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Abstract 

Background: High-throughput sequencing is a powerful tool that is extensively 
applied in biological studies. However, sequencers may produce low-quality bases, 
leading to ambiguous bases, ‘N’s. PCR duplicates introduced in library preparation 
are conventionally removed in genomics studies, and several deduplication tools 
have been developed for this purpose. Two identical reads may appear different due 
to ambiguous bases and the existing tools cannot address ‘N’s correctly or efficiently.

Results: Here we proposed and implemented TrieDedup, which uses the trie (prefix 
tree) data structure to compare and store sequences. TrieDedup can handle ambigu-
ous base ‘N’s, and efficiently deduplicate at the level of raw sequences. We also reduced 
its memory usage by approximately 20% by implementing restrictedDict in Python. 
We benchmarked the performance of the algorithm and showed that TrieDedup can 
deduplicate reads up to 270-fold faster than pairwise comparison at a cost of 32-fold 
higher memory usage.

Conclusions: The TrieDedup algorithm may facilitate PCR deduplication, barcode 
or UMI assignment, and repertoire diversity analysis of large-scale high-throughput 
sequencing datasets with its ultra-fast algorithm that can account for ambiguous bases 
due to sequencing errors.

Keywords: Deduplication, Ambiguous bases, Trie, Prefix tree, Next-generation 
sequencing

Background
High-throughput sequencing methods have been adapted and applied in many fields of 
biological studies, including immune repertoire studies [1, 2]. Polymerase chain reac-
tion (PCR), used during high-throughput sequencing library preparation, may lead to 
overrepresented templates, when multiple copies of the same DNA templates are ampli-
fied. These identical reads are termed as PCR duplicates [3]. PCR amplification may be 
biased based on the sequence and quantity of DNA templates; therefore, PCR duplicates 
usually need to be marked or removed to keep only one copy of their original template, 
through deduplication. However, high-throughput sequencing has a relatively higher 
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sequencing error rate in comparison to traditional Sanger sequencing, which poses 
challenges for data analysis, including deduplication. High-throughput sequencers use 
base quality score (Q score) to represent their confidence in the identity of each base 
[4]. Q scores are logarithmically related to the base calling error probabilities P, such 
that Q = -10 ×  log10P [5]. For example, a Q score of 10 represents an estimated sequenc-
ing error rate of 10%, and a Q score of 20 represents an error rate of 1%. Due to Illu-
mina sequencing chemistry, the average base quality usually decreases from 5′-end to 
3′-end of the reads [6]. Low-quality bases, often considered as bases whose Q scores are 
below 10 or 20, can be conventionally converted to the ambiguous base ‘N’s [7, 8]. Low-
quality reads with too many ‘N’s are often discarded as a means of quality control [7]. 
As described below, the presence of ambiguous ‘N’s in the remaining sequencing reads 
complicates the deduplication process.

Several bioinformatics tools have been developed for deduplication which work at two 
distinct levels, the level of alignment results and the level of raw reads. Tools that work 
on sequencing alignment files include samtools-rmdup [3], Picard-MarkDuplicates [9], 
EAGER-DeDup [10], and gencore [11]. A common deduplication strategy of alignment-
result-based tools is to drop the reads that have the same coordinates of read alignment, 
sometimes ignoring the underlying sequences or ambiguous bases, ‘N’s. Our previous 
bioinformatics pipeline for LAM-HTGTS also performs deduplication according to the 
alignment coordinates without considering the underlying sequences [12]. On the other 
hand, tools that work at the level of raw sequencing data usually perform sequence com-
parisons and store the unique, deduplicated sequences in a hash data structure. Such 
tools include pRESTO [13], clumpify [14], and dedupe [15]. However, most sequence-
based deduplication tools cannot handle ambiguous base ‘N’s correctly. In order to use 
hash for exact sequence matching, which is efficient when handling a large amount of 
data, they treat ‘N’ as a different base from regular bases ‘A’, ‘C’, ‘G’, ‘T’. Hence, sequence-
based tools routinely consider two reads that only differ at positions of low sequencing 
quality as two distinct reads. The only exception is the tool, pRESTO. pRESTO uses hash 
to store deduplicated sequences, and its implementation of a pairwise comparison algo-
rithm can handle ambiguous base ‘N’s when comparing a query sequence to the stored 
deduplicated sequences one-by-one. However, pairwise comparison has a complexity of 
approximately O(n2), and may not be feasible due to the long processing time when deal-
ing with large amounts of input sequences.

