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Abstract 

Background: High-throughput sequencing (HTS) has become the gold standard 
approach for variant analysis in cancer research. However, somatic variants may occur 
at low fractions due to contamination from normal cells or tumor heterogeneity; this 
poses a significant challenge for standard HTS analysis pipelines. The problem is exacer-
bated in scenarios with minimal tumor DNA, such as circulating tumor DNA in plasma. 
Assessing sensitivity and detection of HTS approaches in such cases is paramount, 
but time-consuming and expensive: specialized experimental protocols and a suf-
ficient quantity of samples are required for processing and analysis. To overcome 
these limitations, we propose a new computational approach specifically designed 
for the generation of artificial datasets suitable for this task, simulating ultra-deep 
targeted sequencing data with low-fraction variants and demonstrating their effective-
ness in benchmarking low-fraction variant calling.

Results: Our approach enables the generation of artificial raw reads that mimic real 
data without relying on pre-existing data by using NEAT, a fine-grained read simulator 
that generates artificial datasets using models learned from multiple different datasets. 
Then, it incorporates low-fraction variants to simulate somatic mutations in samples 
with minimal tumor DNA content. To prove the suitability of the created artificial 
datasets for low-fraction variant calling benchmarking, we used them as ground truth 
to evaluate the performance of widely-used variant calling algorithms: they allowed us 
to define tuned parameter values of major variant callers, considerably improving their 
detection of very low-fraction variants.

Conclusions: Our findings highlight both the pivotal role of our approach in creat-
ing adequate artificial datasets with low tumor fraction, facilitating rapid prototyping 
and benchmarking of algorithms for such dataset type, as well as the important need 
of advancing low-fraction variant calling techniques.
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Background
High-throughput sequencing (HTS) has been extensively used to characterize genomic 
alterations in tumors through the identification of single nucleotide variants [1–3], copy 
number alterations [4, 5] and large genomic rearrangements [6]. Moreover, HTS tech-
niques have been used to study tumor subclones, which are genetically distinct subpop-
ulations within a tumor mass that can lead to therapy resistance and disease recurrence.

Recently, HTS has also been used to identify and characterize tumor-derived altera-
tions present in biological fluids, such as circulating tumor DNA (ctDNA) in plasma 
samples; this opens new avenues for future developments of novel diagnostic and prog-
nostic tools, and paves the way towards the development of personalized treatment 
strategies for cancer patients [7–12]. ctDNA analysis offers several advantages over tra-
ditional biopsy techniques. Unlike invasive tissue sampling, ctDNA analysis involves 
the detection and analysis of DNA fragments shed by tumor cells into the bloodstream, 
making it a non-invasive and less risky approach [13].

Furthermore, ctDNA analysis can provide a more comprehensive view of a tumor 
genetic makeup, as it allows the detection of variants and other genetic changes in mul-
tiple regions of the genome [9, 14]. This can be particularly useful for tracking the emer-
gence of tumor cells with improved fitness (such as resistance to treatment), and for 
monitoring the effectiveness of therapies over time [9, 11, 13]. Although current analy-
sis methods for HTS data are fairly mature, their use in these kinds of samples is chal-
lenging, due to the low tumor content compared to non-tumor content [9, 15]. This is 
particularly problematic for somatic variants with low fractions, typically less than 5%, 
which often fall below the detection limit of many variant callers.

Variability in library preparation, sequencing, read alignment, and variant calling fur-
ther complicates the analysis and can introduce biases and false positive variants [16]. To 
address these challenges, different approaches have been developed, such as ultra-deep 
sequencing [17] and the use of unique molecular identifiers (UMIs) [11, 18, 19]. Ultra-
deep sequencing provides high sequencing coverage (10,000× or higher), enabling the 
detection of rare or low-abundance DNA sequences. However, the cost of this technique 
limits its widespread use in ctDNA analysis. UMIs, on the other hand, reduce error rates 
by identifying and removing duplicate reads [11]. However, they can introduce bias and 
interfere with amplification [20], reducing assay sensitivity.

While there has been noticeable progress on the experimental side towards address-
ing these issues, analysis methods have not improved with the same speed, and impor-
tant challenges, mostly related to sensitivity, still persist. To overcome these challenges, 
it is important to provide accurate benchmarking of analysis algorithms suited for the 
specific biological problem. Thus, to save experiment time and costs, artificial datasets 
are often used for evaluating different analysis strategies. Consortia, like the Genome in 
a Bottle (GIAB) [21], make artificial datasets available; alternatively, artificial HTS data 
can be either constructed from scratch with tools like ART [22] or the NExt-generation 
sequencing Analysis Toolkit (NEAT) [23], or variants can be spiked in existing HTS 
data with programs like BAMSurgeon [24]. However, despite prior use of artificial data 
for benchmarking [25, 26], most evaluation approaches rely on modifying existing real 
experimental data, which limits them to the availability of at least one real data sample 
with the required features (e.g., library type and coverage). In particular, most of HTS 
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data available are from whole genome sequencing (WGS) or whole exome sequencing 
(WES) and, as a consequence, the majority of artificial HTS data reflects these types of 
experiments. Thus, benchmarking variant calling tools for targeted ultra-deep sequenc-
ing (as opposed to WES or WGS) is still a challenge. Despite a number of papers have 
been published on benchmarking somatic variant callers [27–30], to our knowledge 
none of them addresses low-fraction variants, not having available data samples ade-
quate for such variants.

