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Abstract 

Background: Recent developments in single‑cell RNA sequencing have opened 
up a multitude of possibilities to study tissues at the level of cellular populations. How‑
ever, the heterogeneity in single‑cell sequencing data necessitates appropriate proce‑
dures to adjust for technological limitations and various sources of noise when inte‑
grating datasets from different studies. While many analysis procedures employ various 
preprocessing steps, they often overlook the importance of selecting and optimizing 
the employed data transformation methods.

Results: This work investigates data transformation approaches used in single‑cell 
clustering analysis tools and their effects on batch integration analysis. In particular, we 
compare 16 transformations and their impact on the low‑dimensional representations, 
aiming to reduce the batch effect and integrate multiple single‑cell sequencing data. 
Our results show that data transformations strongly influence the results of single‑
cell clustering on low‑dimensional data space, such as those generated by UMAP 
or PCA. Moreover, these changes in low‑dimensional space significantly affect trajec‑
tory analysis using multiple datasets, as well. However, the performance of the data 
transformations greatly varies across datasets, and the optimal method was differ‑
ent for each dataset. Additionally, we explored how data transformation impacts 
the analysis of deep feature encodings using deep neural network‑based models, 
including autoencoder‑based models and proto‑typical networks. Data transformation 
also strongly affects the outcome of deep neural network models.

Conclusions: Our findings suggest that the batch effect and noise in integrative 
analysis are highly influenced by data transformation. Low‑dimensional features can 
integrate different batches well when proper data transformation is applied. Further‑
more, we found that the batch mixing score on low‑dimensional space can guide 
the selection of the optimal data transformation. In conclusion, data preprocess‑
ing is one of the most crucial analysis steps and needs to be cautiously considered 
in the integrative analysis of multiple scRNA‑seq datasets.

Keywords: Single‑cell sequencing, Dimensionality reduction, Clustering, Cell‑type 
identification
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Background
Single-cell RNA sequencing (scRNA-seq) enables a high-resolution view of tissues and 
organisms. With scRNA-seq, it is now possible to understand heterogeneous cell popu-
lations by directly sequencing their transcriptome. However, at the same time, observa-
tions on a single-cell level result in a higher noise rate in the data due to technological 
limitations [1]. Although various single-cell technologies are being developed, it remains 
impossible to capture all the existing RNAs in the cells since a large proportion of reads 
are lost during the sequencing preparation steps. The presence of dropouts in scRNA-
seq data undermines the precision of gene expression quantification. Various strategies 
have emerged to handle this challenge from imputation techniques reliant on cluster-
ing cells to methodologies leveraging transcriptional regulatory networks and ensemble 
techniques [2–4]. Thus, proper post-processing of sequencing data is indispensable [5, 
6], and various scRNA-seq data analysis tools were developed and introduced during the 
last decade.

The current practice in single-cell integrative analysis are composed of the follow-
ing: (1) preprocessing of read-count data, (2) filtering highly variable genes, (3) applying 
batch integration model, (4) extract features (PCA), (5) clustering on feature space, and 
(6) visualization with t-SNE or UMAP [7–10]. Additionally, following the recent devel-
opment of deep neural networks (DNN) in computer science, many DNN models were 
introduced in the area of bioinformatics and single-cell analysis. In particular, autoen-
coder-based models have been introduced for single-cell RNA sequencing analysis in 
the last couple of years. These were used as feature encoders to reduce or filter highly 
variable genes and represent the data with a relatively small size of latent vectors [11]. 
Thus, these models represent an alternative for feature extraction from high-dimen-
sional data in addition to classical statistical models using singular vector decomposition 
[12, 13]. Moreover, generative adversarial networks (GANs)-based models were devel-
oped for single-cell data imputations [14, 15] and data augmentation/generation [16], for 
instance.

Subsequently, a number of benchmark studies introduced a variety of different single-
cell analysis tools and evaluated their performance, each focusing on specific steps and 
challenges in single-cell analysis. For instance, Tran et al. compared 14 different methods 
for batch-effect correction. Subsequently, they utilized t-SNE and UMAP for the visuali-
zation and quality evaluation of the batch correction [17]. According to their evaluation, 
the top three methods for batch mixing were LIGER [18], Harmony [19], and Seurat v3 
[20]. Lytal et  al. compared seven different normalization methods for single-cell RNA 
sequencing data and evaluated these by k-nearest-neighbor cell type classification. They 
found that the best performing tools vary between the datasets while Linnorm [21] and 
scran [22] showed consistent results [23]. Li et al. compared four widely used batch cor-
rection methods, and found ComBat [24] performed the best according to their criteria 
[25]. Luecken et al. compared 68 methods and preprocessing combinations using a sin-
gle-cell dataset including 85 different batches. Their evaluation indicates that, for simple 
tasks, Harmony [19] is the best choice, and, in more complex tasks, Scanorama [26], and 
scVI [27] are recommended. Furthermore, they found that deep learning-based models 
show highly variable performances [28]. Chu et al. compared 28 scRNA-seq de-noising 
methods in 55 scenarios. They developed a set of pipelines for single-cell processing and 
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compared these for various analysis purposes. Their comprehensive benchmark gives 
the user a practical view of choices [29].

These benchmark studies highlight the importance of the discussed analysis methods 
in various tasks. However, the majority of studies neglected the importance of appro-
priate normalization methods. The preprocessing step for scRNA read counts usually 
comprises different data transformations. For their benchmark dataset, Luecken et  al. 
used only scran [22] for normalization and log-transformation. However, although this 
preprocessing step is considered the best choice for single-cell RNA sequencing analysis, 
up to now, there is no strong evidence that supports the assumption of generalizabil-
ity across various datasets, and purposes [6]. Moreover, Cole et al. previously reported 
that there is no one-fits-all solution for every type of single-cell data and pointed out the 
potential of normalization and data transformation methods for de-noising scRNA-seq 
datasets [30]. Tian et al. also investigated various analysis pipelines by combining differ-
ent normalization methods. They also reported that there is not a single best analysis 
pipeline for all analysis scenarios [31]. In order to get an overview of the data transfor-
mation methods used for the analysis of single-cell RNA sequencing data, we reviewed 
22 recent studies and found a variety of data transformation statistics, see Table  2, in 
their preprocessing or data cleaning strategies (Table 1).

For example, log transformation is one of the most common data transformation 
methods in numerous RNA-sequencing data analysis studies. Another widely used 

Table 1 Data transformation methods used in various studies.

