gene expression level data, and constructed a once-refined 
PIN (D-PIN). Subsequently, Li et al. [24] further removed some unreliable interactions 



Page 3 of 26Pan et al. BMC Bioinformatics          (2024) 25:157  

from the DPIN by determining whether protein pairs appeared in the same subcellular 
compartment, and constructed a twice-refined PIN (RD-PIN).

Nevertheless, some researchers pointed out that PINs have modular characteristics 
[25–27], the essentiality of a protein is not only related to the protein itself, but also to 
the functional module in which the protein is located, and proteins within modules have 
higher similarity than those in other modules. Furthermore, Zotenko et al. [28] found 
that in PINs, a large number of essential proteins may be present in highly dense func-
tional modules. The aforementioned studies focused only on the edges between protein 
nodes to refine the network, ignoring the modularity feature of PINs. Therefore, it is still 
a question worth exploring how to better utilize the modularity feature of PINs to con-
struct an efficient PIN and improve the performances of node ranking methods.

For the identification of community structure in complex networks, researchers have 
proposed a series of module discovery algorithms. For example, algorithms based on 
modularity [29, 30] and information-theoretic framework [31] can divide non-over-
lapping modules in complex networks; while the modules discovered by using clique-
percolation based [32] and edge-clustering based [33] methods can be overlapping. In 
particular, in recent studies, some researchers have made use of network structure and 
node attributes to cluster complex networks more accurately [34–36]. For example, Hu 
et al. [35] and Yang et al. [36], developed two fuzzy-based graph clustering algorithms 
that well take into account the key dependencies between node embedding and resulting 
clustering. In our study, a modularity-based Fast-unfolding algorithm was used to parti-
tion PINs into modules and analyze the differences between modules.

We found that the biological and topological information contained in different mod-
ules of PIN varies greatly. For example, some modules are dense but contain few essen-
tial proteins, which may be counterproductive for identifying essential proteins in the 
PIN. Therefore, the identification and selection of critical modules is of great signifi-
cance for the construction of higher quality PINs. That is to say, if the network can be 
refined properly in combination with the modularity of the PIN, the performance of the 
node ranking method in the PIN may be improved more effectively.

Based on this, in this paper, we proposed a network refinement method based on 
module discovery and biological information to improve the identification accuracy of 
essential proteins for node ranking methods. The idea is, for a PIN, firstly, to remove 
the interactions in some small connected subgraphs from the PIN; secondly, to divide 
the maximal connected subgraph into several closely connected modules by the Fast-
unfolding algorithm that fuses the modularity; thirdly, to select the critical modules by 
combining orthologous information and subcellular localization information of proteins 
and topological features of each module; finally, to construct a more refined PIN (CM-
PIN) according to the selected critical modules.

To evaluate the effectiveness of the network refinement method proposed in this 
paper, two different species of Saccharomyces cerevisiae and Human sapiens were 
used for validation. We applied 12 node ranking methods (LAC, DC, DMNC, NC, 
TP, LID, CC, BC, PR, LR, PeC, WDC) on the S-PIN, D-PIN, and RD-PIN, and com-
pared the results with those on the CM-PIN obtained on these networks, respectively. 
The experimental results showed that in terms of the identification number of essen-
tial proteins at top 100–600, Jackknifing method, the area under the precision-recall 
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curves, sensitivity, specificity, positive predictive value, negative predictive value, 
F-measure, Matthews correlation coefficient and accuracy, the performances of the 
12 node ranking methods on the CM-PIN are optimal. All of these prove that the 
network refinement method proposed in this paper can obtain a more efficient PIN, 
which is conducive to improve the identification accuracy of essential proteins for 
node ranking methods, and is superior to the existing refinement networks (D-PIN 
and RD-PIN).

Methods
In this section, first, we described how to build these three protein interaction net-
works: S-PIN, D-PIN, and RD-PIN. Second, we described how to screen the critical 
modules by the biological information of proteins and the topological features of each 
module, and constructed CM-PINs, on S-PIN, D-PIN, and RDPIN respectively, the 
overall steps of this approach were shown in Fig. 1.

Fig. 1 The overall steps of the construction of the CM-PIN. First, in the block of construction of D-PIN and 
RD-PIN, we combined static PIN (S-PIN) and gene expression profile to construct D-PIN, and then further 
combined subcellular localization information to construct RD-PIN. In this paper, corresponding CM-PINs 
will be constructed based on these networks. Secondly, in the block of construction of CM-PIN, the Step 
1 is to extract the maximum connected subgraph of a given PIN; the Step 2 is to divide the maximum 
connected subgraph into several modules using the Fast-unfolding algorithm; and the Step 3 is to identify 
critical modules using the biological (orthologous information and subcellular localization information) and 
topological information of proteins; the Step 4 is to refine the given PIN and construct the CM-PIN according 
to the identified critical modules
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S‑PIN, D‑PIN and RD‑PIN

A static protein–protein interaction network (S-PIN) [37–39], is an undirected graph 
GS = (VS, ES), where VS represents the set of proteins and ES represents the set of protein 
interactions.

A dynamic protein–protein interaction network (D-PIN) [23] is an edge-induced 
subgraph GD = (VD, ED) of the S-PIN in terms of the gene expression levels of proteins, 
where VD = VS and ED ⊆ ES. Let eik denotes the value of gene expression level of vi at time 
point tk. If eik is greater than τi, then vi is active at time point tk. for any (vi, vj) ∈ ES, if both 
vi and vj are activated at time point tk, the interaction between them is preserved in ED, 
otherwise it is removed from ED. The activity threshold τi of protein vi was calculated by 
using the following equation [25]:

where μi denotes the mean of the n time-point gene expression level values of the pro-
tein and σi is the standard deviation of the gene expression level values of vi. In this 
paper, n = 36 for Saccharomyces cerevisiae and n = 64 for Human sapiens.

A refined dynamic protein–protein interaction network (RD-PIN) [24] is an edge-
induced subgraph GRD = (VRD, ERD) of the D-PIN in terms of subcellular localization 
information of proteins, where VRD = VD and ERD ⊆ ED. Let L(vi) = {l1(vi), …, lm(vi), …, 
lr(vi)} be the 11 subcellular localization statuses of protein vi, where r = 11. If vi is in the 
mth subcellular compartment, then lm(vi) = 1, otherwise lm(vi) = 0. For any (vi, vj) ∈ ED, 
only when lm(vi) = lm(vj) = 1, the interaction between vi and vj will be preserved in ERD, 
otherwise their interaction will be removed from the ERD.

Construction of the CM‑PIN

The construction of the CM-PIN consists of four steps (the following steps are consist-
ent with Fig. 1):

Step 1: retaining interactions in maximal connected subgraphs, that is, to remove the 
interactions in the remaining small connected subgraphs of the given PIN;
Step 2: module discovery based on Fast-unfolding algorithm, that is, to divide the 
obtained maximum connected subgraph into several modules using the Fast-unfold-
ing algorithm;
Step 3: detecting critical modules,that is, to screen out critical modules by using bio-
logical and topological information of modules;
Step 4: refining the protein–protein interaction network, that is, to remove the inter-
action of non-critical modules in the original PIN and construct the CM-PIN.