In this work, we propose a novel approach to generate artificial datasets suitable to 
simulate ultra-deep targeted sequencing experiments, and subsequently benchmark 
multiple variant calling algorithms on the generated artificial datasets. Our method 
takes advantage of the capability of NEAT, a fine-grained read simulator that gener-
ates data from scratch based on models learned from different datasets, and then inte-
grates the generated datasets with spike-ins of randomly generated somatic variants; this 
allows producing artificial somatic tumor datasets with a specified variant allele fraction 
(VAF), on which variant callers can be reliably tested and benchmarked. Thanks to these 
artificial datasets, we were able to benchmark typical variant calling algorithms using 
their default parameters against low- and very low-fraction (< 5%) variants, highlighting 
a number of limitations. To address them, we evaluated and selected optimal param-
eter combinations for each variant calling algorithm. Ultimately, our approach provides 
a significant improvement for the generation of artificial data sets, as a companion to 
efforts to improve existing computational methods for the identification and study of 
low-fraction variants.

Implementation
Our approach is composed of multiple steps (Fig.  1). Firstly, a series of artificial nor-
mal data samples is generated using both a mutation model, which simulates a base-
line mutational rate in the sample, and a sequencing model, which simulates errors from 
the sequencing technology. Subsequently, for each sample, a unique set of somatic vari-
ants (single nucleotide variants—SNVs and insertions-deletions—INDELs) is randomly 
generated; these variants are then randomly spiked in the generated normal samples at 
specified variant allele fractions, obtaining artificial tumor data samples. Finally, the lat-
ter ones can be used to evaluate, tune and benchmark commonly used variant calling 
algorithms, testing their ability to identify the somatic variants spiked-in at low- and 
very low-variant allele fractions. These steps are described as follows, and additional 
details are provided in Additional file 1: Section S1.

Creation of artificial normal data samples

The initial step of our approach involves the generation of artificial normal DNA 
sequence reads, without the need of existing data as a template.

The NEAT software [23] is used to generate the desired number of artificial normal 
data samples, covering either the whole genome or specific user-supplied genomic 
regions of interest. In order to take into account systematic errors caused by sequenc-
ing instruments, a sequencing error model (describing GC coverage bias distribution, 
empirical fragment length distribution, and sequence errors) is used to mimic sequencer 
errors and artifacts. This model can be generated either from user-supplied real data, or 
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from the NEAT default model (i.e., a paired-end sequencing error model generated from 
the publicly available NA24694 cell line).

Then, a mutational background representative of a normal, non-tumor sample is gen-
erated. For this purpose, a mutational model is used, based either on real data in input 
from the user or on a default model already available from NEAT (e.g., the gold standard 
for variant evaluation, i.e., the B-lymphocyte derived NA12878 cell line [31]).

Lastly, artificial data samples are generated with any desired level of coverage (e.g., 
20,000×).

Generation of artificial somatic low‑fraction variants and their spike‑in

The desired number of somatic variants (both SNVs and INDELs) is randomly generated 
by supplying a defined range of VAF (e.g., 10–0.5%) to the random_sites.py script, pro-
vided by BAMSurgeon [24].

Fig. 1 Flowchart of our approach for the generation of artificial datasets, and their use for 
low‑fraction variant calling tuning and benchmarking. a Artificial normal BAM files are generated 
either from a real biological sample or from scratch, using mutation and sequencing models. b In parallel, 
low-fraction somatic variants (single nucleotide variants—SNVs and insertions/deletions—INDELs) are 
generated and Browser Extensible Data (BED) files containing the genomic coordinates of the simulated 
variant sites are produced. c The created BED files are used as input to spike-in the simulated variants (both 
SNVs and INDELs) in the artificial normal BAM files generated in the first step of our approach. Two types of 
output are produced: a VCF file containing the successfully spiked-in variants and a BAM file, spiked-in with 
the simulated somatic variants; the former one can then be used to establish the ground truth on which 
variant calling performance is evaluated, while the latter one can be fed into several variant callers in d to 
study the calibration of their parameter values and evaluate their performance, comparing the ground truth 
with VCF files in output from each variant caller. Lastly, a report containing the summarized performance 
is generated. Step d) can be run independently to perform variant calling and benchmarking also on 
user-provided pre-existing BAM files
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The somatic variants thus generated are then spiked in the artificial, non-tumor, con-
trol Binary Alignment Mapping (BAM) files previously generated with NEAT. SNVs and 
INDELs are inserted separately in two distinct steps. SNVs can be inserted with a certain 
minimum and maximum read depth, set equal to the sample coverage in order to cor-
rectly generate the variants.