Summary of recently published studies for single‑cell RNA sequencing data and their data transformation methods. Details 
about statistics are in Table 2. Preprocessing in parenthesis is an optional step depending on the dataset

Tools Preprocessing (data transformation used in the study or tool)

scVI [27] RAW 

scLVM [32] RAW or log‑linear fit

scGen [33] Total → Log

MNN [34] Deconvolution based normalization [35] → Log

LIGER [18] Total → l2‑norm

scImpute [36] Total → Log10

Scanorama [26] l2‑norm

scIGANs [14] Minmax

ComBat‑seq [37] RAW 

DESC [38] Total → Log → Z‑score

scMerge [39] Log → Z‑score

scDHA [11] (Log2) → Minmax

scVAE [40] RAW 

scGNN [41] Log

ICAnet [42] Total → Log2

scETM [43] RAW 

iMAP [44] Log

scBatch [45] Log, (dataset with ERCC: scPLS [46]) or (Raw → ComBat‑seq) [37]

Seurat V2 [47], V3 [20] Total(1e−6) → Log → Z‑score

Harmony [19] Total(1e−6) → Log → Z‑score

MARS [48] Total(1e−6) → Log → min(Z‑score, 10)

Benchmark [28] (scran [22]) → Log
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method is the min-max normalization, which is especially favored for deep neural net-
work-based models since these computer vision methods use a 0 to 1 range input array. 
Moreover, the z-score is another method that has been popular since the microarray era 
[49]. In comparison, column-wise (cell-wise, or total) normalization is the most widely 
applied method for single-cell analysis due to technological limitations in single-cell 
sequencing. This limitation makes it impossible to get an evenly distributed read count 
in each cell. Consequently, each cell has a different number of total read counts. There-
fore, total normalization was introduced to handle this issue [50]. One of the most suc-
cessful tools for single-cell analysis is Seurat. Thus, many of the studies are using this 
library [47]. Seurat employs three preprocessing steps: total normalization, log transfor-
mation, and Z-score standardization.

Previously, Wang et  al. compared data transformation methods, including log, raw, 
and z-score, and two different analysis tools, “sctransform” and “sc3”. In their results, 
single-cell clustering analysis results were highly dependent on data transformation [51]. 
However, their work is limited to a few transformation statistics and methods. Further-
more, they solely focused on single-dataset analysis, so batch effects or other noise were 
not considered. Therefore, in the presented study, we aim to fill this gap and investi-
gate the impact of data transformation methods on both single and multiple-integrated 
scRNA-seq data analysis. We hypothesize that simple but carefully chosen preprocess-
ing steps can reduce batch effects in the integration of multiple scRNA-seq datasets. 
Therefore, comparing evaluation results of different datasets and methods without prior 
optimization and standardization of these preprocessing methods may lead to incom-
parable outcomes and an unreliable and unfair comparison. To test our hypothesis, we 
evaluated the impact of a large number of data transformations in integrative scRNA-
seq analysis scenarios. Batch effects in heterogeneous datasets are explored using low-
dimensional representations, and the results of conventional scRNA-seq analysis are 
compared (Fig. 1).

Methods
We tested different combinations of data transformation methods on four different 
batch effect tasks; (1) single-dataset analysis, (2) multiple datasets analysis, (3) multiple 
dataset analysis with deep neural networks models, and (4) trajectory analysis with inte-
grated dataset.

Task 1: Single dataset task We analyzed individual datasets with a conventional 
approach and low-dimensional representations with different data transformations. The 
conventional approach is done by PCA with highly variable gene selection with total 
normalized and log-transformed data. Subsequently, we evaluate the performance of 
low-dimensional representation analysis with different data transformation and cluster-
ing methods. Details are described in section "Single-cell RNA sequencing data analysis 
with low-dimensional representation".

Task 2: Multiple dataset integration task Multiple datasets analysis was performed on 
four different subtasks, human pancreas datasets, mouse pancreas datasets, mouse cell 
atlas datasets, and mouse and human embryo datasets. The aim is to evaluate how much 
batch effect could be adjusted with simple data transformation methods. Therefore, 
we will integrate each of the four datasets and employ 16 different data transformation 
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combinations and the dimensionality reduction method, respectively. Finally, the perfor-
mance of the scRNA-seq clustering results for all subtasks is evaluated as described in 
section "Single-cell RNA sequencing data analysis with low-dimensional representation". 
The batch-ARI score is calculated by considering the biological heterogeneity in addition 
to technological heterogeneity, and the dimensionality reduction results are also visual-
ized on scatter plots with different colors for different mouse strains.

Task 3: Multiple dataset integration task with DNN models Next, we set a baseline 
of the Human Pancreas Dataset from the previous analysis. We evaluated the power 
of various deep neural network models with the same Human Pancreas Dataset. The 
Autoencoder, Variational Autoencoder [52], and ProtoTypical Network [53] were tested  
(Result "Impact of data transformation on the DNN features" section).

Task 4: Trajectory analysis with integrated dataset Finally, to generate new insights 
for the optimal use of the discussed integration approaches, we conducted a follow-up 
investigation of the downstream scRNA-seq analysis with trajectory analysis with pseu-
dotime. Therefore, we applied various data transformation methods with low-dimen-
sional embedding and clustering to search for proper data transformation. After that, 
we calculated pseudotime and compared the correlation score with true time points 
(Result "Subtask 4: Trajectory analysis with integrated dataset" section).

Dataset description

Human pancreas dataset To evaluate severe batch effects in scRNA-seq datasets, inte-
grating multiple datasets from different experiments is a critical step. This dataset 
allows for a comprehensive analysis of the biological variability and technical artifacts 

Fig. 1 Overview of the proposed low‑dimensional analysis workflow for conducting a thorough search for 
appropriate data transformations. We evaluated the effect of data transformation while integrating different 
batches of single‑cell RNA sequencing data. For that, we tested 16 different data transformations with 
subsequent dimensionality reduction methods and clustering algorithms and compared their results. This 
single‑cell analysis in conventional practices has feature selection, batch integration, and dimensionality 
reduction



Page 6 of 24Park and Hauschild  BMC Bioinformatics          (2024) 25:171 

present in the data. We used five public human pancreas datasets (GSE84133, GSE85241, 
E-MTAB-5061, GSE81608, and GSE83139). These single-cell RNA sequencing datasets 
and matching annotation information were downloaded. The datasets are available in 
varying formats, i.e. GSE84133, GSE83139, and E-MTAB-5061 datasets comprise count 
data, GSE85241 has adjusted count-like data, and only GSE91608 is provided with nor-
malized RPKM. The download scripts are available in the Github repository, and these 
are based on Hemberg-lab’s work (https:// github. com/ hembe rg- lab/ scRNA. seq. datas 
ets). Before analysis, we exclude unclear cell populations in the dataset from the origi-
nal study, e.g. ’unclassified cell’, ’not applicable’, ’dropped’, or ’no label’. For tasks two and 
three we integrated all five datasets or batches for batch effect analysis. After integra-
tion, the dataset comprises 14,918 cells, 15,628 genes, and 13 cell types. Additionally, we 
evaluated another human pancreas integration dataset that was analyzed by Zhao et al. 
[43] (GSE81076, GSE85241, GSE86469, E-MTAB-5061, and GSE84133). This dataset is 
available with ’SeuratData’ in R [20].

