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Abstract 

Background: Motif finding in Assay for Transposase-Accessible Chromatin using 
sequencing (ATAC-seq) data is essential to reveal the intricacies of transcription factor 
binding sites (TFBSs) and their pivotal roles in gene regulation. Deep learning tech-
nologies including convolutional neural networks (CNNs) and graph neural networks 
(GNNs), have achieved success in finding ATAC-seq motifs. However, CNN-based meth-
ods are limited by the fixed width of the convolutional kernel, which makes it difficult 
to find multiple transcription factor binding sites with different lengths. GNN-based 
methods has the limitation of using the edge weight information directly, makes it 
difficult to aggregate the neighboring nodes’ information more efficiently when repre-
senting node embedding.

Results: To address this challenge, we developed a novel graph attention net-
work framework named MMGAT, which employs an attention mechanism to adjust 
the attention coefficients among different nodes. And then MMGAT finds multiple 
ATAC-seq motifs based on the attention coefficients of sequence nodes and k-mer 
nodes as well as the coexisting probability of k-mers. Our approach achieved better 
performance on the human ATAC-seq datasets compared to existing tools, as evi-
denced the highest scores on the precision, recall, F1_score, ACC, AUC, and PRC met-
rics, as well as finding 389 higher quality motifs. To validate the performance of MMGAT 
in predicting TFBSs and finding motifs on more datasets, we enlarged the number 
of the human ATAC-seq datasets to 180 and newly integrated 80 mouse ATAC-seq 
datasets for multi-species experimental validation. Specifically on the mouse ATAC-seq 
dataset, MMGAT also achieved the highest scores on six metrics and found 356 higher-
quality motifs. To facilitate researchers in utilizing MMGAT, we have also developed 
a user-friendly web server named MMGAT-S that hosts the MMGAT method and ATAC-
seq motif finding results.

Conclusions: The advanced methodology MMGAT provides a robust tool for find-
ing ATAC-seq motifs, and the comprehensive server MMGAT-S makes a significant 
contribution to genomics research. The open-source code of MMGAT can be found 
at https:// github. com/ xiaot ianr/ MMGAT, and MMGAT-S is freely available at https:// 
www. mmgra phws. com/ MMGAT-S/.
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Introduction
Transcription factors (TFs) and their binding sites not only play important roles in 
orchestrating a variety of biological processes, but have also emerged as critical contrib-
utors to the development of diseases, highlighting their significance in understanding 
gene regulation [1]. DNA motifs are a set of specific binding sequences of a TF, charac-
terized by a recurring pattern known as its motif pattern, which reflects the TF’s bind-
ing preferences and specificity [2]. Motif finding aims to find conserved transcription 
factors binding sites (TFBSs) from high-throughput sequencing data, such as Assay for 
Transposase-Accessible Chromatin using sequencing (ATAC-seq) data [3]. ATAC-seq is 
used to investigate genome-wide chromatin accessibility by inserting Tn5 transposase 
into open chromatin regions to generate DNA fragments suitable for sequencing [4]. 
The binding of TFs to DNA sequences prevents the Tn5 transposase from cleaving the 
DNA sequences, creating a protective region known as an ATAC-seq footprint [5]. By 
detecting these footprints, multiple TF regions bound to the genome can be found from 
the ATAC-seq dataset. Because ATAC-seq has access to all open regions of the genome, 
it is convenient for TFBSs prediction and motifs finding.

Various methods have been devised to find ATAC-seq motifs. Traditional motif find-
ing approaches primarily rely on statistical methods [6]. Statistical methods such as 
TOBIAS and TRACE employ known motif databases to scan sequences, and identify 
DNA sequences that meet specific criteria as TFBSs [7, 8]. However, these methods tend 
to be inefficient when applied to massive datasets and are limited by the available motif 
databases. This may result in the omission of novel motifs that have not yet been cata-
loged. With the advancement of deep learning technology, convolutional neural network 
(CNN)-based methods for motif finding have emerged [9]. FactorNet and scFAN utilize 
a convolutional kernel to detect specific motifs in sequences using CNNs [10, 11]. How-
ever, these methods are limited by their dependence on the kernel width, which leads to 
finding some motifs with fixed length. In recent years, graph neural networks (GNNs) 
have been applied to bioinformatics applications such as protein–protein interaction 
prediction and genomic sequence analysis [12]. MMGraph is an important study intro-
ducing GNNs to find ATAC-seq motifs, which achieved remarkable performance [13]. 
However, the limitation of MMGraph is the direct application of edge weights between 
nodes, which restricts its capacity to assess the significance of adjacent nodes for a spe-
cific target node. This constraint hampers its effectiveness in leveraging edge weight 
information to a more optimal extent.