After spiking-in the SNVs, a comparison is run between the originally generated vari-
ants and the actual variants successfully inserted. This allows checking spiking-in vari-
ability due to both the way variants are inserted [24] and the sequence features of the 
regions where spiking-in occurs (e.g., low complexity, repeats, presence of existing 
SNPs), as these features may prevent the designed variants from being correctly inserted. 
The performance of this process is assessed through the number of successful spike-in 
events.

Subsequently, the INDELs are additionally spiked in, using the add_indel.py script 
provided by BAMsurgeon. Process performance assessment is done in the same manner 
as for SNVs.

Variant calling, tuning and benchmarking

Two different variant calling approaches, which mimic those used by the best practices 
in the bioinformatics community, are used to evaluate several well-known variant callers 
(Table 1).

The first approach (tumor-only) uses the artificial tumor data samples only to per-
form the variant calling. Then, variant calling performances are evaluated using the 
spiked-in variants as ground truth, while non-tumor variants generated in the normal 
data samples are not considered for the assessment and filtered out if called. The second 
approach (paired) uses a tumor-normal paired analysis: each tumor data sample is fed 
to the variant callers along with a non-tumor data sample (in this case, the data sample 
before spiking-in) in order to remove non-tumor variants, replicating the same approach 
used with real data samples.

Performance evaluation is performed with three distinct approaches for each variant 
caller: firstly, using the default parameter values, or those commonly used in the best 
practices [16]; secondly, removing the limit of detection from each variant caller, and 

Table 1 Variant callers benchmarked in this study

Variant caller Type of analysis Core algorithm Version Reference

VarDict Tumor-only,
Paired

Heuristic
threshold

1.8.2 [32]

MuTect2 Tumor-only,
Paired

Haplotype
analysis

4.2.3.0 [33]

LoFreq Tumor-only,
Paired

Allele frequency
analysis

2.1.5 [34]

VarScan2 Tumor-only,
Paired

Heuristic
threshold

2.4.4 [35]

FreeBayes Tumor-only,
Paired

Haplotype
analysis

1.3.6 [36]

Strelka2 Paired Allele frequency
analysis

2.9.10 [37]
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lastly, using variant calling parameter values tuned to further increase sensitivity (and 
precision) in low-fraction variant calling (Additional file 1: Section S1.4).

Variants called by each variant caller are compared to the ground truth variants that 
were successfully spiked-in (which are contained in the Variant Call Format (VCF) files 
generated by BAMsurgeon). True Positive (TP), False Positive (FP) and False Negative 
(FN) called variants are evaluated for each sample and used to calculate the True Posi-
tive Rate (TPR), Positive Predictive Value (PPV) and False Discovery Rate (FDR) (Addi-
tional file 1: Section S1.5). These metrics are then used to evaluate, for each approach 
used, the performance of every variant caller on low-fraction variants.

Variant calling tuning

To perform the variant calling parameter tuning, tumor samples are divided in two sub-
sets: the training set, composed of a total of 14 samples: 7 with spiked SNVs only, and 7 
with both SNVs and INDELs spiked in; the test set, composed of 6 samples: 3 with SNVs 
only, and 3 with both SNVs and INDELs.

The training set is used to systematically evaluate the candidate parameter values, 
both alone and in combination; the purpose is to first assess if the proposed values can 
improve the variant calling performance (sensitivity and precision) and, then, to detect 
the set of parameter values that provides the best performance. The test set is then used 
to confirm the performance of the chosen set of parameter values, in order to avoid pos-
sible overfitting and ensure robustness. Candidate parameter values are chosen through 
careful review of the variant calling software documentation and discussion with 
experts.

Downsampling of coverage depth

To assess the impact of coverage depth on variant calling performance, BAM files are 
downsampled by systematically varying the percentage of BAM reads from 2 to 80%, 
with a stepwise increment of 2% for the 2–8% range and 20% for the 20–80% range. To 
select the reads for downsampling, a random selection is employed, with the random 
seed set to a fixed value for each subsampling iteration to ensure reproducibility. This 
minimizes biases in the downsampled data towards ensuring that a representative subset 
of reads is retained for downstream analyses.