Mouse pancreas dataset We used three different datasets for mouse pancreas cells. 
This mouse pancreas dataset is composed of the Baron Mouse (inDrop) [54], Pancreas 
from Tabula Muris’s FACS dataset (SMART-Seq2) [55], and Pancreas from Mouse Cell 
Atlas dataset (microwell-seq) [56]. The Baron mouse and Mouse Cell Atlas datasets and 
matching annotation information were downloaded via GEO (GSE84133, GSE108097). 
The Tabula Muris dataset is downloaded from their data portal (https:// tabula- muris. ds. 
czbio hub. org/). Mouse Cell Atlas [56] dataset is available on their website https:// bis. zju. 
edu. cn/ MCA/. Cell type and cluster id information for Mouse Cell Atlas is available on 
the published additional file downloaded from https:// ndown loader. figsh are. com/ files/ 
10760 158? priva te_ link= 865e6 94ad0 6d585 7db4b. Each dataset was treated as a different 
batch. Moreover, we also considered different mouse strains in each dataset. In this case, 
each mouse strain was treated as a different batch.

For task one, we investigated the batch effect between two mouse strains in the Baron 
Mouse dataset to compare our approach to a recent benchmark [43]. For task two, we 
integrated Baron Mouse and Tabula Muris. Labels of the Baron Mouse dataset are con-
verted to make a concordant set with other mouse data: ’activated stellate’ to ’stellate’ 
and ’quiescent stellate’ to ’stellate’. Labels of the pancreas dataset from Tabula Muris are 
converted into the same label with Baron Mouse: ’pancreatic A cell’ to ’alpha’, ’type B 
pancreatic cell’ to ’beta’, ’pancreatic D cell’ to ’delta’, ’pancreatic acinar cell’ to ’acinar’, 
’pancreatic ductal cell’ to ’ductal’, and ’pancreatic stellate cell’ to ’stellate’. This integration 
analysis resulted in 3213 cells and 13,263 genes. The pancreas dataset from Tabula Muris 
consisted of four mouse strains. Thus, the batch ARI was calculated based on six mouse 
strain IDs (2 from Baron, and 4 from Tabula Muris). Lastly, we integrated Baron Mouse, 
Tabula Muris, and Mouse Cell Atlas. For the integration, we filtered cells with available 
cell labels. For better comparability, we excluded the following non-pancreas-related cell 
types in MCA data, ’Osteoblast’, ’Myoblast’, ’Cycling cell’, ’Smooth muscle cell’, Stromal 
cell’, and ’Epithelial cell’. Labels of MCA were also converted to match Baron and TM. As 
a result, the integration analysis, including the Mouse Cell Atlas datasets, was done with 
5171 cells and 12,584 genes.

Mouse cell dataset For the mouse cell dataset task, we used the other Tabula Muris 
datasets except for the pancreas, already used in the previous task. This TM dataset 

https://github.com/hemberg-lab/scRNA.seq.datasets
https://github.com/hemberg-lab/scRNA.seq.datasets
https://tabula-muris.ds.czbiohub.org/
https://tabula-muris.ds.czbiohub.org/
https://bis.zju.edu.cn/MCA/
https://bis.zju.edu.cn/MCA/
https://ndownloader.figshare.com/files/10760158?private_link=865e694ad06d5857db4b
https://ndownloader.figshare.com/files/10760158?private_link=865e694ad06d5857db4b
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contains data from two different single-cell RNA sequencing protocols, SMART-Seq2 
from FACS-sorted cells and 10x Genomics platform with CellRanger. Moreover, each of 
the datasets contains additional mouse strain information, which was treated as a batch 
for the analysis. Among the 16 different organs in the TM dataset, we extracted a set of 
tissues and organs that were sequenced by both sequencing protocols. Namely, Blad-
der, Kidney, Limbic muscle, Liver, Lung, Mammary Gland, Marrow, Spleen, Thymus, 
Tongue, and Trachea were selected. In the case of one of the batches having a dominant 
population of cells (>700k vs <1k), we limit the number of cells in one batch by sam-
pling cells on that batch to prevent bias in the dominant population batch. In the lung 
and trachea datasets, we sampled 2,000 cells for ’Lung-10X_P8_12’, ’Lung-10X_P8_13’, 
’Trachea-10X_P8_14’, and ’Trachea-10X_P8_15’.

Preimplantation embryo data dataset The dataset comprising experiments on mouse 
and human preimplantation embryos with single-cell RNA sequencing is utilized for tra-
jectory analysis on low-dimensional space. The data is obtained from Zenodo (10.5281/
zenodo.10669600) [57, 58]. The mouse dataset is an integration of thirteen different 
studies [59–71]. The human dataset contains six different studies [70, 72–76]. The raw 
count matrix is used for the evaluation of data transformation methods.

Single‑cell RNA sequencing data analysis with low‑dimensional representation

Individual statistics for data transformation
We investigated various data transformation methods applied to scRNA-seq data and 

chose six data transformation methods. These data transformations are applied to the 
scRNA-seq data to change its distribution to get better training outcomes. Luecken et al. 
classified data transformation methods into two steps, normalization, and transforma-
tion [6]. Because of technological limitations that some cells capture more reads and 
some cells do not, column-wise normalization has been widely applied (total). Minmax 
normalization is a straightforward method when multiple datasets are integrated. The 
standardization step using Z-score is also a popular approach. The log transformation 
could reduce data skewness. Details are listed in Table 1, where E is the expression pro-
file of the cell and e is each of the genes measured in scRNA-seq.

Combination of data transformation statistics used for the preprocessing benchmark
Some studies chose an arbitrary data transformation method without further reason-

ing and fed transformed expression profiles to their complex and novel analysis model. 
At the same time, we found partial consensus on data transformation methods using 
three steps: Total→Log→Z-score. This is due to the big success of Seurat [47] in the 
scRNA-seq data transformation: Total→Log→Z-score, see Table 2.

For the data transformation benchmark performed in this study, 16 different combi-
nations of normalization are employed using five data transformation methods: Log2-
transformation, Total normalization, Minmax normalization, l2-normalization, Z-score 
transformation.

Dimensionality reduction Dimensionality reduction is a crucial part of single-cell 
RNA sequencing analysis. High-dimensional gene expression data is projected into 
a low-dimensional space to be interpreted. We employed three methods for our 
analysis. The main analysis is done with PCA and UMAP [77] as a feature extraction 
technique for clustering. Additionally, we also investigated t-SNE [78]. For t-SNE, we 
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fixed the number of components as two and did not initiate with PCA. For UMAP, 
we fixed the number of components as two and initiated with the parameter ’spectral’. 
For K-Means, we searched for the best ARI score amongst varying parameters for the 
number of clusters, from half of the number of original labels to the number of origi-
nal labels + 4. The number of iterations was from 20 to a max of 50. For DBSCAN, we 
searched for the best ARI score during varying eps parameters from 0.5 to 10 with 
a 0.5 step size. The parameter for a minimum number of samples is fixed to eight. In 
all parts of the analysis, we used t-SNE, UMAP, K-Means, and DBSCAN [79] from the 
Python ’scikit-learn’ packages.