The construction process of the CM-PIN is described in the following algorithm.

(1)τi = µi + σi

(2)µi =
n
k=1

eik

n

(3)σi =

√

∑n
k=1

(eik − µi)
2

n
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Algorithm: Construction of the CM‑PIN 

Step 1: retaining interactions in maximal connected subgraphs

It has been found that PINs have scale-free properties [40, 41]. The scale-free prop-
erty means that the degrees of the nodes in PIN obey a power-law distribution, so PIN 
belongs to a scale-free network. Considering that PIN is a disconnected graph and 
consists of several connected subgraphs, where most of the proteins and their interac-
tions are present in a maximal connected subgraph, while the number of proteins and 
their interactions in some remaining connected subgraphs are very small. As shown in 
Table 1, we counted the proportion of interactions in the maximal connected subgraphs 
of the YDIP, YBioGRID and HDIP datasets to the original network interactions.

Table 1 The proportion of interactions in the maximal connected subgraphs to the original 
network interactions on YDIP, YBioGRID and HDIP datasets

Networks YDIP YBioGRID HDIP

S-PIN 15,123/15,166 = 99.72% 52,832/52,833 = 99.99% 6412/6892 = 93.04%

D-PIN 9436/9514 = 99.18% 32,730/32,735 = 99.98% 3974/4414 = 90.03%

RD-PIN 4953/5175 = 95.71% 18,330/18,362 = 99.83% 2191/2508 = 87.36%
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Step 2: module discovery based on Fast‑unfolding algorithm

It has been shown that PINs have modular properties [25, 26], and the modularity 
reflects the presence of highly connected protein clusters in PINs. So far, the cluster-
ing of protein interaction networks is an effective method for module delineation. In 
the paper, the Fast-unfolding module discovery algorithm, a hierarchical clustering 
method, is used for module division of the PIN.

The purpose of module partitioning is to make the connections within the parti-
tioned modules tighter and the connections between modules sparser. In order to 
evaluate whether the module division is feasible, Newman et  al. [29] proposed the 
concept of modularity. Defining eii as the ratio of the sum of all connected edges 
within module i to the total number of edges in the network and ai as the ratio of the 
total number of neighboring nodes of nodes within module i to the total number of 
edges, the modularity Q can be expressed as:

A larger modularity represents a tighter connection within the module, and con-
versely, a smaller modularity represents a sparser connection within the module, 
and when the modularity Q reaches its maximum value, the division of modules is 
optimal.

Blondel et  al. [30] proposed a Fast-unfolding algorithm for discovering module 
structures on large networks, which is a heuristic algorithm based on modularity 
optimization. Compared with traditional module discovery algorithms, Fast-unfold-
ing has lower time complexity on large-scale networks and stable results for module 
partitioning, which is the reason why this algorithm is chosen to partition modules 
in this paper. The implementation steps of Fast-unfolding algorithm are as follows: 
first, initialization, divide each protein node into different modules; second, for each 
protein node, try to divide it into the module where its neighboring nodes are located, 
calculate the modularity Q at this time, and judge whether the difference ΔQ between 
the modularity before and after the division is positive, if it is positive, accept this 
division, if not, abandon this division; third, repeat the above process until the modu-
larity Q can no longer be increased, then the division of modules is completed, and 
C = {c1, c2, …, ci, …, cm} is the set of modules and m is the number of module divisions. 
It is worth noting that the divided modules are non-overlapping.

Step 3: detecting critical modules

To determine the importance of each module, we used three features (i.e., ortholo-
gous information, subcellular localization information, and topological information 
of the module) to score each module in the PIN.

(1) Determine the importance of modules using orthologous information of 
proteins.

Studies have shown that essential proteins evolve much more slowly than non-
essential proteins [42], i.e., essential proteins are more conserved. We believe that the 
modules containing more conserved proteins are more likely to be critical, and the 

(4)Q =
∑

i
(eii − a2i )
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conserved properties of proteins can mainly be found in the orthologous information 
of proteins. Therefore, we calculate the Pearson correlation coefficient between each 
module and the protein orthologous information in the PIN as the first score of the 
module. For protein vi, let O(vi) represent the set of reference organisms in which at 
least an orthologous protein pair including vi occurs, |O(vi)| is the orthologous score 
of vi, and the vector consisting of orthologous scores of all proteins in the PIN is rep-
resented by y. For a module ci, its vector is represented as xi that only contains 0 and 
1 (1 if the protein is in the module ci, 0 otherwise). The Pearson correlation coefficient 
PC(ci) between module ci and the orthologous scores is:

where n is the number of proteins in the PIN, and μxi and μy are the mean values of xi 
and y. Thus, the set of possible critical modules selected based on the orthologous infor-
mation of the proteins within the module is denote as C_orth = {ci|PC(ci) ≥ th1}, where 
th1 is a threshold value.

(2) Determine the importance of modules using subcellular localization information of 
proteins.

The importance of the protein is not only related to the orthologous information of the 
protein, but also to the subcellular localization information of the protein, which can iden-
tify the critical modules in the PIN from another perspective. We observed the number of 
times proteins and essential proteins were present in each subcellular compartment, and 
found that proteins and even essential proteins were most widely distributed in the nucleus. 
Therefore, we thought that the more times proteins within the module were present in the 
nucleus, the more likely that module was critical. For the module ci, we calculate the num-
ber of times the protein in module ci occurs in the nucleus as its second score, denoted by 
NSL(ci):

where N(ci) is the number of times the protein within the module appears in the nucleus 
and n(ci) is the number of nodes within the module. The set of the possible critical mod-
ules selected based on the subcellular localization information of the proteins within the 
module is represented by C_sub = {ci|NSL(ci) ≥ th2}, where th2 is a threshold value.

(3) Determine the importance of modules using topological characteristics of modules.
To identify the importance of the module, we also used the topological characteristics of 

each module in the network. It has been pointed out that a large number of essential pro-
teins may exist in highly dense functional modules [28]. Thus, we thought that the richer 
the interactions within the module, the more likely it is to play an important role in the 
whole network, so we calculated the topological characteristics of module ci as its third 
score, denoted by TF(ci):

(5)PC(ci) =

∑n
j=1

(xij − µxi)(yj − µy)
√

∑n
j=1

(xij − µxi)
2
∑n

j=1
(yj − µy)

2

(6)NSL(ci) =
N (ci)

n(ci)

(7)TF(ci) =
I(ci)− O(ci)

n(ci)
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where I(ci) is the number of interactions inside module ci, O(ci) is the number of inter-
actions between module ci and other modules, and n(ci) is the number of nodes of 
module ci. And according to the topological characteristics of the module, modules 
less than th3 are selected as the set of potentially non-critical modules, that is, C_
topo = {ci|TF(ci) ≤ th3}, where th3 is a threshold value.

Step 4: refining the protein–protein interaction network

Finally, we integrated the above three features of the modules to obtain the final selected 
critical modules, that is, C_critical = {ci|C_orth ∪ (C_sub/C_topo)}. For a PIN (S-PIN, 
D-PIN or RD-PIN) G = (V, E), ∀(vi, vj) ∈ E, if vi and vj are both in the critical modules C_
critical, their interaction will be retained, otherwise their interactions will be removed 
from the E, thus obtain the finally refined ECM, resulting in a more refined CM-PIN, 
GCM = (VCM, ECM), where VCM = V.