Generation of DREAM‑challenge comparable dataset

To ensure robust validation of our approach, we generated ten artificial samples with 
characteristics identical to those of the DREAM challenge datasets [24], featuring cover-
age of 30X, read length of 101 and aligned to the GRCh37 reference genome. To match 
the DREAM datasets, we introduced 100 random SNVs into each artificial sample, with 
VAF values ranging from 0.3 to 0.5—consistently with the VAFs in the DREAM datasets 
[24]. The variant calling performances obtained with these samples were then compared 
against those of the DREAM challenge set 1 normal dataset [38], in which we introduced 
100 random SNVs with identical VAF range values (0.3–0.5).
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Workflow standardization

The entire method has been formalized and standardized in a workflow, named LFV-
benchmark, implemented using Nextflow [39]; it is publicly available at https://github.
com/DIncalciLab/LFV-benchmark together with its full documentation to test and run 
the pipeline, and along with different use cases and their example testing datasets. The 
workflow is completely automated and parallelized, and each step of the workflow can 
be executed separately, allowing the user to reproduce each step independently (e.g., 
only generating the artificial samples, or just running the variant calling benchmark on 
the created artificial samples or on available samples).

Results
In order to validate our approach and its implementation, we tested our entire workflow 
by generating multiple artificial samples with different types of low-fraction somatic 
variants, and using them to tune and benchmark multiple variant calling algorithms for 
the identification of such variants. In particular, we simulated a scenario where low-frac-
tion variant calling is routinely needed: the analysis of samples from ctDNA, where the 
percentage of actual tumor DNA is low compared to the total DNA, leading to a low 
expected fraction of somatic variants.

Creation of an artificial normal dataset

We firstly constructed 10 artificial normal samples at high coverage, i.e., 30,000×, a com-
mon sequencing depth to identify low-fraction variants in circulating tumor DNA. We 
built the artificial reads with the assumption of a baseline mutation rate expected in nor-
mal samples; thus, we relied on the mutational model based on the Platinum Genome 
NA12878 cell line [31] to simulate a total of 2975 germline variants, which were inserted 
in the artificial samples with a variant allele fraction of 50%. Out of these inserted vari-
ants, 2655 (89.24%) were SNVs, 155 (5.21%) insertions and 165 (5.55%) deletions.

Generation of artificial somatic low‑fraction variants and of an artificial tumor dataset

We randomly generated 1000 SNVs and 1000 INDELs (with a maximum length of 90 
bp), covering the TP53, BRCA1 and BRCA2 genes (chosen arbitrarily as an example of 
a gene panel for ultra-deep sequencing); furthermore, we also randomly generated 1,000 
short INDELs (max length 3 bp), to evaluate the performance of variant callers with var-
ying INDEL size. The VAF ranged from 5.0 to 0.1%, 0.08 and 0.1% for SNVs, INDELs and 
short INDELs, respectively.

To construct an artificial tumor dataset with low-fraction somatic variants, 100 of the 
1,000 generated SNVs were spiked in each of the 10 created artificial normal samples, 
with the same coverage as the normal dataset (30,000×). We verified the reliability of the 
spike-in process by comparing the actual inserted variants versus the ones used for the 
spike-in: 997 out of 1000 somatic SNVs were correctly inserted. At most, only one SNV 
per sample was not inserted (Additional file  1: Table  1). To confirm that the spike-in 
process did not alter the VAF of the somatic variants, we compared the VAF distribu-
tion of the expected (generated) versus the observed (spiked-in) SNVs. VAF distribu-
tions for the entire artificial sample cohort (Additional file 1: Figure 1) showed that the 
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spike-in process of the SNVs did not significantly alter the VAF distribution (Kolmogo-
rov-Smirnov test, p-value = 0.99). The maximum and minimum VAF for spiked-in SNVs 
were 4.8 and 0.1%, respectively (Additional file 1: Figure 1), in line with those of the gen-
erated SNVs, confirming that the spike-in process of the SNVs does not alter their VAF.

Secondly, 100 of the generated 1000 INDELs or short INDELs were spiked in each of 
the created artificial normal samples, with the same maximum depth as the SNVs. 100% 
of the INDELs and short INDELs were spiked in each sample (Additional file 1: Tables 2 
and  3). Their VAF distributions for the entire artificial sample cohort are reported in 
Additional file  1: Figures  3 and  4, for INDELs and short INDELs, respectively. VAF 
values ranged between 4.7 and 0.08% for INDELs and between 4.9 and 0.1% for short 
INDELs. Similarly to SNVs, the spike-in process appears not to significantly alter the 
distribution of VAF for INDELs (Kolmogorov-Smirnov test p-value: 0.16 and 0.91 for 
INDELs and short INDELs, respectively).