For further analysis, many prior processes are applied to the dimensionality reduction 
method. This prior process is focused on feature extraction. By doing this, PCA, t-SNE, 
or UMAP could effectively represent the cell-type specific expression features. The 
feature selection based on highly variable genes is a widely used prior method [6, 80]. 
Recently, an autoencoder model was employed for variable gene selection [11]. Further-
more, complex DNN models are introduced for feature extraction. We will cover this 
DNN model-based feature extraction in the next section "Deep neural networks model".

Clustering evaluation Clustering algorithms are often applied to latent space gener-
ated from the above dimensionality reduction methods for the identification of cell 
populations. There are various clustering algorithms. For our analysis, we apply the 
most widely used K-Means clustering, and DBSCAN [79]. Kim et al. reported that the 
similarity metrics have a critical impact on the single-cell cluster analysis [81]. In our 
study, we fixed detailed parameters for the clustering algorithm to exclude additional 
variability. The evaluation of the dimensionality reduction was done with the cluster-
ing results using the Adjusted Rand Index (ARI), batch-wise ARI (bARI), and Silhou-
ette score. The ARI is calculated between true cell-type labels and clustering results, 
and the bARI is calculated between batch ids and clustering results. In the scatter 
plot, bARI is transformed into 1-bARI and visualized for convenience. The silhouette 
score is calculated with latent vectors and clustering results. Adjusted Rand Index 
(ARI), batch-wise ARI (bARI), Silhouette score, and Normalized Mutual Informa-
tion (NMI) are calculated with Python ’scikit-learn’ packages ’metrics.adjusted_rand_
score’, ’metrics.silhouette_score’, and ’metrics.normalized_mutual_info_score’.

Trajectory analysis The trajectory conservation score serves as a proxy measure for 
assessing the preservation of the biological signal. We conducted a trajectory analysis 

Table 2 Data transformation methods.

Where e is a vector of gene expression level in a cell

We used six statistics to transform single‑cell RNA sequencing data. These statistics are widely used in sequencing data 
analysis studies

RAW No transformation

Log2 E = Log2(e + 1)

Total E = e
sum(e)

∗ 20000

l2‑norm E = e√
sum(e2)

Minmax E = e−min(e)
max(e)−min(e)

Z‑score E = e−mean(e)
std(e)
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calculated after the integration of multiple datasets about cell differentiation. These 
trajectories were computed utilizing diffusion pseudotime, as implemented in Scanpy 
(scanpy.tl.diffmap and sc.tl.dpt). The pseudotime is compared with the 
time point assigned based on cell types. From ’Zygote’ to E4.5 cells, it is assigned with 
integer values. The Spearman’s rank correlation between pseudotime and true time 
point is calculated with (scipy.stats.spearmanr).

The trajectory plots are generated with the partition-based graph abstraction (PAGA) 
method [82]. PAGA provides an interpretable graph-like map of the data manifold, 
based on estimating the connectivity of manifold partitions.

Deep neural networks model

We tested the power of DNN models as a feature extractor for after-dimensionality 
reduction methods. With this analysis, we incorporate the recent development of DNN 
model-based tools for single-cell analysis. In this study, we tested five different DNN 
models, Autoencoder (AE), Variational Autoencoder (VAE), ProtoTypical Network 
(Proto), and Variational Proto (VProto). We used python and the PyTorch library to 
implement deep neural network models. The performance of all four types of models 
was reported on the best model selected from more than 10 training runs using ran-
domly initialized weights.

Autoencoder and Variational Autoencoder The basic encoder and decoder block is 
composed fully connected layer, batch normalization layer, and relu layer. In the AE 
model, there is one hidden layer sized 1024, and the size of the latent layer is tested with 
2, 4, 8, 16, 32, 64, 128, and 256. In the case of VAE, the hidden layers have 1024, 128 
sized output vectors, and another fully connected layer produces vectors for µ and σ 
having 2 to 256 size, similar to AE. The reconstruction loss is calculated with the mean 
squared error between the original gene expression vector and the reconstructed vector.

ProtoTypical and variational-ProtoTypical network ProtoTypical Network is a kind of 
few-shot learning model having great success in various tasks from computer vision to 
biomedical analysis [53, 83]. We implemented ProtoTypical Network in two ways, Proto 
and VProto. The Proto means a general ProtoTypical network that prototypical loss is 
calculated on latent layer after feature extractor with fully connected layers. The VProto 
means that prototypical loss is calculated on the latent layer. Specifically, we obtained a 
latent vector from the reparametrization trick with µ and σ from the feature extractor 
with fully-connected layers and used it to calculate the prototypical loss. The prototypi-
cal loss was euclidean distance on latent space.

Model training and testing scenario for batch effect analysis To evaluate the impact 
of the de-noising power of the data transformation method, we trained the model with 
only one of five datasets. If the data transformation method has minute power in batch 
effect adjusting, the model will be easily over-fitted on the training dataset with noise, 
and evaluation with whole human pancreas datasets would not be good. Furthermore, 
because the ProtoTypical Network is a supervised learning model [53], utilizing the 
entire dataset for training and testing simultaneously is nonsense. In this case, we are 
training the model with one dataset and testing with the other four datasets by compar-
ing cell clusters with the training dataset. For this reason, during the training step in all 
AE, VAE, Proto, and VProto, we used Baron (Human) dataset and transformed entire 
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human pancreas datasets to visualize and evaluate. With the different sizes of latent vec-
tors, we clustered cells with K-Means and DBSCAN and evaluated their performance in 
dimensionality reduction and cell population clustering.

Results
We evaluated 16 different data transformation methods on three tasks with public sin-
gle-cell datasets, (1) a single dataset analysis task, (2) a multiple datasets integration and 
batch effect correction task, and (3) a multiple datasets integration task with deep neural 
networks models (Details in the "Methods" section). Each task was evaluated with regard 
to the ARI score with its cell-type clustering result on a low-dimensional representation 
(Methods section "Single-cell RNA sequencing data analysis with low-dimensional rep-
resentation"). For task one, we investigated the impact of the different data transforma-
tions on the individual datasets (section "Impact of data transformation on the analysis 
of low-dimensional single-cell sequencing data"). Next, we assessed the impact of data 
transformation on the multiple dataset integration analysis in terms of batch effect cor-
rection (section "Impact of data transformation on the multiple dataset integrative task 
with low-dimensional representation") in task two. We first set a baseline for the evalua-
tion of the cell-type classification tools and compare it to the performance of deep neu-
ral network models in feature extraction and batch effect correction (section "Impact of 
data transformation on the DNN features").