A major application of NGS is the repertoire analysis of antibodies in humans and ani-
mals. The analysis provides valuable information about antibody diversity and enables the 
identification of antibodies that have important specific functions. The variable regions of 
antibodies or the corresponding B cell receptors (BCRs) are encoded by V exons that are 
assembled by V(D)J recombination during B cell development. The most diverse part of 
the antibody variable region is the complementarity determining region 3 (CDR3), which 
includes the junctions of V–D and D–J joints for the immunoglobulin heavy chain (IgH) 
and V–J join for the immunoglobulin light chain (IgL). To characterize antibody reper-
toires, we have developed the high-throughput genome-wide translocation sequencing-
adapted repertoire and somatic hypermutation sequencing (HTGTS-Rep-SHM-Seq) 
assay, which can cover nearly full-length of the V(D)J-rearranged sequences after merging 
paired-end long-length MiSeq reads [2]. This assay utilizes the genomic DNA sequence 
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in B cells, with primers designed to target upstream of V segments and downstream of J 
segments, enabling characterization of the V(D)J recombination and CDR3 sequences of 
BCR. Each B cell has only one productive V(D)J rearranged allele for heavy chain or light 
chain; therefore, after deduplication, each read of productive V(D)J rearrangement will 
represent one B cell. Due to the high error rate of next-generation sequencing technology 
and the distance from the primers to the CDR3 region, a proportion of the reads captur-
ing CDR3 sequences may contain low-quality ambiguous bases, represented as ‘N’s. Low-
quality reads with too many ‘N’s are often discarded as a means of quality control [7]. 
Nonetheless, outright discarding sequences containing any ‘N’s carries the potential risk 
of overlooking some rare events, which may still be important for biological functional 
studies. A case in point is a kind of rare IgL that contains a rare 5-amino acid (aa) CDR3. 
Such IgL with 5-aa CDR3 is a conserved and functionally important feature for a type of 
broadly neutralizing antibody (VRC01) against HIV-1 [16]. To test our method, we ana-
lyzed the repertoire data of a mouse model that is engineered to express VRC01 class 
antibodies; such mouse model is used to test vaccine candidates for eliciting this kind of 
antibodies. Before the immunization study, it is important to determine the frequency of 
IgL with 5-aa CDR3, a pre-requisite for VRC01 antibody induction. By analyzing the rel-
evant public dataset GSE214884, we observed that 5–10% of the CDR3 sequences contain 
‘N’s, which increased to 12–38% for CDR3 longer than 12 aa (Additional file 1: Table S1). 
We observed reads that were otherwise identical except for a few low-quality bases or 
ambiguous ‘N’s (Additional file  1: Table  S2), likely representing duplicates of the same 
template, although it is theoretically possible that these similar reads are indeed from dif-
ferent templates. An exact-matching approach to deduplication, which treats ‘N’s as dis-
tinct from other nucleotides, may artificially inflate the count of unique CDR3 sequences 
(Additional file  1: Table  S3). For efficiency in processing huge amounts of sequencing 
data, our previous pipeline for HTGTS-Rep-SHM-Seq uses an alignment-result-based 
approach. It deals with ‘N’s by separating reads with and without ‘N’s, aligning reads 
with ‘N’s to reads without any ‘N’s using bowtie2, and checking their alignment length 
for deduplication [2]. However, this approach cannot deduplicate among reads with ‘N’s 
when they do not have common equivalent reads without any ‘N’s. On the other hand, by 
pairwise comparison, pRESTO can deduplicate among reads with ‘N’s; but it runs slowly 
with the tremendous amount of input sequences.

Here, we designed and implemented TrieDedup, a faster deduplication algorithm 
that uses the trie (prefix tree) structure to store deduplicated sequences and efficiently 
deduplicates at the level of raw sequences, ignoring differences only due to low-quality 
ambiguous base ‘N’s. We implemented a custom Python class, restrictedDict, to reduce 
memory usage. We benchmarked the performance of TrieDedup and the pairwise com-
parison algorithm implemented in pRESTO with simulated data as well as real public 
data. The source code of TrieDedup is available at https:// github. com/ lolre nceH/ TrieD 
edup under the Apache 2.0 license.