These results show that the generation and spike-in of all the artificial variants 
designed in our method and implemented in the provided workflow were correctly per-
formed; thus, the generated dataset of artificial tumor samples can be used for down-
stream variant caller benchmarking.

Variant calling performance evaluation on low‑fraction variants

The artificial tumor data obtained after the spike-in process was fed to widely used vari-
ant callers in order to test their performance in detecting low-fraction variants (SNVs 
or/and INDELs). The generated artificial germline variants that were called were then 
excluded from the evaluation, since they represent the normal mutational background 
and have a much higher VAF. Likewise, when evaluating the performance of calling indi-
vidual types of variants (SNVs or INDELs), only the specific variant type under analysis 
was considered.

Performance of variant callers was evaluated in three different scenarios: first, call-
ing algorithms were tested under their standard conditions, i.e., when run using their 
parameter default values (with the exception of VarScan2 and FreeBayes whose limit of 
detection was too high, see Additional file 1: Section S1.4 for details); then, their limit of 
detection (if applicable) was either lowered or removed outright, to evaluate their sen-
sitivity and precision in such condition; lastly, we applied a calibration approach (see 
Implementation) to systematically test different combinations of parameter values for 
each variant caller, to assess whether variant calling could be improved at low and very 
low VAFs without generating too many false positive calls.

Performance on samples containing only SNVs

Variant calling performances were first evaluated on the artificial samples contain-
ing only SNVs spiked-in (Table 2). When the callers were run using their parameter 
default values, all of them achieved medium to low performance. In tumor-normal 
paired mode, VarDict and Strelka2 were the most performing callers (Additional 
file 1: Figure 8), with medium sensitivity (TPR = 0.684 and 0.700, respectively) and 
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high precision (PPV = 0.984 and 0.913, respectively). In tumor-only mode, LoF-
req was the most performing one (Additional file  1: Figure  10), for both sensitivity 
and precision (TPR = 0.796, PPV = 0.790), while VarDict and Mutect2 had limit-
edly lower performances. Overall, results obtained using the parameter default values 
show that precision in calling SNVs is high for all variant callers, but their sensitivity 
is only medium (Additional file 1: Figures 8 and 10).

Then, we evaluated how the calling algorithms perform after disabling their limit of 
detection (Additional file 1: Figures 12 and  14). LoFreq and Strelka2 were not con-
sidered for this evaluation, as they do not provide a parameter to tune such limit. 
Overall, all algorithms benefit from the removal of their limit of detection in term 
of sensitivity, with the only exception of Mutect2, whose results were unchanged. 
VarDict appeared to be the best performing caller: its sensitivity increased for both 
tumor-normal paired mode (TPR = 0.833 vs. 0.684) and tumor-only mode (TPR = 
0.835 vs. 0.685), while its precision did not change significantly in both tumor-nor-
mal paired mode (PPV =  0.986 vs. 0.984) and tumor-only mode (PPV = 0.797 vs. 
0.763). VarScan2 was able to call variants once its limit of detection was disabled; 
however, its performance was low: in tumor-normal paired mode it attained high 
precision but low sensitivity (PPV = 0.979 and TPR = 0.195, respectively), while in 
tumor-only mode it exhibited high sensitivity (TPR = 0.884) but very low precision 
(PPV = 0.010). When the detection limit was set below 1%, FreeBayes achieved same 
medium performance on both tumor-normal paired mode and tumor-only mode 
(TPR = 0.682 and PPV = 0.770); yet, in this case its runtime was too excessive (sev-
eral hours for each sample).

Lastly, we evaluated the performance of the variant callers considering different sets 
of parameter values for each caller, whose best values were chosen through the cali-
bration study described in the Implementation Section. In particular, for each variant 
caller the considered sets of parameter values were first evaluated on the training set 
(7 samples with only SNVs spiked-in), and then the best values identified were veri-
fied on the test set (3 samples with only SNVs spiked-in).

Results (Table 2, Additional file 1: Figure 21 and 23) showed that the identified best 
set of parameter values improved the performance of each variant caller, with out-
comes in line between training and test sets. The only caller excluded from this analy-
sis was FreeBayes: it did not correctly estimate the VAF, thus it was excluded from any 
subsequent benchmark.

The highest gains in performance were observed for Mutect2, with significant 
increases in sensitivity for both tumor-normal paired mode (TPR = 0.741 vs. 0.373, in 
test set) and tumor-only mode (TPR = 0.791 vs. 0.643, in test set), with no significant 
changes in the already relevant precision. Also VarDict improved its sensitivity for 
both tumor-normal paired mode (TPR = 0.862 vs. 0.684, in test set) and tumor-only 
mode (TPR = 0.865 vs. 0.685, in test set), while keeping its high precision. LoFreq 
only showed limited changes in sensitivity in both tumor-normal paired mode (TPR 
= 0.258 vs. 0.220, in test set) and tumor-only mode (TPR =  0.825 vs. 0.796, in test 
set), while VarScan2 had low performance even after the tuning. Lastly, parameter 
tuning in Strelka2 did not result in any change in performance compared to when it 
was run with parameter default values on the same sample subset of the training set 
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(TPR = 0.720 and PPV = 0.935 for both the cases). In light of these findings, Strelka2 
was not investigated on the test set.