Experiment and discussion
Materials and datasets

We first performed a complete experiment using the Saccharomyces cerevisiae dataset, 
as this dataset is currently the most complete of all species and has been widely used to 
test various methods for identifying essential proteins. Then, we used the Human sapi-
ens dataset to verify the validity of the proposed method.

Protein–protein interaction datasets and essential proteins

The two protein–protein interaction datasets from Saccharomyces cerevisiae used in 
this paper were downloaded from YDIP [43] and YBioGRID [44], which contain 15,166 
and 52,833 interactions, respectively, covering 4746 and 5616 proteins. A dataset of pro-
tein–protein interactions from Homo sapiens was downloaded from HDIP [45], which 
contains 6892 interactions covering 4615 proteins. Essential proteins were collected 
from the following data sets [46–48]: DEG, MIPS, SGD, OGEE. The YDIP, YBioGRID, 
and HDIP datasets contain 1130, 1199 and 726 essential proteins, respectively.

Other biological information

(1) Gene expression profile: The gene expression profiles of the yeast and human datasets 
were downloaded from GSE3431 [49] and GSE86354 [50], respectively, containing 6,777 
and 18,912 proteins. GSE3431 dataset records the observation data of 36 time points 
during three successive metabolic cycles and GSE86354 dataset records expression pro-
files across 8 tissue including 64 time points. (2) Subcellular localization information: 
Subcellular location information for both species was downloaded from the COMPART-
MENTS dataset [51], which both contain 11 subcellular compartments. (3) Orthologous 
information: Information on orthologous proteins of yeast and human was taken from 
Version 7 [52] and Version 8 [53] of the InParanoid database, which contain 100 and 162 
genome-wide paired comparison sets, respectively.

Node ranking methods

To verify the performance of the CM-PIN, we used 12 typical node ranking methods 
(DC [6], LAC [7], NC [8], DMNC [9], TP [10], LID [11], CC [12], BC [13], PR [14], LR 
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[15], PeC [16], WDC [17]) and compared their performances of the identification of 
essential proteins on the CM-PIN with that on the S-PIN and two existing refinement 
networks (D-PIN [23] and RD-PIN [24]). The node ranking method will first calculate 
the importance scores of all protein nodes in the network according to its formula, then 
rank the proteins in descending order according to the importance scores, and finally a 
part of highly ranked proteins will be considered as essential proteins.

Experimental results and analysis on Saccharomyces cerevisiae

Analysis of the number of essential proteins identification

In order to prove that the network refinement method proposed in this paper can effec-
tively improve the number of essential proteins identified by each node ranking method, 
we obtained more efficient CM-PINs on the SPIN, DPIN and RDPIN of the YDIP and 
YBioGRID datasets, respectively. And the numbers of essential proteins identified by 
node ranking methods at top 100, top 200, top 300, top 400, top 500, and top 600 on the 
CM-PIN were compared with their performance on the S-PIN, D-PIN, and RD-PIN, as 
shown in Tables 2 and 3. We denoted CM-PIN refined from S-PIN (D-PIN or RD-PIN) 
by CM-PIN(S) (CM-PIN(D) or CM-PIN(RD)), and marked the optimal item in bold 
when comparing two or more items in all subsequent tables.

It can be seen that the CM-PIN can significantly improve the identification accuracy of 
essential proteins by node ranking methods on yeast datasets, whether it is static PIN or 
refined PIN, and the values of top 100-top 600 on the CM-PIN are higher than those of 
the other three existing PINs. Compared with different PINs, the average improvement 

Table 2 Comparison of the number of essential proteins identified by 12 node ranking methods on 
the S-PIN, D-PIN, RD-PIN and the CM-PIN at top 100–600 on YDIP dataset

Methods S‑PIN CM‑PIN(S) D‑PIN CM‑PIN(D) RD‑PIN CM‑PIN(RD)

LAC [82,144,195,
251,300,347]

[82,144,201,
263,314,366]

[77,147,202,
271,318,362]

[81,154,219,
275,330,377]

[76,147,207,
264,315,363]

[83,157,225,
288,341,391]

DC [55,102,152,
202,256,300]

[66,121,190,
241,282,337]

[59,120,172,
227,276,323]

[73,142,204,
259,318,363]

[71,136,200,
259,314,369]

[80,152,219,
281,343,398]

DMNC [61,116,149,
192,249,292]

[61,119,163,
215,274,339]

[61,131,164,
219,274,316]

[69,136,185,
255,308,357]

[61,120,164,
204,275,338]

[72,145,199,
273,330,386]

NC [78,143,200,
250,290,337]

[84,147,208,
260,309,355]

[81,141,207,
261,310,342]

[86,155,215,
275,320,375]

[80,145,205,
259,308,346]

[84,154,226,
287,339,390]

TP [55,106,150,
194,236,282]

[64,120,179,
235,280,323]

[59,118,174,
220,268,310]

[70,140,205,
262,314,356]

[72,134,198,
260,322,372]

[79,154,221,
283,341,395]

LID [82,142,199,
251,303,347]

[82,142,206,
260,316,354]

[83,149,214,
271,317,364]

[86,155,226,
281,337,385]

[82,151,214,
265,316,371]

[85,156,227,
292,353,405]

BC [48,83,123,
164,207,247]

[51,107,160,
210,253,292]

[52,93,135,
177,215,250]

[62,114,165,
210,259,290]

[54,110,160,
213,262,305]

[67,127,189,
228,280,324]

CC [49,90,134,
178,225,263]

[57,107,159,
203,256,290]

[53,103,143,
188,230,264]

[65,121,173,
211,266,304]

[67,120,171,
227,282,339]

[70,126,179,
242,304,365]

PR [51,94,145,
190,246,291]

[61,116,178,
232,277,326]

[55,103,153,
206,255,303]

[67,129,187,
244,295,344]

[60,110,182,
233,283,327]

[70,140,205,
260,315,368]

LR [58,104,151,
194,234,269]

[65,123,173,
215,255,290]

[60,108,149,
196,230,265]

[66,127,177,
213,254,304]

[69,125,173,
209,244,291]

[78,135,181,
230,277,335]

PeC [74,141,202,
250,296,331]

[83,160,220,
277,322,359]

[73,138,198,
250,301,335]

[85,159,220,
279,323,364]

[75,149,199,
255,298,339]

[85,164,226,
281,331,369]

WDC [76,146,218,
268,321,367]

[82,158,227,
282,340,386]

[74,146,208,
262,316,358]

[84,161,223,
289,337,386]

[80,150,213,
284,328,369]

[88,166,236,
303,353,397]
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ratio of 12 node ranking methods at top 600 on YDIP and YBioGRID datasets was: 
9.82% and 20.58% for the CM-PIN refined on the S-PIN; 11.30% and 15.15% for the CM-
PIN refined on the D-PIN; 9.65% and 7.79% for the CM-PIN refined on the RD-PIN. 
And even some node ranking methods have a significant improvement, for example, 
compared with the S-PIN, the BC method has improved by 18.22% at top 600 on the 
CM-PIN on YDIP dataset; compared with the D-PIN, the CC method has improved by 
56.74% at top 600 on the CM-PIN on YBioGRID dataset. In addition, the LID method 
was able to identify 405 essential proteins at top 600 on the CM-PIN refined on the RD-
PIN on YDIP dataset, which has a very high identification accuracy. All of these illus-
trated the effectiveness of our method and demonstrate that CM-PIN is a more refined 
and effective network.