Implementation
Deduplication algorithm

Many sequence-based deduplication tools regard the ambiguous ‘N’ as different 
from the traditional bases, ‘A’, ‘C’, ‘G’, ‘T’, using hash-based exact matching to perform 

https://github.com/lolrenceH/TrieDedup
https://github.com/lolrenceH/TrieDedup
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deduplication. The hash algorithm is highly efficient for comparing the literal identity of 
sequences. However, it offers no room for correctly accounting for sequencing ambigu-
ity. Ambiguous ‘N’s potentially represent any of the four regular DNA bases. They should 
not be considered as different from other DNA bases by default.

Accounting for ‘N’s in deduplication poses two challenges: (1) when allowing differ-
ences at ‘N’s, the equivalence relationship between sequences may become complicated; 
and (2) we need an efficient algorithm to compare between a large amount of sequences 
and ignore ‘N’ differences.

For Challenge (1), theoretically, a network graph of equivalence relationship can be 
constructed, where each node represents an input sequence, and equivalent nodes are 
connected by an edge. Deduplication can be regarded as the well-known ’maximal 
independent set (MIS)’ problem on the graph. A MIS is a set of nodes that are not 
adjacent, and its members and their neighbors include all the nodes in the graph. A 
deduplicated set is equivalent to a MIS on the network graph. The complication is that 
MIS may be not unique, and the sizes of MISs may vary. As a toy example, a simple 

Fig. 1 Diagram of progressive pairwise comparison and TrieDedup algorithm
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equivalence graph ‘TAC’–‘TNC’–‘TGC’ has an MIS {‘TAC’, ‘TGC’} and another MIS 
{‘TNC’}. More generally, a star-shaped graph can have an MIS consisting of the tip 
nodes, or another MIS consisting of the center node. Thus, we need a principle for 
choosing a MIS. For sequence deduplication, we may prefer to choose the nodes with 
fewer ‘N’s to represent the observed sequences, which correspond to the tip nodes of 
the star-shaped graph.

Finding a MIS can be achieved by adding a candidate node into a MIS and remov-
ing neighbors of the node from the query, iteratively. Instead of performing a pairwise 
comparison between all input sequences, we can store unique sequences that are previ-
ously deduplicated and compare each query sequence to these established deduplicated 
sequences, reducing the number of comparisons (Fig. 1). Because we prefer unambigu-
ous sequences, we sort the input sequences by the number of ‘N’s in ascending order, 
and consider each read, sequentially. This progressive pairwise comparison is imple-
mented in pRESTO.

For Challenge (2), the pairwise comparison algorithm needs to compare each input 
sequence with the full set of deduplicated sequences to determine if it is unique. We 
adapted the trie (prefix tree) structure to store the previously deduplicated sequences, 
whose prefixes are organized into a consensus tree. The trie structure can retain infor-
mation of sequence similarity from previous comparisons, thereby reducing the number 
of necessary comparisons. The trie structure can immediately identify an unobserved 
sequence, as soon as the input sequence diverges from the observed paths, thus reducing 
the number of comparisons (Fig. 1).

In summary, we designed and implemented the following algorithms to store and 
compare sequences, which can ignore mismatches due to ‘N’s.

Algorithm 1 Deduplication with trie storing a working set of deduplicated sequences

Input: reads (read ID and sequence pairs) 

Output: deduplicated reads 

if reads are not sorted by the number of 'N's in each sequence in ascending order then 

└ sort the reads by the number of 'N's in each sequence in ascending order 

initialize empty deduplicated trie and read list 

for each query_read in sorted reads do 

│ if query_read.sequence can match any one sequence in deduplicated trie then 

│ └ query_read is classified as duplicate, and is discarded 

│ else 

│ ├ add query_read.sequence to deduplicated trie 

└ └ add query_read to deduplicated read list 

return deduplicated read list 



Page 6 of 13Hu et al. BMC Bioinformatics          (2024) 25:154 

Algorithm 2 Adding a sequence to the trie storing already deduplicated sequences

Input: trie, sequence, position_index

Output: none

node ← trie.root

for each query_base in sequence do

│ if node does not contain query_base as its key then

│ └ node[query_base] ← empty trie

└ node ← node[query_base]

node.is_end ← true

Algorithm 3 Searching for a query sequence in the trie storing already deduplicated sequences