With regards to SNV calling, these findings show that VarDict and Mutect2 were 
the most performing ones in both analysis modes (along with LoFreq in tumor-only 
mode); in particular, Mutect2 showed a much increased sensitivity after parameter 
tuning, with no loss of precision.

Performance on samples containing both SNVs and INDELs

To further evaluate low-fraction variant calling performance on artificial datasets closer 
to real biological samples, we benchmarked the variant callers on an artificial dataset 
including both SNVs and INDELs (with maximum length of 90 bp). As the spike-in pro-
cesses for the two variant types were independent, we assessed the performance of the 
variant callers on both SNVs and INDELs separately, as well as together. This allowed us 
to determine whether the presence of INDELs affected the accuracy of SNV calling.

We first evaluated the performance of variant calls after the INDELs spike-in using 
caller parameter default values. No major changes were observed in SNVs calling perfor-
mance (Table 3, Additional file 1: Figures 9a and 11a) compared to the SNVs only dataset 
(Table 2, Additional file 1: Figures 8 and 10); the only exception was LoFreq, which had a 
significant drop in the already very low sensitivity in tumor-normal paired mode (TPR = 
0.120 vs. 0.220) and an even much more pronounced drop in precision in tumor-only 
mode (PPV = 0.216 vs. 0.790). When taking into account only INDELs (Table  3, Addi-
tional file  1: Figures  9b and   11b), only Mutect2 was able to call them, although with 
low performance (just slightly better in tumor-only mode: TPR = 0.341, PPV = 0.494). 
Therefore, Mutect2 was also the only one able to correctly call both SNVs and INDELs 
when considered together, with the highest sensitivity in tumor-only mode (TPR = 
0.489) and the best precision in tumor-normal paired mode (PPV = 0.734).

We then performed the same evaluations with the limit of detection of the callers 
removed. In this case (Table 3, Additional file 1: Figures 13a and 15a), INDELs inclusion 
did not affect SNVs calling for Mutect2 and VarDict only (see comparison with Table 2, 
Additional file 1: Figures 12 and 14), while precision considerably dropped for VarScan2 
and FreeBayes in tumor-normal paired mode (PPV = 0.093 vs. 0.979 and PPV = 0.030 
vs. 0.770, respectively), and for FreeBayes also in tumor-only mode (PPV = 0.030 vs. 
0.770). When INDELs calling was considered (Table  3, Additional file  1: Figures  13b 
and  15b), VarDict kept a very low performance, both in tumor-normal paired mode 
(TPR = 0.008, PPV = 0.0002) and in tumor-only mode (TPR = 0.011, PPV = 0.0001), 
while the performance of Mutect2 did not change. Lastly, VarScan2 and FreeBayes were 
still not able to detect any INDEL, while LoFreq and Strelka2 were not considered in this 
evaluation as they do not allow to remove the limit of detection.

Thus, also in the case with no limit of detection, overall Mutect2 was still the best per-
forming caller in both tumor-normal paired mode and tumor-only mode (Table 3).

Finally, through the calibration approach described in the Implementation Section, 
also for the artificial dataset including both SNVs and INDELs we benchmarked the can-
didate parameter values of each calling algorithm, with the exception of Strelka2 and 
FreeBayes according to the previous benchmark on the SNVs only dataset. However, in 
this case we could investigate the parameter values on the entire training set only for 
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Mutect2, while on only one random sample of the training set for the remaining variant 
callers, due to the high computational cost induced by the presence of INDELs; all call-
ers using the identified tuned parameter values were then evaluated on the entire test 
set.

Results in the test set (Table 3, Additional file 1: Figures 22 and 24) showed that with 
regards to SNVs calling Mutect2 had a significant increase in sensitivity, both in tumor-
normal paired mode (TPR = 0.744 vs. 0.373) and in tumor-only mode (TPR = 0.798 vs. 
0.636), while maintaining equivalent precision. Also with regards to INDELs calling, 
the tuning significantly increased Mutect2 sensitivity and also precision both in tumor-
normal paired mode (TPR = 0.553 vs. 0.198, PPV = 0.734 vs. 0.498) and in tumor-only 
mode (TPR = 0.590 vs. 0.341, PPV = 0.708 vs. 0.494). As of the other calling algorithms, 
parameter value tuning only increased SNVs sensitivity for VarDict and slightly for LoF-
req, while did not provide any relevant improvement on INDELs calling, with VarDict 
showing drop in precision when evaluated on both SNVs and INDELs.