Impact of data transformation on the analysis of low‑dimensional single‑cell sequencing 

data

To demonstrate the impact of data preprocessing on the subsequent analysis, we first 
extended the single dataset analysis task by Wang2020 [51] and Cole2019 [30]. Our aim 
is to evaluate various data transformation methods for their suitability as preprocess-
ing for different clustering algorithms on a low-dimensional representation of the data. 
Therefore, we include K-Means clustering on a UMAP-2D representation, DBSCAN 
clustering on a UMAP-2D representation, and Louvain clustering on a PCA-30D rep-
resentation as best-practice approach, details in Methods section  "Single-cell RNA 
sequencing data analysis with low-dimensional representation".

Data transformations that yield the most favorable results for analysis tend to vary 
from one dataset to another. The comparison between single-cell clustering analysis on 
low-dimensional representations and best-practice results are shown in Table  3. The 
Baron (Human) dataset shows the best ARI score with 0.938 using PCA30 combined 
with Louvain clustering. However, the Segerstolpe dataset shows the best result when 
analysed with UMAP and DBSCAN clustering resulting in an ARI score of 0.918. This 
clearly shows that simple data transformation methods can tremendously affect the 
low-dimensional representation, as demonstrated by an extreme ARI variation ranging 
between 0.000 and 0.966 pancreas datasets. All visualization results for each dataset are 
available in a Additional file 1 (see availability of data and materials section).

The Baron (mouse) dataset contains sequencing data from two different mouse strains. 
In the recent work [43], this dataset was used to evaluate different strain effect correc-
tion tests. It is shown as ’MP’ in the table for comparison with the benchmark work (see 
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Additional file  1: Table  S1). Furthermore, our results show that the noise from differ-
ent strains can be mitigated when proper data transformation is applied. We obtained 
an ARI score of 0.929 from Minmax combined with the t-SNE+DBSCAN analysis 
(Table 3). In particular, these results indicate that noise and systematic effects from dif-
ferent mouse strains can be mitigated by the application of proper data transformation.

In summary, the results of our single dataset analysis evaluation validated and 
extended previous findings of Cole et al. and Wang et al. [30, 51]. There is no method 
that performs equally well on all datasets. A data transformation method that works 
best for one dataset and a specific analysis pipeline does not necessarily perform well on 
another.

Impact of data transformation on the multiple dataset integrative task 

with low‑dimensional representation

To reveal the impact of data preprocessing for de-noising and batch effect correction, we 
evaluated four subtasks of popular single-cell datasets with the same 16 data transforma-
tions and four single-cell RNA analysis pipelines. The four benchmark tasks are human 
pancreas Dataset, mouse pancreas dataset, mouse cell dataset, and mouse and human 
embryo datasets.

Subtask 1: Human pancreas datasets

The selected human pancreas datasets are frequently used for batch correction tools for 
single-cell sequencing analysis. They consist of five different single-cell RNA sequencing 
datasets resulting from four different sequencing protocols. They are well-labeled with 
cell types in the pancreas. We aggregated all five datasets and preprocessed them with a 
conventional single-cell RNA sequencing analysis procedure using Scanpy library [84]. 

Table 3 Overview of best‑performing data transformation methods for UMAP features of single 
dataset scRNA‑seq analysis

Analysis Dataset Best ARI Worst ARI

UMAP K‑Means Baron (Human) Log2 0.789 Total Log Minmax 0.335

Muraro Total l2norm 0.956 Total Log2 Z‑score 0.276

Segerstolpe Z‑score 0.645 Log2 Minmax 0.290

Wang Total Log2 l2norm 0.856 Total Log2 0.313

Xin total l2norm 0.647 Log2 0.040

Baron (Mouse) Total Log2 Z‑score 0.682 Total Log2 0.107

UMAP DBSCAN Baron (Human) l2norm 0.870 Total Log2 0.005

Muraro Total l2norm 0.951 Log2 Minmax 0.317

Segerstolpe Total Minmax 0.918 Total Log2 Minmax 0.333

Wang Total Log2 Z‑score 0.853 Total Log2 0.000

Xin Total 0.886 Log2 0.000

Baron (Mouse) Total 0.847 Total Log2 Minmax 0.000

PCA30 Louvain Baron (Human) Log2 0.938 l2norm 0.000

Muraro Z‑score 0.966 l2norm 0.000

Segerstolpe Total Z‑score 0.741 l2norm 0.000

Wang Total Log2 Z‑score 0.957 l2norm 0.000

Xin Total Z‑score 0.994 l2norm 0.000

Baron (Mouse) Z‑score 0.919 l2norm 0.000
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In the unintegrated dataset, the procedure could not find clear clusters of the same cell 
types in each batch. Louvain clustering found 21 clusters and scored an ARI score of 
0.463 and a 1-bARI score of 0.723 (Fig. 2, top-left). As a goal standard, we applied scVI, 
which is a widely used conventional approach to integrate different batches. The scVI is 
able to find better clusters than the procedure on unintegrated data. In the scVI result, 
we compared raw and the best-practice preprocessing, namely total-log normalization. 
When raw data was analyzed with scVI, Louvain clustering identified seven clusters with 
an ARI score of 0.656 and a 1-bARI score of 1.03 (Fig.  2,  top-center). When total-log 
normalization is applied, the scVI features clustered with Louvain found five clusters 
with an ARI score of 0.831 and 1-bARI score of 1.04 (Fig. 2, bottom-center).

Subsequently, we investigated the effects of batch integration with clustering on low-
dimensional representations of the integrated data. All six analysis pipelines, namely 
PCA:K-means, PCA:DBSCAN, t-SNE:K-Means, t-SNE:DBSCAN, UMAP:K-Means, 
and UMAP:DBSCAN, are applied to the single-cell datasets integration task. The visu-
alization of the results in Fig. 2 clearly demonstrates which preprocessing pipelines can 
mitigate the batch effects present in the data. For example, when no transformation is 
applied prior to the UMAP(2D) representation and DBSCAN clustering (RAW:UMAP, 
with an ARI score of 0.270), the alpha cells are scattered into three different clusters, 

Fig. 2 Evaluation of the effects of different data transformation methods on cell‑type clustering in 
low‑dimensional representations compared to conventional integration analysis pipelines. For this analysis, 
we utilized five different single‑cell RNA sequencing datasets of human pancreas. Clustering results on 
low‑dimensional representation are compared with results on unintegrated and scVI‑integrated datasets. 
The top‑left plot shows the unintegrated data as baseline for batch integration of the five pancreas datasets. 
It is obtained employing total‑Log:HVG (highly variable gene) for preprocessing. The top‑center plot 
corresponds to the result after applying scVI on the raw count data. The result of total‑Log:scVI, as shown 
in the bottom‑center plot, is done by applying scVI after normalizing the count matrix with total and log 
transformation. The plots on top‑right and bottom‑right show the DBSCAN clustering results on Raw:UMAP 
and Total:UMAP low‑dimensional representations, respectively. The Raw:UMAP 2D representation is based 
on raw counts data and Total:UMAP 2D representation is obtained on total‑normalized data. In both cases, 
DBSCAN is employed to evaluate cell‑type clusters
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and the beta-cell type is split into four different clusters, with another cell type located 
between them (Fig. 2, top-left). In contrast, when applying Total normalization prior to 
UMAP(2D) representation, the DBSCAN clustering identified 9 clusters with an ARI 
score of 0.905 (Fig. 2, bottom-right). More importantly, in the resulting clustering, the 
alpha-cell type is well clustered. While the beta-cell type is still split, the clusters are 
located close to each other.