Input: trie_node, sequence, i (sequence position index) 

Output: true / false 

if i == length(sequence) and trie_node.is_end then 

└ return true 

query_base = sequence[i] 

for each stored_base (key) in trie_node do 

│ if query_base==stored_base or query_base=='N' or stored_base=='N' then 

│ │ if trie.node[stored_base].search(sequence, i+1)==true then 

└ └ └ return true 

return false 

Note:

(1) keep ‘N’ the last stored_base (after regular bases) when traversing trie_node
(2) searching the whole sequence from trie_root by: trie_root.search(sequence, 0)

As an implementation detail, to avoid repeatedly checking the same sequence, we 
also implemented exact-matching deduplication using a hash dict. This step is exe-
cuted before performing actual deduplication through the trie algorithm. Subsequently, 
sequences are sorted in ascending order based on the number of ‘N’s present, ensuring 
that high-quality sequences are processed first, recognized as unique, and stored in the 
already deduplicated set. Sequences with more ‘N’s are processed later and progressively 
matched against those deduplicated sequences with fewer ambiguous ‘N’s.
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Memory usage optimization

The pairwise comparison algorithm directly stores every deduplicated, unique sequence, 
while our algorithm stores them in the trie structure, which theoretically costs less 
memory. However, empirically, storing a trie structure may cost more memory on the 
dict data structure than just storing simple sequences in hash keys, potentially due to 
Python’s base-level optimizations. To reduce memory consumption, we used __slots__ 
magic in Python to declare the variables. In Python, by default, a class instance declares 
a dict attribute named __dict__ to dynamically store its variable names and values. The 
__slots__ attribute in Python allows for the declaration of a fixed set of attributes for 
class objects, preventing the creation of the instance dict __dict__, thus significantly 
reducing the memory footprint of each class instance. We also implemented restricted-
Dict, a restricted dict with list implementation: it restricts hash keys to predetermined 
options, stores the values in a list instead of a dict, and keeps a shared dict to map lim-
ited keys to the index in the list. The restrictedDict achieves a smaller memory usage by 
storing values in a list instead of a dict, accommodating for large sequencing datasets. In 
DNA sequencing data, there are five possible base identities: ’A’, ’C’, ’G’, ’T’, and ‘N’. Thus, 
we only keep one dict as a shared class variable of restrictedDict, which stores the map-
ping table from the base letter (as the keys of dict) to the index in the list. For simplic-
ity in describing the results, we abbreviate the original trie implementation as trie0, trie 
with only __slots__ magic as trie1, and trie with __slots__ and restrictedDict as trie2.

Benchmark and comparison to other tools

We compared progressive pairwise comparison algorithm and trie implementation with 
or without memory optimization in a Dell PowerEdge T640 server, with 192GB physi-
cal memory and limited to one CPU of Intel Xeon Gold 6126 2.6GHz, and in RedHat 
Linux operation system. In order to ensure a fair comparison with pRESTO, which is 
implemented in Python and has additional functions that may affect its efficiency, we 
reimplemented the progressive pairwise comparison algorithm according to pRESTO. 
We benchmarked the accuracy, running time, and memory usage of the exact-matching, 
pairwise comparison, and trie algorithms using both simulated reads or real public reads 
as input.

To simulate input sequences, we first generated a unique set of parental sequences of a 
specific length, then randomly sampled them with replacement, which usually sampled 
approximately 55% of unique parental sequences, and lastly converted a fixed number of 
bases at random locations to ‘N’s in each sampled sequence. We considered sequences 
originating from the same parental sequence to be PCR duplicates; thereby we knew the 
ground truth for the size of the deduplicated set. We performed comparisons for  103, 
2 ×  103, 5 ×  103,  104, 2 ×  104, 5 ×  104,  105, 2 ×  105, 5 ×  105, and  106 input sequences, with 
lengths of 30, 100, 150, and 200 bp, and converted 1%, 5%, 10% or 20% bases to ‘N’s for 
each input sequence. Each condition is tested with three repeats.