To address this limitation, we propose a novel graph attention network (GAT) frame-
work named MMGAT for TFBS prediction and ATAC-seq motif finding (Fig.  1). The 
first layer of MMGAT employs the attention mechanism to discriminate the relative 
importance of weights between k-mer nodes and thus adjusts their attention coefficients 
to learn k-mer node embeddings. The second layer uses the GAT to distinguish the 
attention coefficients between different k-mer nodes and the target sequence node, and 
aggregates the k-mer node embeddings to represent the sequence embeddings. The last 
layer is a fully connected neural network for predicting TFBSs. In addition, the MMGAT 
framework utilizes model-learned attention coefficients and coexisting probabilities 
of k-mers to find multiple motifs. We validate the performance of MMGAT using 180 
human and 80 mouse ATAC-seq datasets from the ENCODE project [14]. Our method 
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outperformed existing models in predicting TFBSs, achieving the highest average pre-
cision, recall, F1_score, ACC, AUC, and PRC scores on human and mouse ATAC-seq 
datasets. Additionally, MMGAT found 389 and 356 higher quality motifs than exist-
ing models in these respective datasets. Considering the notable success achieved by 
MMGAT and the scarcity of dedicated servers for ATAC-seq motif finding, we devel-
oped MMGAT-S. This public web server hosts the MMGAT model, the MMGraph 
model and others. With this implementation, configuring environments is not necessary, 
and users can effortlessly process ATAC-seq data without any programming knowledge. 
MMGAT-S visualizes the motif finding results of MMGAT in the form of motif logos 
and position probability matrices (PPMs). Additionally, MMGAT-S integrates several 
existing tools, such as AME, which allows for motif enrichment analysis of found TFBSs, 
and GOMo, which can perform Gene Ontology (GO) enrichment analysis of found 
motifs [15, 16].

Methods
Original MMGraph method

In our previous work, we proposed the MMGraph, which is primarily built on the GNN 
and employs k-mers coexisting probabilities to find multiple ATAC-seq motifs [13]. The 
methodology of MMGraph includes three main components.

Constructing the heterogeneous graph

It involves labeling sequences seq(·) with positive or negative markers based on the pres-
ence of TFBSs and trimming them into k-mers k(·) with lenk = length(k(·)) . These n 
sequences seq(·) and m k-mers k(·) , are two types of nodes in a heterogeneous graph. This 

Fig. 1 MMGAT method. (A) The first layer of MMGAT initializes embeddings hsim(k(·)) and hco(k(·)) for 
k-mer nodes k(·) in similarity and coexisting subgraphs, respectively. It employs an attention mechanism to 
independently learn k-mer embeddings Esim(k(·)) and Eco(k(·)) in both subgraphs. Subsequently these two 
kinds of k-mer embeddings are input to the second layer to learn inclusive-similarity and inclusive-coexisting 
attention coefficients in inclusive subgraphs respectively. Then these two types of attention coefficients and 
two types of k-mer embeddings are aggregated as the embedding of sequence nodes. Finally, the sequence 
embeddings are input to the fully connected layer to predict TFBSs. (B) MMGAT finds k-mer seeds based on 
inclusive-similarity and inclusive-coexisting attention coefficients learned in the second layer, and then finds 
TFBSs of multiple lengths based on coexisting probabilities
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heterogeneous graph encompasses three types of edges: similarity edges, coexisting edges, 
and inclusive edges.