It is worth noting that the focus of this paper is to improve the overall performance of 
node ranking methods, so we pay more attention to the accuracy of these methods at top 
1130 for YDIP (top 1199 for YBioGRID, or top 7,26 for HDIP). Meanwhile, the accuracy 
at top 100 can also receive a certain increase at this case. On the other hand, if we want 
to focus on the improvement of the performance at the top 100, we can also achieve 
good results in the accuracy of the top 100 by adjusting the parameters of our method 
appropriately. For example, when setting the parameters th1 = 0.1, th2 = 2, and th3 = −2, 
the CM-PIN(RD) for YBioGRID can significantly improve the top 100 values of the node 
ranking methods. However, their top 1199 values will decline to a certain extent at this 
time. Therefore, the readers can strengthen the specified performance index by adjusting 
the parameters according to their own concerns.

Table 3 Comparison of the number of essential proteins identified by 12 node ranking methods on 
the S-PIN, D-PIN, RD-PIN and the CM-PIN at top 100–600 on YBioGRID dataset

Methods S‑PIN CM‑PIN(S) D‑PIN CM‑PIN(D) RD‑PIN CM‑PIN(RD)

LAC [43,104,159,
217,277,325]

[43,123,189,
256,314,351]

[54,100,175,
236,287,334]

[54,138,209,
265,316,365]

[57,103,180,
241,290,339]

[57,137,215,
271,323,380]

DC [54,99,149,
208,254,298]

[55,110,181,
241,295,343]

[55,108,172,
231,278,310]

[56,122,189,
254,295,339]

[61,128,196,
244,289,341]

[62,129,205,
261,317,367]

DMNC [25,81,144,
183,225,267]

[46,107,173,
227,274,316]

[34,94,161,
204,251,303]

[55,126,190,
237,292,332]

[28,95,157,
207,253,307]

[55,132,191,
237,295,350]

NC [42,110,165,
217,270,321]

[44,130,192,
257,317,370]

[53,108,176,
245,299,343]

[55,135,216,
274,320,375]

[56,109,183,
245,300,347]

[57,140,215,
278,328,379]

TP [48,86,132,
180,218,250]

[57,108,171,
227,283,332]

[45,105,147,
186,221,252]

[55,115,178,
237,293,329]

[70,134,192,
247,302,339]

[70,136,196,
249,300,341]

LID [43,103,157,
219,276,324]

[43,122,189,
259,319,357]

[55,99,173,
243,287,334]

[55,137,212,
269,312,364]

[57,102,179,
247,293,340]

[57,138,217,
273,326,374]

BC [47,95,141,
175,204,248]

[69,129,175,
232,270,317]

[47,86,141,
186,222,259]

[54,110,159,
209,262,304]

[41,81,123,
174,216,260]

[47,89,138,
190,229,279]

CC [39,69,99,
128,161,184]

[61,104,151,
197,249,292]

[31,63,89,
115,140,178]

[51,97,146,
193,241,279]

[50,91,143,
193,237,273]

[50,91,141,
197,239,273]

PR [51,106,150,
190,238,286]

[64,120,177,
239,286,341]

[55,105,156,
201,257,298]

[60,113,176,
232,285,333]

[61,121,179,
226,264,307]

[64,131,183,
238,278,336]

LR [54,99,133,
165,197,226]

[59,105,157,
202,241,276]

[54,99,141,
164,190,223]

[62,102,141,
184,222,226]

[56,112,152,
184,218,253]

[58,116,161,
196,232,266]

PeC [59,97,172,
232,280,325]

[61,135,202,
261,309,352]

[60,101,174,
230,278,317]

[61,134,203,
256,305,341]

[63,101,176,
235,286,327]

[63,138,207,
263,314,354]

WDC [53,110,163,
229,283,326]

[56,126,199,
262,311,362]

[56,115,169,
235,283,323]

[58,131,210,
263,313,355]

[60,108,186,
248,292,347]

[62,135,213,
273,328,381]
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Validated by using the Jackknifing method

In order to evaluate the overall performance of CM-PIN more comprehensively, we 
used the Jackknifing method [24, 54]. The horizontal axis of the Jackknifing plot indi-
cates the number of proteins that ranked high in the network and the vertical axis 
represents the number of essential proteins among these top-ranked proteins. Fig-
ures  2 and 3 showed the number of essential proteins in the top K highest scoring 
proteins for each node ranking method in S-PIN, D-PIN, RD-PIN and CM-PIN (the 
CM-PIN with the best performance of the node ranking method among the three 
CM-PINs is selected), Among them, K is the number of essential proteins, K = 1130 
and K = 1199 on YDIP and YBioGRID respectively. It is obvious that on the CM-PIN, 
the Jackknifing curves of these methods are all above the other three networks on 
both two yeast datasets, and the differences are significant, whether it is neighbor-
hood-based, path-based or eigenvector-based centrality methods, even the node 
sorting methods that integrates multiple biological information. This further dem-
onstrated that the network refinement method in this paper is effective in removing 
noise and false positives from protein interaction networks and proved that the CM-
PIN is a more efficient network.

Analysis of precision‑recall curves

As the identification of essential proteins is a sample imbalance problem, the num-
ber of negative class samples (non-essential proteins) is much larger than the number 
of positive class samples (essential proteins). When it comes to identifying essential 
proteins, we tend to more concerned with how many positive samples (essential pro-
teins) can be identified [55]. Therefore, to assess the significance of the CM-PIN, we 
used precision-recall curves to compare the efficiency of essential protein identifica-
tion of 12 node ranking methods (see Figs. 4 and 5). The vertical axis (precision) of 
the precision-recall curve reflects the proportion of the true positive examples in the 
positive examples determined by the classifier, and the horizontal axis (recall) reflects 
the proportion of the positive examples determined by the classifier in the total posi-
tive examples. What’s more, we further calculated the area under the precision-recall 
curve (PRAUC), as shown in Table 4, and it can be seen that both the precision-recall 
curves and PRAUC values on the CM-PIN of two yeast datasets were the best. The 
improvement rate of PRAUC value of 12 node ranking methods on the CM-PIN on 
YDIP and YBioGRID was: 3.28%-18.29% and 7.18%-54.62% for S-PIN; 5.85%-17.36% 
and 6.81%-38.55% for D-PIN; 4.61%-15.70% and 0.50%-11.63% for RD-PIN. All of 
these proved the validity of the CM-PIN again.