These findings show that Mutect2 was not affected by multiple spike-in processes, and 
that it was the best performing variant caller even when considering SNVs and INDELs 
together.

Evaluation of influence of low‑fraction INDEL length on variant calling performance

To investigate whether the length of low-fraction INDELs affects the performance of 
variant callers, we evaluated the variant calling performance in high-sensitivity set-
tings (i.e., using caller tuned parameter values) on the dataset with both SNVs and short 
INDELs (max length 3 bp) spiked-in. The only exceptions were FreeBayes and Strelka2, 
whose parameter values were not tuned: the former one was run by removing the limit 
of detection, while the latter one was run using its parameter default values.

Insertion of short INDELs with respect to INDELs of general lenght had no impact on 
variant calling performance, with sensitivity and precision of SNVs and INDELs calling 
that were overall only marginally modified (see Additional file 1: Figures 22 and 24 vs. 
Additional file 1: Figures 25 and 26, respectively). This confirms that overall the length of 
spiked-in INDELs does not affect variant calling performance.

Evaluation of influence of the coverage depth on variant calling performance

We also evaluated the variant calling tools on subsampled samples using the high-sen-
sitivity settings (with the exception of FreeBayes and Strelka2). Consistently with the 
expectations, we observed a significant decrease in sensitivity as coverage depth was 
reduced (Additional file 1: Figures 27–30). Precision of the tools was also affected, par-
ticularly in tumor-only mode and for certain tools such as VarDict and Freebayes. Inter-
estingly, our findings indicate a decrease in precision with increasing coverage depth for 
VarScan2 and LoFreq in tumor-only mode. Notably, this behavior was observed only for 
the dataset with SNVs and INDELs in the case of LoFreq. Furthermore, the sensitivity 
of VarScan2 noticeably decreased when applied to the dataset containing both SNVs 
and INDELs in the tumor-normal paired mode, indicating that caution should be taken 
when using this tool for high-depth samples. Remarkably, Mutect2 remained the most 
reliable and stable tool across varying coverage depths.
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Evaluation of influence of the number of spiked‑in variants on variant calling performance

To explore the influence of the variant number on the performance of variant callers, 
we conducted a sensitivity analysis using a downsampled normal high-coverage sample, 
reduced to 10,000× for computational efficiency. We systematically introduced vary-
ing numbers of SNVs—specifically, 200, 100, 50 and 10 SNVs, respectively—into the 
original sample. Subsequently, the resulting four tumor samples were processed using 
high-sensitivity settings and tumor-normal paired mode. The outcomes, depicted in 
Additional file  1: Figure  31, reveal a consistent decrease in both sensitivity and preci-
sion as the number of inserted variants increases. Notably, Mutect2 and Strelka2 exhib-
ited exceptional performance in both sensitivity and precision when only 10 variants 
were introduced, but their performance declined to medium levels for sensitivity (TPR 
= 0.638 and 0.608 for Mutect2 and Strelka2, respectively) and medium-high levels for 
precision (PPV = 0.894 and 0.870 for Mutect2 and Strelka2, respectively) as the num-
ber of variants increased. VarScan2 and Lofreq experienced a lower decline in perfor-
mance, although their overall performance remained relatively low. Lastly, VarDict and 
FreeBayes were excluded from the evaluation due to the extensive computational time 
they required. Overall, these findings emphasize the need of caution when dealing with 
an excessively high number of variants, particularly in targeted genomic regions, such as 
in the case of high-coverage samples.

Comparison with the DREAM challenge dataset

To ensure the reliability of our approach in comparison to real samples, we compared 
the DREAM challenge dataset and generated artificial normal samples with intro-
duced SNVs as outlined in the Implementation section. We conducted a variant call-
ing benchmark in tumor-normal paired mode with high-sensitivity settings enabled. The 
performance analysis (Additional file 1: Figure 32) consistently demonstrated high and 
equivalent performance in variant calling output for both the DREAM dataset and the 
generated samples. Notably, the TPR surpassed 0.7 and remained comparable between 
the datasets, indicating robust performance. Moreover, precision exceeded 0.9, validat-
ing the reliability and consistency of the artificially generated samples. Interestingly, 
Mutect2 exhibited a decline in performance, with a TPR of 0.597, which may be worth 
of further investigation in the future. Lastly, FreeBayes and Strelka2 were not able to per-
form variant calling on the DREAM dataset and were omitted.