Building the GNN model

MMGraph divides the heterogeneous graph into multiple subgraphs based on three edge 
types to deal with the relationships between different nodes separately. In the similarity sub-
graph, the weight of similarity edges between the m k-mer nodes form a m×m similarity 
subgraph weight matrix, denoted as Wsim . Similarly, in the coexisting subgraph, the weight 
of coexisting edges between the m k-mer nodes form a m×m coexisting subgraph weight 
matrix, denoted as Wco . In particular, Wsim and Wco are both symmetric matrices. And in 
the inclusive subgraph, the inclusive edges between the m k-mer nodes and n sequence 
nodes form an m× n inclusive subgraph weight matrix, denoted as Winclu . Then the GNN 
model is trained based on these subgraphs, where the first layer learns the embedding of 
k-mer, the second layer learns the embedding of sequences, and the third layer predicts the 
TFBSs using a fully connected layer.

Finding multiple motifs

This is achieved by calculating mutual information (MI) between k-mers and sequences 
based on their embeddings. The process includes steps like generating and denoising MI 
matrices, identifying the k-mer in the positive sequences that satisfies the denoised mutual 
information value greater than 0 as the k-mer seeds kseed(·) , and merging them based on 
their coexisting probabilities to find candidate TFBSs. Finally, MMGraph finds multiple 
TFBSs of different lengths by merging overlapping candidate TFBSs.

MMGAT method

MMGAT mainly improves the components of MMGraph for building the GNN mod-
els and finding multiple motifs. MMGAT updates the first and second layers of the GNN 
model by introducing an attention mechanism to learn k-mer and sequence embeddings, 
while the third layer still uses the fully connected layer to predict TFBSs (Fig. 1A). MMGAT 
replaces MI by using the attention coefficients between sequence nodes and k-mer nodes to 
find k-mer seeds in finding multiple motifs process (Fig. 1B).

The first layer of MMGAT 

A graph attention mechanism is employed in both the similarity and coexisting subgraphs 
to learn the embeddings of k-mers k(·) (Fig.  1A). These embeddings are respectively 
denoted as Esim(k(·)) ∈ R

dk×1 and Eco(k(·)) ∈ R
dk×1 , where dk represent the embedding 

dimensions for the k-mer k(·) . The similarity subgraph weight matrix Wsim and the coexist-
ing subgraph weight matrix Wco are normalized as showing in Eqs. 1 and 2, serving as the 
initial embedding for the k-mer node k(·).

(1)hsim(k(x)) =
Wsim(:, x)

y∈Nsim(x)
Wsim x, y
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where hsim(k(x)) ∈ R
m×1 and hco(k(x)) ∈ R

m×1 represent the initial embedding of k(x) 
based on the similarity subgraph and the coexisting subgraph, respectively. Additionally, 
Nsim(x) refers to the set of neighbor nodes of the k-mer node k(x) in the similarity sub-
graph, and Nco(x) refers to the set of neighbor nodes of k(x) in the coexisting subgraph.

MMGAT calculates the attention scores esim
(

x, y
)

 and eco
(

x, y
)

 for k-mer node k(x) 
and its neighboring node k

(

y
)

 in the similarity and coexisting subgraphs, respectively, 
according to Eqs. 3 and 4.

where asim and aco represent the attention vectors for the similarity subgraph and the 
coexisting subgraph, respectively, and their dimensions are both 2dk × 1 . Similarly, Wsim 
and Wco denote the shared weight matrices for the similarity and coexisting subgraphs, 
and their dimensions are both dk ×m . The || represents concatenation operation, and 
σ(·) denotes the activation function, which is LeakyReLU in this study.

The attention scores esim
(

x, y
)

 and eco
(

x, y
)

 are normalized using the softmax function, 
as outlined in Eqs. 5 and 6. This step yields the similarity attention coefficients αsim

(

x, y
)

 
and the coexisting attention coefficients αco

(

x, y
)

.

Then the embeddings Esim(k(·)) and Eco(k(·)) of k-mer node k(x) in the similarity and 
coexisting subgraphs can be calculated utilizing Eqs. 7 and 8, based on the embeddings 
of adjacent nodes and their corresponding attention coefficients.

where ReLU represents the rectified linear unit function.