Validated by accuracy

To further evaluate the overall performance of CM-PIN and the accuracy of essen-
tial protein identification, we used the following seven evaluation metrics: sensitiv-
ity (SN), specificity (SP), positive predictive value (PPV), negative predictive value 
(NPV), F-measure (FM), Matthews correlation coefficient (MCC) and accuracy 
(ACC). Among them, the calculation formulas of sensitivity and recall are consistent, 
the calculation formulas of positive predictive value and precision are also consistent. 
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The top K proteins after the descending order of importance scores of proteins were 
assumed to be essential proteins (K = 1130 and K = 1199 are the number of essential 
proteins for the YDIP and YBioGRID), and the calculation formulas are as follows,

Fig. 2. 12 node ranking methods are validated by the Jackknife methodology on YDIP dataset
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Fig. 3. 12 node ranking methods are validated by the Jackknife methodology on YBioGRID dataset
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Fig. 4 Comparison of precision-recall curves of 12 nodes ranking methods on on YDIP dataset

Fig. 5 Comparison of precision-recall curves of 12 nodes ranking methods on on YBioGRID dataset
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where TP is the correctly predicted essential protein, FP stands for the incorrectly pre-
dicted essential protein, TN refers to the correctly predicted non-essential protein, and 
FN represents the incorrectly predicted non-essential protein.

Tables 5 and 6 showed the comparison results of the 12 node ranking methods on 
the seven indicators of S-PIN, D-PIN, RD-PIN and CM-PIN (RD). It can be seen that 
the seven evaluation indicators of the 12 node ranking methods on the CM-PIN on 
two yeast datasets are both better than the other three networks, which indicates that 

(8)SN =
TP

TP + FN

(9)SP =
TN

FP + TN

(10)PPV =
TP

TP + FP

(11)NPV =
TN

TN + FN

(12)FM =
2× SN × PPV

SN + PPV

(13)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(14)ACC =
TP + TN

TP + TN + FP + FN

Table 4 Comparison of PRAUC values of 12 node ranking methods on the S-PIN, D-PIN, RD-PIN and 
their corresponding CM-PIN on YDIP and YBioGRID datasets

Methods YDIP YBioGRID

S‑PIN/
CM‑PIN(S)

D‑PIN/
CM‑PIN(D)

RD‑PIN/
CM‑PIN(RD)

S‑PIN/
CM‑PIN(S)

D‑PIN/
CM‑PIN(D)

RD‑PIN/
CM‑PIN(RD)

LAC 0.484/0.502 0.503/0.537 0.517/0.567 0.413/0.446 0.431/0.469 0.448/0.489
DC 0.411/0.459 0.435/0.486 0.497/0.530 0.410/0.444 0.426/0.455 0.474/0.494
DMNC 0.421/0.454 0.451/0.500 0.465/0.538 0.329/0.413 0.376/0.436 0.404/0.451
NC 0.478/0.506 0.496/0.535 0.506/0.565 0.424/0.459 0.442/0.480 0.461/0.499
TP 0.387/0.448 0.419/0.478 0.497/0.528 0.321/0.429 0.338/0.430 0.463/0.469
LID 0.488/0.504 0.513/0.543 0.528/0.572 0.418/0.448 0.435/0.472 0.451/0.491
BC 0.350/0.414 0.363/0.426 0.433/0.480 0.364/0.442 0.354/0.409 0.379/0.399
CC 0.360/0.411 0.372/0.428 0.456/0.477 0.260/0.402 0.275/0.381 0.398/0.400
PR 0.388/0.443 0.400/0.453 0.445/0.501 0.404/0.452 0.408/0.445 0.442/0.468
LR 0.362/0.423 0.373/0.426 0.433/0.483 0.312/0.389 0.327/0.376 0.374/0.401
PeC 0.431/0.480 0.435/0.491 0.470/0.526 0.384/0.429 0.406/0.443 0.430/0.466
WDC 0.486/0.518 0.483/0.526 0.516/0.561 0.430/0.462 0.432/0.466 0.465/0.501
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Table 5 Comparison of seven evaluation indices for 12 node ranking methods on YDIP datasets

Methods PIN SN SP PPV NPV FM MCC ACC 

LAC S-PIN 0.474 0.836 0.474 0.836 0.474 0.309 0.749

D-PIN 0.478 0.837 0.478 0.837 0.478 0.315 0.751

RD-PIN 0.478 0.837 0.478 0.837 0.478 0.315 0.751

CM‑PIN(RD) 0.502 0.844 0.502 0.844 0.502 0.346 0.763
DC S-PIN 0.442 0.826 0.442 0.826 0.442 0.267 0.734

D-PIN 0.458 0.831 0.458 0.831 0.458 0.289 0.742

RD-PIN 0.495 0.842 0.495 0.842 0.495 0.337 0.759

CM‑PIN(RD) 0.515 0.849 0.515 0.849 0.515 0.364 0.769
DMNC S-PIN 0.433 0.823 0.433 0.823 0.433 0.256 0.730

D-PIN 0.474 0.836 0.474 0.836 0.474 0.309 0.749

RD-PIN 0.476 0.836 0.476 0.836 0.476 0.312 0.751

CM‑PIN(RD) 0.502 0.844 0.502 0.844 0.502 0.346 0.763
NC S-PIN 0.468 0.834 0.468 0.834 0.468 0.302 0.747

D-PIN 0.481 0.838 0.481 0.838 0.481 0.318 0.753

RD-PIN 0.472 0.835 0.472 0.835 0.472 0.307 0.748

CM‑PIN(RD) 0.502 0.844 0.502 0.844 0.502 0.346 0.763
TP S-PIN 0.416 0.818 0.416 0.818 0.416 0.233 0.722

D-PIN 0.439 0.825 0.439 0.825 0.439 0.264 0.733

RD-PIN 0.492 0.841 0.492 0.841 0.492 0.333 0.758

CM‑PIN(RD) 0.507 0.846 0.507 0.846 0.507 0.353 0.765
LID S-PIN 0.467 0.834 0.467 0.834 0.467 0.301 0.746

D-PIN 0.478 0.837 0.478 0.837 0.478 0.315 0.751

RD-PIN 0.476 0.836 0.476 0.836 0.476 0.312 0.751

CM‑PIN(RD) 0.502 0.844 0.502 0.844 0.502 0.346 0.763
BC S-PIN 0.389 0.809 0.389 0.809 0.389 0.197 0.709

D-PIN 0.386 0.808 0.386 0.808 0.386 0.194 0.708

RD-PIN 0.452 0.829 0.452 0.829 0.452 0.281 0.739

CM‑PIN(RD) 0.495 0.842 0.495 0.842 0.495 0.337 0.759
CC S-PIN 0.386 0.808 0.386 0.808 0.386 0.194 0.708

D-PIN 0.389 0.809 0.389 0.809 0.389 0.197 0.709

RD-PIN 0.478 0.837 0.478 0.837 0.478 0.315 0.751

CM‑PIN(RD) 0.479 0.837 0.479 0.837 0.479 0.316 0.752
PR S-PIN 0.427 0.821 0.427 0.821 0.427 0.249 0.727

D-PIN 0.436 0.824 0.436 0.824 0.436 0.260 0.732

RD-PIN 0.460 0.831 0.460 0.831 0.460 0.292 0.743

CM‑PIN(RD) 0.503 0.845 0.503 0.845 0.503 0.347 0.763
LR S-PIN 0.361 0.800 0.361 0.800 0.361 0.161 0.696

D-PIN 0.372 0.804 0.372 0.804 0.372 0.175 0.701

RD-PIN 0.429 0.822 0.429 0.822 0.429 0.251 0.728

CM‑PIN(RD) 0.458 0.831 0.458 0.831 0.458 0.289 0.742
PeC S-PIN 0.413 0.817 0.413 0.817 0.413 0.230 0.721

D-PIN 0.415 0.817 0.415 0.817 0.415 0.232 0.721

RD-PIN 0.445 0.827 0.445 0.827 0.445 0.272 0.736

CM‑PIN(RD) 0.487 0.840 0.487 0.840 0.487 0.326 0.756
WDC S-PIN 0.473 0.835 0.473 0.835 0.473 0.309 0.749

D-PIN 0.471 0.835 0.471 0.835 0.471 0.305 0.748

RD-PIN 0.501 0.844 0.501 0.844 0.501 0.345 0.762

CM‑PIN(RD) 0.504 0.845 0.504 0.845 0.504 0.350 0.764
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Table 6 Comparison of seven evaluation indices for 12 node ranking methods on YBIOGRID 
datasets