We also benchmarked the performance in public HTGTS-Rep-SHM-seq data of 
the BCR repertoire. We downloaded raw fastq files for SRR3744758, SRR3744760 and 
SRR3744762 from SRA, each containing slightly more than 1 million 300-bp paired-
end reads. We then randomly selected 1 million reads and masked bases with a quality 
score ≤ 10 by ‘N’ to serve as the input sequences.
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Results
Theoretical complexity analysis

Suppose there are n input sequences, and each sequence has m bases. For the preproc-
essing steps, the time complexity of counting ‘N’s is O(m × n), and sorting n sequences 
can be O(n × log(n)) for quick sort, or O(n) for bucket sort.

Suppose we progressively add sequences to the deduplicated set, and the deduplicated 
set has already stored nd sequences. The space complexity of plain storing nd sequences 
is O(m × nd). The algorithm of pairwise comparison between a candidate sequence and 
the deduplicated set has time complexity O(m × nd). Then, the overall complexity of 
the whole deduplication process is O(m × n2). This algorithm has been implemented in 
pRESTO, which runs slowly with a large number n of input sequences.

Here, we designed and implemented an algorithm using the trie structure to store the 
already deduplicated sequences. The upper limit of the space complexity of the trie struc-
ture storing nd sequences is O(m × nd), and should be lower when the sequences have 
common prefixes. Without ‘N’s, the time complexity of comparison between a query 
sequence and the trie structure is only O(m); therefore, the lowest overall complexity of 
the whole deduplication process is O(m × n). However, when allowing ambiguous base 
‘N’s, we may need to explore more branches in the trie to determine the comparison 
result. Theoretically, the upper limit of complexity for one query sequence is O(m × nd); 
therefore, the upper bound of the overall complexity is still O(m × n2). Though, this situ-
ation may rarely happen as long as the input sequences do not contain too many ‘N’s. If 
each sequence has at most k ‘N’s, the upper limit of the time complexity between one 
query sequence and the trie structure is O(m ×  5k), for 5 possible choices of bases (’A’, ’C’, 
’G’, ’T’, ‘N’) at k trie nodes; therefore, the overall time complexity is O(m × n ×  5k). Theo-
retically, the actual time complexity is dependent on the amount and location of ‘N’s in 
sequences. Sequences with fewer ‘N’s or ‘N’s located closer to the end (near trie tips) will 
have less complexity than those with more ‘N’s or ‘N’s located closer to the start (near 
trie root).

Benchmark on simulated data

We benchmarked the accuracy, speed and memory consumption of the trie algorithm 
with or without memory optimization, and compared them to the performance of the 
progressive pairwise comparison algorithm, which we reimplemented from pRESTO, 
using the simulated 200-bp reads. Both the pairwise comparison and trie algorithms 
demonstrate high accuracy in recovering the deduplicated sets to the ground truth sizes 
(Additional file 1: Table S4). In contrast, the exact-matching approach, which treats ‘N’s 
as distinct from other nucleotides, inflates the sizes a lot (Additional file  1: Table  S4), 
although it runs very fast (< 2.5 s for n =  106) and requires minimal memory (< 0.7 GB for 
n =  106).

The pairwise comparison and all the trie algorithms show an approximately linear 
relationship between log-transformed running time and the log-transformed number of 
input sequences (Fig. 2A). The slope of pairwise comparison is close to the theoretical 
order 2. On the other hand, the slope of the trie algorithm is much lower, which is ≤ 1.3 
for n ≤  105 and the percentage of ambiguous bases in reads (N%) ≤ 10%, and increases for 
larger n or N%. When the input sequences are less than 5000, the pairwise comparison 
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algorithm is more efficient than the trie algorithm whose performance is less than 3s. 
When there are more than 5000 input sequences, the trie algorithm runs significantly 
faster than pairwise comparison.

The trie algorithm significantly outperforms pairwise comparison at large input sizes. 
For example, at N% = 5% and n =  104, pairwise comparison needs 8.9s (on average), trie 
algorithm needs ≤ 5.0s; at n =  105, pairwise comparison needs 1100 s (or 18.3 min), trie 
algorithm needs ≤ 55s; at n =  106, pairwise comparison needs 125000s (or 34.7h), trie 
algorithm needs ≤ 1755s (or 29.3 min).

When comparing the running time among the three different options of memory opti-
mization of the trie implementation, we found that all the three options have very simi-
lar running time, without magnitude difference. Trie1 runs relatively faster than trie0 
and trie2, with the difference being less than twofold (Fig. 2A).