The second layer of MMGAT 

MMGAT employs GAT to learn the embedding of the sequence seq(·) as 
Eseq(seq(·)) ∈ R

dseq×1 in the inclusive subgraph (Fig.  1A), where dseq denotes the 

(2)hco(k(x)) =
Wco(:, x)

∑

y∈Nco(x)
Wco

(

x, y
)

(3)esim
(

x, y
)

= σ

(

aTsim ·

[

Wsimhsim(k(x))�W
simhsim

(

k
(

y
))

])

, y ∈ Nsim(x)

(4)eco
(

x, y
)

= σ

(

aTco ·
[

Wcohco(k(x))�W
cohco

(

k
(

y
))]

)

, y ∈ Nco(x)

(5)αsim
(

x, y
)

=
exp

(

esim
(

x, y
))

∑

p∈Nsim(x)
exp(esim(x, p))

(6)αco
(

x, y
)

=
exp

(

eco
(

x, y
))

∑

p∈Nco(x)
exp(eco(x, p))

(7)Esim(k(x)) = ReLU

(

∑

y∈Nsim

αsim
(

x, y
)

Wsimhsim
(

k
(

y
))

)

(8)Eco(k(x)) = ReLU

(

∑

y∈Nco
αco

(

x, y
)

Wcohco
(

k
(

y
))

)
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embedding dimension of the sequence node seq(·) and is equal to dk . The embedding 
of neighbor k-mer nodes learned in different subgraphs will show different importance 
in learning sequence node embedding. We apply the attention mechanism to learn the 
importance of neighbor k-mer node embeddings Esim(k(·)) and Eco(k(·)) to the target 
sequence node respectively, and aggregate the feature information of these neighbor 
nodes to form the sequence node embedding. We use the feature transformation matrix 
Winclu to project the inclusive subgraph weight matrix Winclu into the feature space of 
dimension dseq , which serves as the initialized embedding of the sequence nodes. Here 
the dimension of Winclu is m× dseq . This process is shown in Eq. 9.

where hseq(seq(z)) ∈ R
1×dseq represents the initial embedding of sequence seq(z).

Then we compute the attention scores  bsim(z, x) and bco(z, x) of neighboring k-mer 
node k(x) to the target sequence node seq(z) based on the k-mer node embeddings 
Esim(k(·)) and Eco(k(·)) , respectively, in the inclusive subgraph according to Eqs. 10 and 
11.

where Ninclu(z) refers to the set of neighbor nodes of the sequence node seq(z) in the 
inclusive subgraph.

The attention scores bsim(z, x) and bco(z, x) are normalized using the softmax function 
to obtain the inclusive-similarity attention coefficient βsim(z, x) and the inclusive-coex-
isting attention coefficient βco(z, x) , as described in Eqs. 12 and 13. These attention coef-
ficients βsim and βco are used to construct four attention matrices B1

sim , B0
sim , B1

co and B0
co 

according to the labels positive and negative of the sequence.

Finally, MMGAT computes sequence node embedding by aggregating these neighbor-
ing k-mer node embeddings and their attention coefficients based on Eq. 14.

Finding multiple motifs

Both inclusive-similarity and inclusive-coexisting attention coefficients between 
a sequence node and a k-mer node indicates the importance of that k-mer node 
to the sequence node. We consider the average values mean

(

B0
sim

)

 and mean
(

B0
co

)

 

(9)hseq(seq(z)) = Winclu(:, z)
T ×Winclu

(10)bsim(z, x) = σ
(

hseq(seq(z))× Esim(k(x))
)

, x ∈ Ninclu(z)

(11)bco(z, x) = σ
(

hseq(seq(z))× Eco(k(x))
)

, x ∈ Ninclu(z)

(12)βsim(z, x) =
exp(bsim(z, x))

∑

q∈Ninclu(z)
exp(bsim(z, q))

(13)βco(z, x) =
exp(bco(z, x))

∑

q∈Ninclu(z)
exp(bco(z, q))

(14)

Eseq(seq(z)) = ReLU

(

∑

x∈Ninclu(z)
(βsim(z, x)Esim(k(x))+ βco(z, x)Eco(k(x)))

)
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of the attention coefficient matrices of the negative sequences as background 
noise (Fig.  1B). Then we compute the denoised attention coefficient matrices 
dnB1

sim = B1
sim −mean

(

B0
sim

)

 and dnB1
co = B1

co −mean
(

B0
co

)

 . For each k-mer k(x) on 
each positive sequence seq(z) , we define the k-mer k(x) as a k-mer seed kseed(x) as long 
as it satisfies dnB1

sim(z, x) > 0ordnB1
co(z, x) > 0 . For each k-mer seed kseed(x) , we use a 

strategy similar to MMGraph to find multiple TFBSs with different lengths [13].