Methods PIN SN SP PPV NPV FM MCC ACC 

LAC S-PIN 0.464 0.854 0.464 0.854 0.464 0.318 0.771

D-PIN 0.475 0.857 0.475 0.857 0.475 0.332 0.776

RD-PIN 0.490 0.862 0.490 0.862 0.490 0.352 0.782

CM‑PIN(RD) 0.515 0.868 0.515 0.868 0.515 0.383 0.793
DC S-PIN 0.430 0.845 0.430 0.845 0.430 0.276 0.757

D-PIN 0.455 0.852 0.455 0.852 0.455 0.307 0.767

RD-PIN 0.497 0.863 0.497 0.863 0.497 0.361 0.785

CM‑PIN(RD) 0.520 0.870 0.520 0.870 0.520 0.389 0.795
DMNC S-PIN 0.346 0.823 0.346 0.823 0.346 0.169 0.721

D-PIN 0.405 0.839 0.405 0.839 0.405 0.244 0.746

RD-PIN 0.450 0.851 0.450 0.851 0.450 0.301 0.765

CM‑PIN(RD) 0.475 0.857 0.475 0.857 0.475 0.332 0.776
NC S-PIN 0.467 0.855 0.467 0.855 0.467 0.322 0.772

D-PIN 0.473 0.857 0.473 0.857 0.473 0.330 0.775

RD-PIN 0.490 0.862 0.490 0.862 0.490 0.352 0.782

CM‑PIN(RD) 0.513 0.868 0.513 0.868 0.513 0.381 0.792
TP S-PIN 0.347 0.823 0.347 0.823 0.347 0.170 0.721

D-PIN 0.354 0.825 0.354 0.825 0.354 0.178 0.724

RD-PIN 0.448 0.850 0.448 0.850 0.448 0.298 0.764

CM‑PIN(RD) 0.466 0.855 0.466 0.855 0.466 0.321 0.772
LID S-PIN 0.466 0.855 0.466 0.855 0.466 0.321 0.772

D-PIN 0.472 0.857 0.472 0.857 0.472 0.329 0.775

RD-PIN 0.500 0.864 0.500 0.864 0.500 0.365 0.787

CM‑PIN(RD) 0.516 0.869 0.516 0.869 0.516 0.385 0.793
BC S-PIN 0.393 0.835 0.393 0.835 0.393 0.228 0.741

D-PIN 0.372 0.830 0.372 0.830 0.372 0.202 0.732

RD-PIN 0.409 0.839 0.409 0.839 0.409 0.248 0.748

CM‑PIN(RD) 0.426 0.844 0.426 0.844 0.426 0.270 0.755
CC S-PIN 0.260 0.799 0.260 0.799 0.260 0.059 0.684

D-PIN 0.286 0.806 0.286 0.806 0.286 0.092 0.695

RD-PIN 0.410 0.840 0.410 0.840 0.410 0.250 0.748

CM‑PIN(RD) 0.418 0.842 0.418 0.842 0.418 0.260 0.751
PR S-PIN 0.435 0.847 0.435 0.847 0.435 0.282 0.759

D-PIN 0.440 0.848 0.440 0.848 0.440 0.289 0.761

RD-PIN 0.459 0.853 0.459 0.853 0.459 0.312 0.769

CM‑PIN(RD) 0.495 0.863 0.495 0.863 0.495 0.358 0.785
LR S-PIN 0.315 0.814 0.315 0.814 0.315 0.129 0.708

D-PIN 0.324 0.816 0.324 0.816 0.324 0.140 0.711

RD-PIN 0.384 0.833 0.384 0.833 0.384 0.217 0.737

CM‑PIN(RD) 0.403 0.838 0.403 0.838 0.403 0.241 0.745
PeC S-PIN 0.425 0.844 0.425 0.844 0.425 0.268 0.754

D-PIN 0.435 0.847 0.435 0.847 0.435 0.282 0.759

RD-PIN 0.457 0.853 0.457 0.853 0.457 0.310 0.768

CM‑PIN(RD) 0.472 0.857 0.472 0.857 0.472 0.329 0.775
WDC S-PIN 0.460 0.853 0.460 0.853 0.460 0.313 0.769

D-PIN 0.455 0.852 0.455 0.852 0.455 0.308 0.767

RD-PIN 0.490 0.862 0.490 0.862 0.490 0.352 0.782

CM‑PIN(RD) 0.508 0.866 0.508 0.866 0.508 0.374 0.790
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the method of refining networks by modules in this paper is feasible and can effec-
tively improve the identification accuracy of essential proteins.

Selection and analysis of thresholds

In this section, taking the RD-PIN of the YDIP as an example, first, we described the 
concrete steps of construction of the CM-PIN on the basis of the RD-PIN and the moti-
vation of using PIN’s modular feature refining network. Then, we analyzed how to select 
the thresholds. Finally, we listed the thresholds used by all the CM-PINs built on the two 
yeast datasets in this paper.

On YDIP dataset, the optimal partitioning of modules was achieved by the Fast-
unfolding algorithm when the modularity Q = 0.7408, at which point the RD-PIN was 
partitioned into 26 modules. We calculated three metrics for each module in RD-
PIN: PC, NSL, and TF (as shown in Table  7) by using the biological information of 
the proteins and the topological information of the modules in the network. We also 
observed the number and proportion of essential proteins in each module and found 
that there was variation between modules and that some modules with sparse interac-
tions within modules or with little biologically important information contained few 

Table 7 Biological and topological characterization of each module in the RD-PIN on YDIP dataset

Modules Corr NSL TF Number of 
proteins/essential 
proteins

1 −0.0258 0 1.6667 33/3

2 −0.0764 2.1847 0.4775 222/78

3 −0.0075 0.1563 0.875 32/5

4 −0.023 0.925 1.125 40/7

5 0.1688 3.12 2.68 175/128

6 −0.0314 1.9419 0.2674 86/28

7 −0.016 1.4701 0.3846 117/27

8 0.0362 2.2596 0.5096 104/40

9 −0.0684 2.5321 0.9423 156/50

10 −0.0358 0.4701 1.3806 134/33

11 0.1013 0.0467 1.6822 107/42

12 0.0317 2.8403 1.6736 144/76

13 −0.001 2.2963 0.1481 27/9

14 0.0824 2.01 1.33 100/43

15 −0.0314 2.4423 0.8077 52/18

16 0.0074 0.1111 2.5556 9/6

17 −0.0493 2.3765 0.6 85/39

18 0.0612 2.8462 1.2051 78/38

19 0.0609 0.0962 1.1731 52/15

20 −0.0736 2.8298 0.2128 47/14

21 −0.0989 2.0381 0.8095 105/45

22 0.0264 1.9286 1 28/15

23 −0.0208 1.6 0.4 20/1

24 −0.0088 0 1.3929 28/2

25 −0.0543 0.0857 1.8 35/1

26 −0.0459 0 0.8333 6/0
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essential proteins, which may be the potential non-critical modules. For example, the 
NSL values of modules 1, 24, and 26 are zero, which means that the proteins in their 
modules do not appear in the subcellular compartments of the nucleus, and after the 
thresholds screening, they will likely be defined as non-critical modules. Therefore, in 
order to get a more effective network, we need to try to identify seemingly more criti-
cal modules in the network and remove some of the interactions in modules with less 
biological and topological information.