In terms of memory usage, the pairwise algorithm is more memory-efficient to imple-
ment than the trie because entire sequences can be stored as one item instead of storing 
each base individually (Fig. 2B). Among three trie implementations, as expected, trie0 
requires the most memory and trie2 requires the least. The slopes for the three options 
in Python implementation are similar, all close to but a little less than the theoretical 
1. For n ≥  105, the implementation of restrictedDict (trie2) improves the memory usage 
of __slots__ optimization (trie1) by approximately 19%, while trie1 improves 20% com-
pared to trie0; therefore, trie2 only uses 65% memory as much as trie0 uses.

When N% = 5% and n =  104, pairwise comparison on average requires 0.07GB memory 
to run, while trie0 requires 0.62GB, trie1 0.51GB, and trie2 0.42GB; when n =  105, pair-
wise comparison needs 0.19GB, trie0 5.6GB, trie1 4.5GB, and trie2 3.7GB; when n =  106, 
pairwise comparison requires 1.6GB, trie0 55GB, trie1 44GB, and trie2 36GB.

We also evaluated the influence of the length of input sequences and N% on the per-
formance of pairwise comparison and trie2 (Additional file 2: Fig. S1, Additional file 2: 
Fig. S2). As expected, longer length will need more running time and memory usage. 
The percentage of ambiguous bases in reads (N%) barely impacts the memory usage of 
both algorithms. This is likely because the memory usage is more closely correlated with 

Fig. 2 Running time and memory usage increases with larger amount of input sequences (benchmark 
simulation). A Running time; B memory usage. Input sequences are 200 bp in length. Error bars shows 
mean ± standard deviation, each with 3 replicates
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the number of unique reads stored in the already deduplicated set, whose ground truth 
remained constant across different N% in our simulation. On the other hand, a higher 
N% increases the running time of the trie algorithm, while it does not affect the running 
time of pairwise comparison. This may be because the pairwise comparison algorithm 
requires a lot of comparisons between sequence pairs until it finds a match, which is 
not significantly affected by N; whereas the trie algorithm needs to search through more 
branches when the query sequence contains more ‘N’s. Additionally, when a sequence 
with more ‘N’s is considered unique and added to the trie structure, it may slow down 
subsequent searches by increasing the possible branches at ‘N’.

Benchmark on real data

We applied the exact-matching, pairwise comparison, and trie algorithms to pub-
lished sequencing data with a read length of 300 bp and an average N% of 4.9–15.8%. 
As expected, higher N% and a lower percentage of unique reads were observed in R2 
than in R1 reads. With an input size of  106 raw reads, both pairwise comparison and trie 
algorithms reported the same numbers of unique reads (Additional file 1: Table S4). In 
contrast, although the exact-matching approach runs very fast (< 4 s) and requires mini-
mal memory (< 0.75 GB), it likely inflates the sizes of deduplicated sets, especially for R2 
reads, whose N% is higher than R1 reads (Additional file 1: Table S4). Deduplication by 
trie2 only needed 0.9–2.1 h using 35–55 GB of memory, while deduplication by pairwise 
comparison required 6–16 days with about 1.5  GB memory usage (Fig.  3). Therefore, 
trie2 deduplication can achieve about 270-fold faster speed than pairwise comparison, 
with 32-fold higher memory usage.

Discussion
To deduplicate high-throughput sequencing libraries while ignoring differences only due 
to ambiguous base ‘N’s, we adapted the trie structure to store deduplicated sequences, 
and implemented a corresponding algorithm, named TrieDedup. When the input size is 
larger than 5000 sequences, the trie algorithm is more efficient than the pairwise com-
parison algorithm used in pRESTO, at the price of higher memory usage. TrieDedup can 
deduplicate up to  106 input sequences within 2 h using less than 36GB of memory. In 
addition, TrieDedup may be potentially adapted into pRESTO framework.