Experiment and results
Data collection and processing

The ENCODE project provides detailed annotations of high-throughput sequencing 
results, offering various types of data files [14]. Among these, the Browser Extensible 
Data NarrowPeak (bed narrowPeak) file contains information about genomic regions 
identified through high-throughput sequencing techniques, such as their chromosomal 
location, start and end positions, statistical significance, peak intensity, and other rel-
evant details. The Binary Alignment/Map (bam) file, on the other hand, is a binary 
format storing genomic sequence data, including alignments of sequence reads to a ref-
erence genome, along with quality scores and additional metadata. We consider a pair 
of ATAC-seq data’s bed and bam files as an ATAC-seq dataset. For our analysis, we have 
downloaded 180 human ATAC-seq datasets (Additional file 1: Table S1) and 80 mouse 
ATAC-seq datasets (Additional file 1: Table S2) from the ENCODE project.

For each ATAC-seq dataset, we initially detect footprints within the data using exist-
ing tools like TOBIAS and HINT-ATAC [7, 17]. TOBIAS not only detects footprints but 
also assigns a score to each, based on a single-base resolution characterization of the 
footprint pattern. This scoring reflects the accessibility and depth of the footprint, pro-
viding crucial information about whether a transcription factor is bound at that site. We 
then intersect the top-1500 ranked footprints identified by TOBIAS with those found by 
HINT-ATAC. The rationale for ranking footprints based on TOBIAS scores lies in the 
improved accuracy of distinguishing between bound and unbound sites, thereby offering 
more reliable footprint data for our research. We next employ bedtools to trim the inter-
sected footprints from their centers, thereby generating sequences, denoted as seq(·) , 
each extending to 101 base pairs (bp) [18]. These sequences are identified as positive and 
are assigned a label of ‘1’. Then we shuffle the nucleotides within each positive sequence 
to generate corresponding negative sequences, which are then labeled ‘0’. This approach 
results in a sequence set Seq , containing n sequences.

For each dataset, we allocated 80% of the Seq as training data, 10% as validation data, 
and 10% as test data. Subsequently, using a sliding window of size lenk and a step size 
of one base, we split sequence seq(·) into k-mers k(·) , resulting in a collection of k-mers 
Kseq(·) . This process was repeated for every sequence in Seq , resulting in a k-mer set K  
containing m unique k-mers.

Experiment settings

We trained the MMGAT model using the Adam optimizer for 300 epochs, setting the 
initial learning rate at 0.02 with a natural decay rate of 0.001 [19, 20]. To prevent overfit-
ting, a dropout rate of 0.3 was employed. The lenk was set to 5. In our experiments, the 
dimensions dk and dseq were both set to 100 as the optimal parameters for the MMGAT 
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model through experiments on 20 validation sets of human ATAC-seq data. Existing 
ATAC-seq motif finding methods scFAN, FactorNet, and MMGraph were used as com-
parison models [10, 11, 13]. Precision, recall, F1_score, ACC, AUC, and PRC were used 
to assess the ability of the models to predict TFBSs. To evaluate the quality of the motifs 
found by the models, we used the TOMTOM tool and the HOCOMOCO motif data-
base to match the p value, E-value and q-value of the found motifs [21, 22]. In addition, 
the scalability score was used in this study to measure the running efficiency of the vari-
ous models [23]. In this case, a higher scalability score indicates a more efficient opera-
tion of the model.