To obtain the variation rule of the effect of thresholds on the selection of criti-
cal modules and the performance of the network, according to the data distribu-
tion of three metrics in the module, we let th1 ∈ {−0.02, −0.005, 0.015}, th2 ∈ {1.5, 2}, 
th3 ∈ {0.25, 0.5}, and listed the effect of the networks on the identification accuracy of 
essential proteins with different values of the thresholds, respectively (as shown in 
Table 8, the experimental results in the table are the performance of LID in different 
networks). The experimental results showed that when th1 and th2 were small and th3 
was large, more critical modules were selected. At this time, there was still a large 
amount of noise in the network that had not been eliminated and the improvement 
in identification accuracy of essential proteins was not significant, for example, when 
th1 = −0.02, th2 = 1.5 and th3 = 0.5, the identification accuracy of essential proteins at 
top 600 and PRAUC have improved compared with RD-PIN, but the identification 
accuracy of essential proteins at top 1130 is not as good as RD-PIN. In contrast, when 
th1 and th2 were larger, fewer critical modules were selected. At this time, critical 
parts of the network may have been removed, and the improvement in the network’s 
identification accuracy of essential proteins was not optimal, for example, when 
th1 = 0.015, th2 = 2 and th3 = 0.5, the identification accuracy of essential proteins at 
top 1130 of LID in CM-PIN was still inferior to RD-PIN. Among them, the change of 
th1 and th2 has a greater impact on the selection of modules, because biological infor-
mation can better assist in identifying essential proteins than the topology informa-
tion of the network. When th1 = −0.005, th2 = 2 and th3 = 0.25, the optimal CM-PIN 
on YDIP dataset is obtained.

Table 8 The variation of the effect of thresholds on the selection of critical modules and the 
performance of the network

th1 th2 th3 Number of
critical modules

Top 100,
600,1130

ACC PRAUC 

0.015 1.5 0.25 15 84, 398, 563 0.761 0.564

0.015 2 0.25 13 84, 398, 551 0.756 0.569

0.015 1.5 0.5 13 85, 387, 532 0.748 0.555

0.015 2 0.5 15 83, 383, 533 0.748 0.550

−0.005 1.5 0.25 17 85, 396, 567 0.763 0.567

−0.005 2 0.25 15 85, 405, 567 0.763 0.572
−0.005 1.5 0.5 15 84, 395, 541 0.752 0.559

−0.005 2 0.5 17 86, 387, 541 0. 752 0.554

−0.02 1.5 0.25 20 84, 384, 556 0.758 0.554

−0.02 2 0.25 18 85, 387, 555 0.758 0.558

−0.02 1.5 0.5 17 85, 382, 531 0.748 0.551

−0.02 2 0.5 19 86, 383, 535 0.749 0.547



Page 21 of 26Pan et al. BMC Bioinformatics          (2024) 25:157  

Finally, we listed in Table 9 the selection thresholds and module information of CM-
PINs constructed in two datasets of yeast in this paper.

Analysis of reasons for the improvement of identification accuracy of essential proteins

In order to discuss the reason why the identification accuracy of essential proteins of 
each node ranking method on the CM-PIN is higher than that on the other three net-
works (S-PIN, D-PIN, RD-PIN), we also calculated the ratio of essential proteins in dif-
ferent proteins at top 600 of each node ranking method on the CM-PIN and the other 
three networks, as shown in Fig. 6. It can be seen that on the CM-PIN, each node rank-
ing method can identify some different essential proteins that cannot be identified on 

Table 9 The selection thresholds and module information of CM-PINs constructed in YDIP and 
YBioGRID datasets

Datasets PINs Modularity (Q) Number of 
modules

Number of 
critical modules

th1 th2 th3

YDIP CM-PIN(S) 0.5369 26 12 0 0.96 −0.78

CM-PIN(D) 0.6335 28 19 0.001 0.96 −0.02

CM-PIN(RD) 0.7408 26 15 −0.005 2 0.4

YBioGRID CM-PIN(S) 0.4566 13 6 0 1 −4

CM-PIN(D) 0.5256 17 12 0 1 −2

CM-PIN(RD) 0.6532 19 15 −0.015 1 −2

Fig. 6 The comparison of the percentage of essential proteins on the CM-PIN with that on the other three 
networks in different proteins for each node ranking method on YDIP dataset

Table 10 The selection thresholds and module information of CM-PINs constructed on HDIP 
dataset

Datasets PINs Modularity (Q) Number of 
modules

Number of 
critical modules

th1 th2 th3

HDIP CM-PIN(S) 0.8069 43 15 0.02 0.4 0

CM-PIN(D) 0.8095 37 23 0 0.52 0

CM-PIN(RD) 0.8273 36 21 0.03 0.7 0
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the other three networks. Even compared with the best RD-PIN in the three networks, 
some node ranking methods can identify a large part of different essential proteins at top 
600 on the CM-PIN, such as CC, which can identify 31.3% of the different essential pro-
teins on the CM-PIN that cannot be identified on the RD-PIN. Therefore, the essential 
protein identification accuracy on the CM-PIN is optimal for each node ranking method.

Validated on Human sapiens

In order to further verify whether the network refinement method proposed in this paper 
can play its advantages in other species, we obtained their corresponding CM-PINs from 
S-PIN, D-PIN and RD-PIN in the Human sapiens dataset (Table 10 listed the module 
information and threshold selection of CM-PINs obtained in each network), and com-
pared the performance of 12 node ranking methods on these networks (see Table 11). It 
can be seen that the performances of the 12 node ranking methods are almost optimal 
on the CM-PIN. The performance of the node sorting method on the twice-refined PIN 

Table 11 Comparison of various evaluation indicators of 12 node ranking methods on the S-PIN, 
D-PIN, RD-PIN and the CM-PIN on HDIP dataset (top 100/top 600/MCC/FM/ACC/PRAUC)

Methods S‑PIN CM‑PIN(S) D‑PIN CM‑PIN(D) RD‑PIN CM‑PIN(RD)