In comparison, on the PCA(2D) representations the best ARI score of 0.746 is achieved 
when Total:Z-score is applied, identifying 18 clusters. It is possible to identify 12 clus-
ters with an ARI score of 0.822 when Total-l2-norm is applied on t-SNE representation. 
Although, it is commonly known that t-SNE results in a distorted space intended for vis-
ualization purposes and it is often controversial to perform post-analysis on t-SNE(2D) 
representation, it shows surprisingly decent results. All visualized results are available in 
a Additional file 1 (see Methods section 5.4).

The recent work by Zhao et al. additionally conducted a benchmark analysis using a 
different composition of human pancreas datasets [43]. Therefore, we compared the per-
formance of low-dimensional approaches to state-of-the-art methods benchmarked in 
that work. Notably, the result of DBSCAN clustering on the Total:UMAP representation 
achieved an ARI score of 0.848 in the mouse pancreas dataset and an ARI score of 0.725 
in human pancreas dataset (Additional file 1: Table S1). The visualized result is available 
in Additional file 1: Figure S1. The Louvain clustering showed lower performance than 
DBSCAN on low-dimensional representation with ARI score of 0.624. This low-dimen-
sional approach was not able to outperform state-of-the-art methods in human pancreas 
dataset (ARI score of 0.761 with l2-norm:UMAP and 0.955 with Harmony). However, we 
see comparable results between the state-of-the-art method and our low-dimensional 
representation methods on the mouse pancreas data (ARI score of 0.929 with Minmax:t-
SNE and 0.969 with Harmony).

Subtask 2: Mouse pancreas datasets

For the evaluation of the mouse pancreas task, we used three mouse pancreas data sets, 
Baron (Mouse) [54], Tabula Muris [55], and Mouse Cell Atlas [56]. At first, we inte-
grated and analyzed the Baron and TM pancreas datasets. For the combined application 
of t-SNE and DBSCAN, Total data transformation was the best normalization method 
presenting good batch effect correction performance with an ARI score of 0.865. In 
comparison to the human pancreas dataset, there were multiple choices of the data 
transformation that performed equally well, l2-norm, Minmax, and Z-score. Log2→
Minmax or Total→Log2 methods showed the worst performance. The latent representa-
tion of the original data was clearly separated based on the batch labels. However, Total 
or the other data transformation method above was able to mitigate the batch effect 
resulting in a good cluster representation. In the UMAP and DBSCAN results, Total also 
showed the best batch effect removal performance with an ARI score of 0.842 and a Sil-
houette score of 0.639. Similarly, for the combination of t-SNE and DBSCAN, Minmax, 
l2-norm, and Z-score methods showed good performance in batch correction.

To further evaluate the impact of preprocessing on the analysis pipelines, we integrated 
another mouse pancreas dataset from MCA. In particular, we challenged it with an MCA 
pancreas dataset that does not have a similar set of labels for pancreas-specific cell types. 
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Instead, cell types are aggregated into one label, endocrine cells. Thus, the ARI and bARI 
scores calculated with these labels are not fully comparable with the previous performance 
of the batch effect correction. Nevertheless, we could observe that the endocrine cells of 
the MCA dataset are well spread on alpha, beta, and delta clusters. Moreover, batch effect 
correction through data transformation can be observed for the epithelial cell type. In most 
preprocessing, epithelial cells were not grouped into clear cell clusters. However, in the case 
of Total→Minmax, they are closely located to each other. All visualized results are available 
in a Additional file 1  (see see availability of data and materials section)

Subtask 3: Mouse cells datasets

The Tabula Muris dataset consists of two different scRNA-seq datasets, SMART-Seq2 and 
CellRanger. Therefore, in addition to the technical heterogeneity, there is also biological het-
erogeneity in each dataset. Thus, we investigated the tissue pairs present in both datasets. 
Similar to the previous results, the data transformation methods affect the dataset integra-
tion of the TM. Depending on the method, resulting cell clusters were either based on the 
batch label or based on biological cell labels. Significant improvements were observed in 9 
out of 11 tissue pairs of the TM dataset (see Fig. 3). The results were obtained based on the 
same analysis procedures, DBSCAN clustering on the low dimensional UMAP representa-
tion. In the case of the bladder dataset, mesenchymal cell (purple) and bladder cell (orange) 
are represented by two different clusters in ’RAW’. These clusters are strongly influenced by 
the batch effect and thus can be labeled by SMART-Seq2 and CellRanger. However, after 
data transformation with log2→Minmax normalization, the cells clustered well based on 
the cell type labels, and the batch labels were mixed across the cluster (see Fig. 3). Accord-
ingly, the ARI score improved from 0.347 to 0.812, and the bARI score decreased from 
0.268 to −0.002. Similarly, in the lung dataset, the raw dataset showed batch-associated 
clusters. However, after transforming the scRNA-seq data with Total→Log2→l2-norm, we 
were able to identify cell-type label-associated clusters based on the low-dimensional rep-
resentation calculated by UMAP. However, the tongue dataset showed relatively marginal 
batch effect correction. For instance, when performing UMAP and DBSCAN analysis, the 
ARI solely improved from 0.258 to 0.474 (l2-norm). The best results among 16 different 
data transformations could not find clear cell-type clusters. Full plots for each of the tissues 
are available in a Additional file 1  (see Methods section 5.4).

In addition to the Tabula Muris dataset, we integrated the Mouse Cell Atlas dataset, 
which integrates single-cell RNA sequencing datasets from mouse organs and tissues. How-
ever, the Mouse Cell Atlas dataset has a different level of cell labels compared to the other 
datasets. Thus the ARI and bARI are not dramatically improved. However, we observed a 
varying representation of cell clusters in latent space depending on the data transforma-
tion method (Data available in a Additional file 1  (See see availability of data and materials 
section).

Subtask 4: Trajectory analysis with integrated dataset

Lastly, we assessed the impact of data transformation on cell differentiation trajectory 
analysis. We acquired human and mouse embryo data sets that encompass cellular tra-
jectories and applied various normalization approaches.