Results of TFBSs prediction

TFBSs prediction aims to predict whether the input sequence contains TFBSs, which is 
a binary classification task. We conducted TFBS predictions on 180 human ATAC-seq 
datasets and 80 mouse ATAC-seq datasets, evaluating model performance using six met-
rics. Furthermore, in order to deeply investigate how the changes of the first and second 
layers in the MMGAT model affect the TFBSs prediction performance, we designed and 
implemented two comparison experiments. These two comparison experiments, named 
“MMGraph+GL1” and “MMGraph+GL2”, were used to evaluate the effects of introduc-
ing changes in the first and second layers of the graph structure on the prediction results, 
respectively. As shown in Table 1 and Additional file 1: Table S3, MMGAT achieved the 
highest average scores for all six metrics on human and mouse ATAC-seq datasets. Spe-
cifically, on the human datasets, the scores were 0.925, 0.921, 0.920, 0.921, 0.970, and 
0.965, respectively, while on the mouse datasets, our model obtained 0.893, 0.884, 0.883, 
0.884, 0.952, and 0.953, respectively. In particular, MMGAT increased recall by 2.56% 
and 6.51% on the human and mouse ATAC-seq datasets, respectively, compared to these 
comparison models. Our analysis of the standard deviation across these metrics reveals 
that MMGAT exhibits the smallest standard deviation. This observation underscores 
that MMGAT not only achieves superior prediction performance but also demonstrates 
exceptional stability in its predictions. Taking the GSE172538 dataset as an example, Fig-
ure S1 shown ROC curves of six models, among which MMGAT achieved the highest 
AUC scores. Notably, models employing GNNs have shown superior performance com-
pared to those utilizing CNNs. Among these, our GAT model MMGAT outperforms the 
GNN model MMGraph. This underlines the efficacy of MMGAT in predicting TFBSs 
on ATAC-seq data. Moreover, it demonstrates MMGAT’s capability in representing the 

Table 1 Mean and standard deviation of precision, recall, F1_score, ACC, AUC, and PRC scores of six 
models on 180 human ATAC-seq datasets

The bold black in table represents the highest value

Models scFAN Factornet MMGraph MMGraph + GL1 MMGraph + GL2 MMGAT 

Precision 0.793 ± 0.066 0.801 ± 0.068 0.907 ± 0.037 0.911 ± 0.036 0.910 ± 0.030 0.925 ± 0.020
Recall 0.748 ± 0.093 0.781 ± 0.078 0.898 ± 0.043 0.910 ± 0.037 0.902 ± 0.036 0.921 ± 0.022
F1_score 0.732 ± 0.117 0.775 ± 0.084 0.897 ± 0.044 0.909 ± 0.037 0.901 ± 0.037 0.920 ± 0.022
ACC 0.748 ± 0.093 0.781 ± 0.078 0.898 ± 0.043 0.909 ± 0.037 0.901 ± 0.036 0.921 ± 0.022
AUC 0.874 ± 0.094 0.876 ± 0.070 0.962 ± 0.023 0.964 ± 0.021 0.963 ± 0.021 0.970 ± 0.017
PRC 0.878 ± 0.088 0.875 ± 0.072 0.956 ± 0.027 0.957 ± 0.028 0.957 ± 0.027 0.965 ± 0.022
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embeddings of both k-mer and sequence nodes. In addition, “MMGraph + GL1” and 
“MMGraph + GL2” show performance improvements in most evaluation metrics com-
pared to MMGraph, however, these improvements still fall short of the performance of 
MMGAT.