LAC 46/204/
0.189/0.317
0.785/0.296

59/226/
0.229/0.350
0.795/0.357

44/210/
0.211/0.335
0.791/0.305

51/221/
0.224/0.346
0.794/0.327

43/185/
0.144/0.278
0.773/0.282

50/204/
0.199/0.325
0.788/0.317

DC 32/158/
0.122/0.260
0.767/0.236

48/227/
0.245/0.364
0.800/0.311

33/181/
0.165/0.296
0.779/0.276

48/223/
0.237/0.357
0.798/0.315

37/177/
0.148/0.282
0.774/0.238

44/199/
0.202/0.328
0.789/0.285

DMNC 43/178/
0.153/0.287
0.776/0.281

53/226/
0.229/0.350
0.795/0.353

45/202/
0.204/0.329
0.789/0.298

51/224/
0.247/0.365
0.800/0.326

39/186/
0.148/0.282
0.774/0.282

48/203/
0.201/0.326
0.788/0.316

NC 47/198/
0.175/0.304
0.781/0.291

55/224/
0.229/0.350
0.795/0.352

45/210/
0.207/0.332
0.790/0.301

49/223/
0.233/0.354
0.797/0.322

44/184/
0.140/0.276
0.772/0.275

49/203/
0.201/0.326
0.788/0.310

TP 29/145/
0.101/0.242
0.762/0.224

50/229/
0.248/0.366
0.801/0.309

35/177/
0.176/0.306
0.782/0.280

47/226/
0.250/0.368
0.801/0.317

35/176/
0.152/0.285
0.775/0.240

43/199/
0.204/0.329
0.789/0.284

LID 49/204/
0.188/0.315
0.785/0.300

60/225/
0.229/0.350
0.795/0.360

52/207/
0.207/0.332
0.790/0.309

53/224/
0.242/0.361
0.799/0.329

47/181/
0.134/0.270
0.770/0.285

48/202/
0.201/0.326
0.788/0.317

BC 23/135/
0.086/0.230
0.758/0.205

42/213/
0.206/0.331
0.789/0.292

32/176/
0.152/0.285
0.775/0.250

47/208/
0.224/0.346
0.794/0.297

32/153/
0.109/0.249
0.764/0.222

36/193/
0.201/0.326
0.788/0.272

CC 19/116/
0.049/0.198
0.748/0.185

42/197/
0.188/0.351
0.785/0.273

31/157/
0.126/0.263
0.768/0.259

42/212/
0.211/0.335
0.791/0.305

26/134/
0.099/0.241
0.761/0.219

29/201/
0.204/0.329
0.789/0.263

PR 26/145/
0.093/0.236
0.759/0.205

42/227/
0.233/0.354
0.797/0.298

30/170/
0.127/0.265
0.769/0.246

37/210/
0.229/0.350
0.795/0.304

25/148/
0.072/0.218
0.754/0.217

41/201/
0.201/0.326
0.788/0.278

LR 23/130/
0.062/0.200
0.751/0.192

38/193/
0.186/0.314
0.784/0.277

32/173/
0.148/0.282
0.774/0.241

37/212/
0.214/0.338
0.792/0.301

29/161/
0.148/0.282
0.768/0.223

37/204/
0.197/0.324
0.787/0.279

PeC 50/231/
0.230/0.351
0.783/0.327

56/257/
0.289/0.401
0.811/0.374

50/231/
0.233/0.354
0.797/0.327

54/236/
0.266/0.382
0.805/0.354

45/186/
0.173/0.303
0.781/0.273

57/206/
0.181/0.310
0.783/0.311

WDC 46/231/
0.235/0.355
0.797/0.308

58/245/
0.238/0.358
0.798/0.362

44/230/
0.227/0.349
0.795/0.312

55/233/
0.242/0.361
0.799/0.332

44/190/
0.163/0.295
0.778/0.267

51/180/
0.139/0.274
0.772/0.300
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(RD-PIN) is inferior to that on the once-refined PIN (D-PIN) due to fewer raw interac-
tions in the HDIP dataset. That is why the individual indexes of the WDC method on 
the CM-PIN (refined on the RD-PIN) are inferior to that of the RD-PIN. Compared with 
S-PIN, D-PIN and RD-PIN, the CM-PINs can improve the PRAUC values of 12 node 
ranking methods to 14.37%-47.57% for S-PIN, 6.41%-24.90% for D-PIN, and 11.23%-
28.11% for RD-PIN. Therefore, this proves that the network refinement method in this 
paper is applicable to multiple species, and can improve the performance of the node 
ranking method by obtaining more efficient network CM-PIN.

Conclusions and perspectives
In this paper, we proposed a protein interaction network refinement method based on 
modular discovery and biological information. Firstly, we extract the maximum con-
nected subgraph of a given PIN and use a module discovery algorithm Fast-unfolding 
to divide it into different modules. Secondly, we select critical modules by using protein 
orthologous information, subcellular localization information, and its topological infor-
mation in the PIN. Thirdly, we construct a more refined network (CM-PIN) according to 
the identified critical modules.

In order to verify the effectiveness of this method, we constructed CM-PINs based on 
three networks (S-PIN, D-PIN and RD-PIN) of two species (Saccharomyces cerevisiae 
and Human sapiens) and compared the performances of 12 node ranking methods (LAC, 
DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) on the CM-PIN with those on 
the three networks. In terms of the identification number of essential proteins at top 
100- 600, Jackknifing method, the area under the precision-recall curves (PRAUC), sen-
sitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value 
(NPV), F-measure (FM), Matthews correlation coefficient (MCC) and accuracy (ACC), 
the identification performances of node ranking methods on the CM-PIN are better 
than that of the S-PIN, D-PIN and RD-PIN. Among them, on the three datasets of Sac-
charomyces cerevisiae (YDIP and YBioGRID) and Human sapiens (HDIP), compared 
with the existing three networks, the highest improvement rate of PRAUC value of each 
node ranking method on the CM-PIN was 18.29%, 54.62%, 47.57% for S-PIN; 17.36%, 
38.55%, 24.90% for D-PIN; and 15.70%, 11.63%, 28.11% for RD-PIN. The results demon-
strated that the CM-PIN could effectively filter out false positives and false negatives and 
thus is a higher-quality network.

In future work, we will consider further contributing to the identification of essential 
proteins, the revelation of disease mechanisms and the design of targeted drug from 
the following three perspectives. Firstly, from the perspective of network refinement, 
the modular characteristics of the network can be combined with other factors to con-
struct a more efficient network. For example, other biological information of proteins 
can be used to further refine some unreliable interactions within critical modules, such 
as structure information or annotation information of proteins. Secondly, from the 
perspective of module discovery, different module discovery algorithms can attempt 
to obtain more accurate division results in protein–protein interaction networks, such 
as clustering algorithms based on biological sequences [56] and attribute graphs [57]. 
Thirdly, the modules discovered or the critical modules detected from the protein–pro-
tein interaction network can also be used as features to assist some other biological 
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issues. For example, the classification task of Golgi protein [58], the classification task of 
microorganisms’ function proteins [59], design of protein acetylation sites [60], etc.

Abbreviations
PIN  Protein–protein interaction network
S-PIN  A network constructed from raw protein–protein interaction dataset
D-PIN  A network refined by S-PIN and gene expression profiles
RD-PIN  A network refined by D-PIN and subcellular localization information
CM-PIN  A refined network based on module discovery and biological information
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