The real data we used for benchmarking were public HTGTS-Rep-SHM-seq data of 
BCR repertoire downloaded from SRA (SRR3744758, SRR3744760, and SRR3744762). 
For such a typical study targeting B cell receptor repertoire, these samples originally 
contain 1.22 million, 1.10 million, and 1.49 million 300-bp reads respectively, with the 
fastq file sizes being approximately 1.6 GB, 1.5 GB, and 2 GB. For our benchmark experi-
ments, we randomly selected 1 million reads from these samples, believing that this 
number represents a realistic read number for this type of sequencing data. For the other 
genomic studies, the read number can vary significantly in scale, which depends on the 
targeted genomic region size, the depth of sequencing, and the lengths of sequenced 
reads. For instance, a 30X Whole Genome Sequencing (WGS) of a human genome typi-
cally requires around 900 million 100-bp reads, while an 80X Whole Exome Sequenc-
ing (WES) might need about 24 million 100-bp reads. These quantities are 1–3 orders 
of magnitude higher than those typical targeted sequencing such as B cell repertoire 
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studies. Our benchmark suggests a dataset of up to 1 million reads, or a fastq file size of 
approximately 1.5GB, can be efficiently deduplicated by our TrieDedup with approxi-
mately 36GB of memory usage which a typical server has the memory capacity to sup-
port. Since both the running time and memory usage increase with the number of input 
sequences, and the complexity order of running time on N exceeds one, the efficiency of 
deduplication may be further improved if we can divide the input sequences into smaller 
non-overlapping groups. To handle a larger number of reads, we also recommend 
grouping reads to reduce each group to below 1 million reads. For example, the reads 
may be grouped based on sequence prefixes, or the mapped chromosome and coordi-
nate range if the reads have been aligned, or the V and J alignment for V(D)J repertoire. 
If these subsets of data are processed separately, the algorithm will have to store fewer 
reads simultaneously, hence reducing memory usage.

Trie structure has also been used in the deduplication of Unique Molecular Identifiers 
(UMIs) [17], but the traditional trie structure cannot handle ambiguous bases, although 
errors in UMIs are common [18]. UMIs containing any ‘N’s or bases with a Q score 
below 10 are by default filtered out during 10x Genomics Cell Ranger processing. Here, 
we designed and implemented TrieDedup, where the specialized trie structure and algo-
rithm can correctly and efficiently handle the differences due to ambiguous bases. With 
its ultra-fast algorithm, TrieDedup may also potentially be applied to barcode or UMI 
assignment when considering reads with a few low-quality bases in the UMIs.

We designed, implemented, and showcased a universal algorithm using a trie for 
deduplication that allows for ambiguous letter matching, therefore, we did not restrict 
the allowed keys of restrictedDict to ‘A’, ‘C’, ‘G’, ‘T’ and ‘N’. Our highly versatile TrieDedup 
algorithm can be applied not only to DNA reads, as evaluated in the manuscript, but 
also directly to protein amino acid sequences and even text word matching. To further 
improve runtime and memory usage, we also implemented TrieDedup in Java and C++, 
but hard-coded the allowed keys to DNA bases. These implementations are also avail-
able in our GitHub repository. Compared to Python implementation, TrieDedup C++ 
implementation achieved 5–11-fold faster and 1/3 memory. However, it imposes limi-
tations by being restricted solely to DNA sequences, underscoring a trade-off between 
performance optimization and general applicability.

Fig. 3 Running time and memory usage when applying on  106 real 300-bp reads from SRA. X-axis ‘N%’ shows 
the average percentage of ambiguous base ‘N’s in reads
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The threshold of Q scores for converting low-quality bases to ambiguous ‘N’s, which is 
often library-specifically set to 10 or 20 arbitrarily, may affect N% in input reads, as well 
as the amount of deduplicated reads. A potentially more principled approach is to sum 
up the error rate of mismatches in pairwise comparison, and then set the threshold on 
the sum error rate to judge the equivalence between reads. However, it may generate a 
more complicated relationship of equivalence and even higher computational complex-
ity than the current pairwise comparison algorithm in pRESTO.

Conclusions
We implemented TrieDedup, which uses the trie structure to store deduplicated 
sequences, and ignores differences only due to ambiguous base ‘N’s. We also imple-
mented a memory-efficient class, restrictedDict, that reduced the memory usage to 
about 0.8-fold. TrieDedup significantly outperforms the pairwise comparison strategy 
when the amount of input sequences is larger than a few thousand. TrieDedup can 
deduplicate reads up to 270-fold faster than pairwise comparison at a cost of 32-fold 
higher memory usage. Potentially, TrieDedup may be adapted into pRESTO, and may 
be generalized to other scenarios for deduplication with ambiguous letters.
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