Results of ATAC‑seq motifs finding

Motif finding is the process of extracting multiple ATAC motifs from input sequences. 
In addition to the comparison experiments with scFAN, FactorNet and MMGraph, we 
added an ablation experiment. We only improved the GNN model of MMGraph to GAT 
model, still using MI and coexisting probabilities of k-mers to find motifs, and then 
denote this ablation experiment using ’MMGraph + GAT’. This ablation experiment is 
used to examine the efficacy of finding motifs using the attention coefficient and coex-
isting probabilities of k-mers. It is worth mentioning that this ablation experiment was 
only used for the ATAC-seq motif finding task since ’MMGraph + GAT’ performed 
consistently with MMGAT in the TFBSs prediction task. We used motifs number to 
assess the models’ ability to find more motifs and p value to assess the models’ ability 
to find higher quality motifs. The p value is calculated by comparing the match score 
of a found motif to the probability that it can be expected to receive that score when 
a motif is randomly generated. We consider a motif with a p value less than 0.05, i.e. 
−log10(p_value) > −log10(0.05) = 1.301 , to be a significant motif. The E-value quanti-
fies the expected number of times that a random match could achieve an equivalent or 
superior match score, where a lower E-value typically denotes a higher confidence level 
in the motif match. The q-value addresses the risk of inadvertently finding significant 
matches due to multiple comparisons by adjusting the p value for multiple hypothesis 
testing, thereby controlling the false discovery rate. A lower q-value suggests that the 
found motif retains statistical significance even after accounting for multiple compari-
sons. We performed motif finding on 180 human ATAC-seq datasets and 80 mouse 
ATAC-seq datasets. Table 2 and Additional file 1: Table  S4 shows that on 180 human 
ATAC-seq datasets, MMGAT found 389 motifs with the highest motifs number. Simi-
larly, Additional file  1: Table  S5 demonstrates that on 80 mouse ATAC-seq datasets, 
MMGAT found the highest number of motifs with 356. The p values of motifs found by 
each model suggest that MMGAT finds higher quality motifs compared to the existing 
tools. It is worth noting that ’MMGraph + GAT’ performs better compared to MMGraph 
and weaker compared to MMGAT on the human and mouse ATAC-seq datasets. To 
evaluate the model’s running efficiency, this study conducted tests on four differently 
scaled datasets on an Ubuntu server equipped with 80 cpus kernels and a RTX 2080 
GPU. Each dataset was further divided into ten subsets, with the number of positive 
sequences in each fixed at 10k, 20k, 30k, and 40k, respectively. The performance of each 

Table 2 The number of motifs found by the five models on 180 human ATAC-seq datasets, along 
with the p value for the enrichment of the found motifs

The bold black in table represents the highest value

Models scFAN FactorNet MMGraph MMGraph + GAT MMGAT 

Motifs number 348 256 374 383 389
−log10(p_value) 3.854 3.759 6.768 7.085 7.271
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model was evaluated by normalizing its average construction time on the same size 
dataset. Ultimately, the scalability score was defined as the normalized value of the aver-
age build time of these models on four different sized datasets. Figure S2 shows that in 
scalability, MMGAT has a score of 2.12, which is lower than the scFAN and MMGraph 
scores but higher than the FactorNet.

Web server application

While ATAC-seq is generally considered straightforward and robust, there is a limited 
availability of bioinformatics analysis tools and servers specifically developed for ATAC-
seq data [6]. Therefore, we have developed MMGAT-S, a user-friendly and specialized 
platform for motif-related analyses. MMGAT-S uses Vue3 as the front end and Node.
js as the back end [24, 25]. MMGAT-S incorporates the MMGAT tool, enabling users 
to conduct the TFBS prediction and motif finding by uploading an ATAC-seq dataset. 
MMGAT-S also offers a visual interface that displays MMGAT’s motif finding results 
from 180 human ATAC-seq datasets and 80 mouse ATAC-seq datasets (Fig. 2). Addi-
tionally, MMGAT-S integrates various pre-existing tools, such as AME and GOMo, ena-
bling users to effortlessly perform downstream analyses on the found motifs [15, 16].

Discussion and conclusion
In this study, we propose an improved MMGAT method for finding multiple ATAC-
seq motifs based on the original MMGraph method. MMGAT is a GAT model, uses the 
attention mechanism to learn k-mer and sequence embeddings, and predicts TFBSs. 
ATAC-seq motifs are then found using attention coefficients and coexisting probabili-
ties. We conducted experiments on 180 human and 80 mouse ATAC-seq datasets to val-
idate the effectiveness of our proposed method. In the TFBSs prediction task, MMGAT 
achieves a satisfactory improvement in all six metrics compared to other methods. 