Page 15 of 24Park and Hauschild  BMC Bioinformatics          (2024) 25:171  

Fig. 3 Visualization results for the Tabula Muris dataset. UMAP and DBSCAN were used for this analysis. ’RAW’ 
indicates the original read count data of TM. ’Best’ represents the best result out of 16 data transformation 
methods. The cell types and batch IDs are represented with different colors in each plot. The entire results 
and all plots are available in a Additional file 1
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The initial analysis of mouse embryo data without normalization revealed an ARI 
score of 0.296 and a 1-bARI score of 0.338 after DBSCAN clustering on UMAP latent 
space. Upon log-minmax normalization of all integrated datasets, the ARI and 1-bARI 
scores notably increased to 0.409 and 0.535, respectively. In the pseudotime analysis of 
raw data, a correlation coefficient of 0.580 was observed. When dataset is normalized 
with the log-minmax, the correleation coefficient improved to 0.653, positioning it as the 
second-best trajectory result after the log transformation (s: 0.731, ARI: 0.379, 1-bARI: 
0.425). The visualization depicting cell clusters and trajectory analysis conducted using 
PAGA can be found in Fig. 4a.

The raw human embryo data yielded an ARI score of 0.146 and a 1-bARI score of 0.226 
from the DBSCAN clustering with UMAP features. Among 16 data transformations 
tested, the log-minmax transformation demonstrated the highest 1-bARI score of 0.938 
(ARI: 0.071). The correlation coefficient for the log-minmax data transformation was 
0.815, ranking it third in pseudotime analysis results. The top two pseudotime analy-
sis outcomes were achieved with the log transformation (s: 0.823, ARI: 0.171, 1-bARI: 
0.900) and log-zscore transformation (s: 0.818, ARI: 0.199, 1-bARI: 0.911). The visualiza-
tion depicting cell clusters and trajectory analysis conducted using PAGA can be found 
in Fig. 4b.

The changes in pseudotime analysis due to the neighbor search using UMAP and dif-
ferent data normalization are significant because they affect the landscape of cell clus-
ters in UMAP space. Different data normalization methods can lead to variations in the 

Fig. 3 continued
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UMAP space representation of the data, as shown in previous sections. Normalization 
is a critical step in preprocessing scRNA-seq data, as it ensures that the gene expres-
sion values are on a comparable scale across different genes and samples. Different data 
transformations can affect the relative distances and relationships between cells in the 
UMAP space, leading to different cluster structures. This, in turn, can influence the 
pseudotime analysis, as the identification of clusters and the construction of pseudotime 
trajectories are dependent on the spatial arrangement of cells in the UMAP space.

Fig. 4 Cell differentiation trajectory analysis with multiple datasets integration. a Plots show the analysis 
results of the mouse preimplantation embryo dataset with different data transformations. b Plots show 
the analysis results of the human preimplantation embryo dataset analysis with raw and log‑minmax data 
transformation
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Impact of data transformation on the DNN features

To demonstrate a proper comparison for the model evaluation, we built various neu-
ral network models and evaluated their performance by comparing them with the 
above results. Here we consider the best benchmark result as a baseline for the given 
human pancreas dataset, we assessed the power of the DNN model.

Previously, various tools using deep neural network-based models have been devel-
oped for single-cell analysis. Moreover, autoencoder is another widely used method 
to extract features, reduce the dimensionality of sequencing data, and represent cell 
types with feature vectors. Depending on the implementation details, some tools pro-
duce a 2-dimensional vector representation like t-SNE and UMAP. Others focus on 
feature extraction itself and require t-SNE and UMAP as a further dimensionality 
reduction step for 2-dimensional representation.

We implemented the simplest neural network-based model as a feature extractor. 
With this DNN model task, we were able to evaluate the importance of data transfor-
mation methods in terms of ’Garbage In, Garbage Out’. At first, we tested an untrained 
neural network model. The simplest neural network with two fully connected layers 
initialized with random weights was built on the RAW as well as the best performing 
’Total’ transformed single-cell RNA-seq data of the human pancreas dataset. In the 
latent space of the DNN trained on the ’RAW’ data, the same cell types are segre-
gated amongst different clusters that are based on batch number. This resulted in an 
ARI score of 0.542 using t-SNE+DBSCAN and 0.420 using UMAP+DBSCAN with a 
latent size 128 and one hidden layer having a size of 1024. In contrast, the latent space 
of the DNN trained on the ’Total’ transformed data showed a significantly better clus-
tering of cell types with an ARI score of 0.891 at latent vector size 128. While the ran-
domness of the weight initialization step in every run has produced slightly different 
numbers, the data transformation step consistently led to a significant improvement 
of the model performance.

Moreover, to investigate the feature extraction power of autoencoder models, we 
tested autoencoder (AE) and variational autoencoder (VAE) with two layers for encoder 
and decoder (see "Methods" section for details). Here, we used only the Baron dataset for 
training and evaluated the model on the remaining entire HP dataset. Our results show 
that the DNN model learns to extract features about cell types only within the Baron 
data. If the batch effect is not mitigated by preprocessing with data transformation, the 
DNN model is not able to extract proper signatures for cell types in another dataset (e.g. 
the HP). The performance of the autoencoder without data transformation was 0.625 
ARI using t-SNE+DBSCAN and 0.551 ARI using UMAP+DBSCAN (Additional file 1:  
figure S2). The ’Total’ transformed data showed a better performance than the ’RAW’ 
data even in combination with the AE and VAE DNN models. The combination of the 
’Total’ transformed data with an AE model resulted in a best ARI score of 0.947 (Addi-
tional file 1: figure S3). Similarly, the best result in combination with a VAE showed an 
ARI of 0.943 with a latent size of 128 with a hidden layer having a size of 1024 (Addi-
tional file 1: figure S5). The overall range of performances is shown in Additional file 1: 
Table S3. In summary, when we compared the result with the previous analysis, using 
the DNN model could improve the clustering result (RAW 0.494 → 0.551 / Total 0.898 
→ 0.947). However, the data transformation has more impact on the clustering results.
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In the next step, we used the cell labels for the evaluation of supervised dimensional-
ity reduction methods. Therefore, we modified AE and VAE to calculate the ProtoTypi-
cal loss. Similar to the previous task, the training was conducted solely using the Baron 
dataset and its associate cell type labels. With the ProtoTypical loss, the impact of data 
transformation is also more critical than the model complexity. The results demonstrate 
that the use of the raw dataset leads to overfitting to the batch noise and subsequent 
poor cell type clustering (Additional file 1: figures S4, S6). We tested five different sizes 
for the latent vector from 2 to 32 while a hidden layer is fixed with a size of 1024. At the 
size eight, we could find convergence (Additional file 1: figure S4). While it remains to be 
evaluated whether more complex encoder/decoder models and more optimized param-
eters could result in performance improvements, our results indicate that latent space 
sizes between 8 and 32 are reasonable and 50 or 100 is also enough for the size of latent 
vector as reported in the other studies [11, 27, 40, 43].

Discussion
The integration and analysis of single-cell RNA sequencing data have become an acces-
sible and essential aspect of many research areas and scientific questions. Subsequently, 
various single-cell analysis tools emerged. The developed tools typically comprise 
preprocessing as well as analysis methods. The preprocessing steps can, for exam-
ple, implement data transformation and de-noising, while analysis steps often include 
sophisticated machine learning models such as clustering and visualization by dimen-
sionality reduction. The data transformation as the very first step of a preprocessing 
and analysis pipeline was not well investigated in the many benchmark papers for batch 
effect mitigation [17, 23, 28]. Previously, Wang et al. reported the impact of preprocess-
ing on single-cell analysis; however, they did not cover an integrative analysis of multiple 
datasets where batch effects are a tremendous challenge [51]. The benchmark work by 
Luecken et al. tried to find an optimal preprocessing step for various tools [28]. How-
ever, they did not focus on the data normalization step.

Although we are aware that it is controversial to use the distorted t-SNE space for fur-
ther analysis [85], we wanted to investigate whether this distortion enhances, mitigates, 
or has no effect on the analysis. The application of t-SNE by analyzing the space for 
meaningful information retrieval is still valid [86, 87]. In conventional single-cell analy-
sis, Louvain or Leiden clustering is commonly used [10]. By combining dimensionality 
reduction techniques like t-SNE with graph-based clustering algorithms, it is possible to 
gain a more comprehensive understanding of complex scRNA-seq datasets and uncover 
meaningful structures. While they can be applied in various contexts, including high-
dimensional data analysis, they are not inherently designed for dimensionality reduction 
like t-SNE. In this low-dimensional approach, the community detection algorithms used 
to understand the structure of large and complex networks, such as Leiden or Louvain, 
were not able to outperform those two conventional clustering algorithms. For cluster-
ing, we employed KMeans and DBSCAN algorithms.

The data transformation significantly impacts the results of downstream single-cell 
RNA sequencing analysis [30, 51, 88]. We conducted four integrative analysis tasks 
using four different datasets. Our results demonstrate that simple data transforma-
tion in low-dimensional representation analysis can effectively reduce batch effects to a 
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similar extent as conventional batch integration methods. We demonstrated that with-
out a complex model for batch effect mitigation, well-combined data transformation 
and dimensionality reduction methods show good performance in a cell-type cluster-
ing task. Additionally, we have underscored the importance of data transformation in 
pseudotime analysis. Ahlmann-Eltze and Huber found that a simple shifted logarithm 
transformation with principal component analysis showed better performance in recov-
ering latent structure among the cells [89]. Their work underscores the efficacy of uti-
lizing lower-dimensional embeddings derived from the transformed count matrix. This 
approach serves to diminish noise while enhancing fidelity. Our results highlight that 
lower-dimensional embeddings, after proper normalization, can reduce one of these 
noises, batch effects, across multiple single-cell RNA sequencing datasets. Lause et al. 
discussed how data transformation or scaling can affect the gene selection step and its 
downstream analysis. They pointed out that highly variable gene selection methods usu-
ally use their mean and variance value. In particular, they showed that the analytic Pear-
son residuals method works best for variable gene selections, but log-transformation 
also had good performance [90]. However, in our study, we excluded the variable gene 
selection step to retain a clear view of the impact of data transformation on the low-
dimensional representation.

Lastly, we investigated the potential of DNN-based models to find batch-mitigated fea-
ture space for single-cell integration analysis. The DNN models were able to compress 
gene expression profiles into very small-sized vectors and made it possible to project 
efficiently onto a low-dimensional space for clustering and visualization. Furthermore, 
we aimed to check the potential of the supervised dimensionality reduction method with 
a ProtoTypical loss. The ProtoTypical loss allowed us to fully utilize the class label. This 
supervised dimensionality reduction model can be adjusted for specific research ques-
tions. Our findings suggest that in circumstances where the datasets are already well 
understood, ProtoTypical network models can be a good option to investigate underly-
ing biological meanings. For example, finding novel gene markers for specific cell types. 
The potential of this kind of approach is also discussed in recent work [91].

Given the complexity of scRNA-seq data and the variability across datasets, it is indeed 
challenging to find a one-size-fits-all data normalization approach. Our results demon-
strate that identifying the proper data transformation is a crucial initial step for scRNA-
seq integrative analysis. To achieve this, we propose using a batch-ARI score along with 
the number of clusters as a metric to investigate the appropriate data transformation 
method for a given dataset. Researchers can utilize prior information about the data to 
explore improved data transformation methods for scRNA-seq analysis.

In scenarios where researchers have prior knowledge about each dataset, they can 
exploit this information to evaluate the integrative analysis pipeline, including the selec-
tion of suitable data transformation and integration methods. For instance, in the UMAP 
with DBSCAN results with the five pancreas datasets, Total-log2-Zscore, log2, and Total 
showed low batch-ARI scores. The Total-log2-Zscore transformation method resulted in 
the lowest batch-ARI score ( −0.060) but identified four clusters, whereas the log2 trans-
formation method found only two clusters and had a batch-ARI score of −0.015. In com-
parison, the Total transformation method, with nine clusters identified and a batch-ARI 
score of −0.011, exhibited higher clustering quality with a slightly lower batch-ARI score, 
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indicating the preservation of the true data structure. With prior knowledge that the 
given pancreas datasets contain thirteen cell types, researchers can begin by employing 
the Total transformation, identifying nine clusters. Finding appropriate data normaliza-
tion for batch integration in scRNA-seq data analysis is challenging when lacking prior 
knowledge of the datasets. Therefore, it is crucial to conduct individual scRNA-seq data 
analyses before initiating integrative analysis. This approach ensures that the data is pre-
processed and normalized in a way that is suitable for subsequent batch integration. In 
summary, our recommendation for evaluating data transformation methods in scRNA-
seq analysis, utilizing batch-ARI scores and the number of clusters, offers a data-driven 
approach to assess various data transformations and select the one that best aligns with 
researchers’ hypotheses.

Conclusions
To the best of our knowledge, we present the first evaluation of the impact of data trans-
formation on low-dimensional integration of single-cell RNA sequencing data. Our 
study demonstrates that data preprocessing is a crucial step for integrative data analysis 
and requires optimization for the subsequent analysis pipeline. This indicates the impor-
tance of an adequately chosen optimal data transformation method, particularly as a 
baseline gold standard for evaluating the performance of the subsequent analysis meth-
odology. Furthermore, our results suggest that low-dimensional representation with 
proper data transformation could easily capture common gene expression signatures for 
cell type identification in heterogeneous batch datasets. We envision that our work will 
guide future integrative data analysis and also help sophisticated model development by 
proposing the correct baseline accuracy.
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