Fig. 2 Visualization page of motif finding results on MMGAT-S
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Especially on the recall metrics, it achieved 2.56% and 6.51% improvement on human 
and mouse ATAC-seq datasets, respectively. In the comparative experiments, both 
“MMGraph + GL1” and “MMGraph + GL2” demonstrated performance improvements 
over MMGraph on most metrics, illustrating that introducing attention mechanisms at 
both the first and second layers can effectively learn node embeddings in heterogene-
ous graphs, thereby enhancing prediction accuracy. Howerver, the similar performance 
of “MMGraph + GL1” and “MMGraph + GL2” makes it challenging to determine the 
layer at which the addition of the attention mechanism plays a more crucial role. Fur-
thermore, although both variants outperform the original MMGraph model in TFBS 
prediction performance, they still do not reach the level of MMGAT due to the incom-
plete application of the attention mechanism. Our results suggest that MMGAT can bet-
ter represent k-mer and sequence embedding by introducing an attention mechanism 
in GNN, thus playing an advantage in TFBS prediction. In finding ATAC-seq motifs, 
MMGAT utilizes the attention coefficients between sequence nodes and k-mer nodes 
as well as the coexisting probabilities of k-mers to find multiple motifs. We used p val-
ues to assess the quality of ATAC-seq motifs found by all models, and the results show 
that MMGAT is the best model for finding multiple ATAC-seq motifs. In the ablation 
experiments, ’MMGraph + GAT’ outperforms MMGraph, indicating that updating 
the GNN model to GAT not only improves the performance of TFBS prediction, but 
also brings some positive enhancement to motif finding. In addition, MMGAT out-
performs ’MMGraph + GAT’, verifying that our approach of using the attention coeffi-
cients to replace MI to find k-mer seeds is effective. In terms of scalability, the scores for 
MMGraph and MMGAT were 2.48 and 2.12, respectively, lower than scFAN but higher 
than FactorNet. This indicates that both MMGraph and MMGAT require a significant 
amount of time to construct heterogeneous graphs when dealing with large-scale data-
sets. Additionally, the lower scalability score of MMGAT compared to MMGraph sug-
gests that the introduction of an attention mechanism, which allocates different weights 
to the interactions between each node and its neighbors, necessitates additional time 
and computational resources to determine these weights.

MMGAT also has some limitations. First, MMGAT requires high hardware 
resources and may face memory limitations when running on large graphs. Second, 
although MMGAT also achieved the best performance on the mouse ATAC-seq data-
set, there is still a lot of room for improvement compared to its performance on the 
human ATAC-seq dataset. This performance difference mainly stems from the fact 
that the human ATAC-seq dataset is much larger than the mouse dataset, which 
prompted us to focus our resources on model optimization on the human dataset. We 
then attempted to apply the optimized model directly to the mouse dataset, rather 
than optimizing it specifically for the mouse dataset. This resulted in MMGAT’s 
performance on the mouse dataset being slightly lower than its performance on the 
human dataset. This suggests that there may be differences in the adaptability of 
MMGAT to different biological data, and thus further optimization and adaptation 
is needed to improve generalization capabilities across different species. Our forth-
coming efforts will be dedicated to addressing these challenges. Finally, the data pre-
processing strategy and heterogeneous map construction method of our proposed 
MMGAT method are designed for basic ATAC-seq data. In addition to the basic 
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ATAC-seq data, there are common ATAC-seq data types such as scATAC-seq data, 
snATAC-seq data, and so on. Through extensive comparative analysis, we observed 
that applying the MMGAT model to these alternative ATAC-seq data types proves 
challenging. This observation has set the direction for our future research endeav-
ors, aiming to enhance the model’s applicability across different types of ATAC-seq 
datasets.

It is to be expected that the rapid development in the field of GNN opens up new pos-
sibilities to further improve model performance. In particular, recent GNN approaches, 
such as Graph Transformer [26], may provide new perspectives and technical paths to 
improve and enhance MMGAT due to their advanced performance in processing graph-
structured data.

Transcription factors play a crucial role in the gene transcription process by binding 
to specific TFBSs to either promote or inhibit gene expression [11]. These TFBSs are 
significant in the pathogenesis of diseases [1]. ATAC-seq data can detect open DNA 
regions across the genome, allowing the finding of multiple TFBSs through its analysis. 
By examining ATAC-seq data, we can explore the role of TFBSs in disease development 
and gene regulation. Therefore, this study provides a potential model for researching 
TFBSs. Additionally, we developed a web server based on MMGAT, named MMGAT-S. 
MMGAT-S provides experimental biologists with a user-friendly interactive exploration 
tool for finding ATAC-seq motifs and conducting downstream analyses on the found 
motifs. MMGAT-S also provides visualized results of motif finding from MMGAT. This 
valuable resource empowers researchers to perform efficient and accurate motif finding 
without the need for programming expertise. In summary, this study presents a practical 
GAT framework and a user-friendly web server for finding ATAC-seq motifs.
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