Discussion
In this work we propose an integrated approach, implemented in an automated work-
flow, which generates specific artificial datasets to benchmark the detection rate of vari-
ant callers for low-fraction variants, with minimal human intervention and without the 
need for real samples as a starting point. The use of artificial datasets to evaluate specific 
analytical needs for DNA variant detection has been widely employed by the scientific 
community [24–26]. However, to our knowledge the available approaches rely on the 
availability of real data to derive artificial samples, which is problematic when evalua-
tions need to be carried out for specific applications.

As it is unfeasible to provide every possible application-specific dataset to the com-
munity, a relevant alternative approach is to support the flexible generation of suitable 
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artificial datasets according to the specific experimental and analytical needs. Our 
method allows the generation of these datasets without a priori experimental data, or 
alternatively with user-supplied mutational and/or sequencing error models. In addi-
tion, the user can specify the genomic regions of interest, making the approach and 
generated data very useful and suitable for any specific application under study. The 
method also allows the flexible and reliable insertion of artificial variants, which can 
be adjusted to match the expected VAF ranges in actual experimental data. In addi-
tion, our method includes the evaluation of the generated artificial data with widely-
used variant callers, to have a rapid feedback on their performance for the specific 
use case. It also offers the possibility to run and benchmark the variant callers with or 
without a matched normal sample (if supported by the caller).

Our results showed that commonly used variant callers have worse performance 
on very low-fraction variants when run with parameter default values. This is par-
ticularly evident when evaluating the calling of INDELs or both SNVs and INDELs 
in the same dataset (a scenario that matches real samples), with only Mutect2 able 
to achieve acceptable performance in such cases. When evaluating only SNVs calls, 
Mutect2 or VarDict are recommended choices, regardless of whether a matched nor-
mal sample is available or not. Additionally, also Strelka2 can be used in the case of 
matched tumor-normal samples.

As using parameter default values the performance of variant callers is suboptimal, 
leveraging our framework and its generated artificial datasets we performed their 
calibration for low-fraction variants by adjusting the caller parameter values. Remov-
ing the limit of detection (where supported) improved the sensitivity, but at the same 
time induced or maintained lower precision, especially when INDELs are present.

Even after tuning, performance of most variant callers is suboptimal for low-frac-
tion variants. In particular, acceptable results are produced only in the absence of 
INDELs, a scenario that is less close to real samples. When INDELs calling is consid-
ered, only Mutect2 maintains an acceptable, albeit not high, performance.

Thus, current variant callers are more suitable for calling low-fraction SNVs rather 
than insertions and deletions. This has important consequences in real-world sce-
narios, as sequencing library preparations may damage DNA and introduce artifacts, 
which could negatively affect the calling. A recent study [40] has suggested that other 
tools, such as Pindel [41], DELLY [42], and DeepVariant [43], may be more appro-
priate for detecting INDELs. However, their effectiveness in detecting low-fraction 
variants has not been fully evaluated. While DeepVariant is limited to germline call-
ing, the computational demands of the other tools, including Lancet [44] that has also 
been shown to perform well in INDELs calling, make challenging to benchmark their 
performance under the conditions of our study. Further research is needed to evalu-
ate the performance of these tools on low-fraction variants and to optimize their use 
for accurate variant calling in different sequencing applications.

Given the rise of low-fraction variant evaluations in tumor DNA from plasma or 
other biological samples, improved and accurate variant calling (as opposed to 
manual evaluation of variants [45]), capable of discriminating real variants from 
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sequencing and library preparation artifacts, is of utmost importance: either highly 
optimized parameter values evaluated on large datasets or improved software appli-
cations are needed. To this aim, our proposed approach allows generating in a rea-
sonable amount of time a great number of in-silico samples on which variant callers 
can be tested and benchmarked. Moreover, in-silico datasets can be used not only to 
benchmark variant callers and rapidly set-up a proper computational workflow for 
specific experiments, but also to increase the number of available samples to be used 
in variant analysis.

The main limitation of this approach is that the generated data are of course all artifi-
cial; even if there are multiple methods to make them similar to wet lab-generated real 
sequencing data, they do not perfectly recapitulate the nature of a real experiment. In 
addition, despite the several datasets publicly available (e.g., the ones from the DREAM 
challenges [46]), to our knowledge none of them provide sufficient depth and suit-
able characteristics to benchmark variant calling accuracy for low-fraction variants; 
thus, they cannot be used either for comparison with our generated artificial datasets. 
Lastly, our approach does not consider ortogonal means (e.g., annotation-based filter-
ing) or specific experimental strategies (e.g., UMI) to enhance performance. The former 
can address SNV calling but not INDEL calling, while the latter may introduce biases 
requiring specific optimizations for our approach. Nevertheless, the approach can be 
used for rapid prototyping and benchmarking of analytical procedures suited to the bio-
logical problem being studied, without the need of actual sequencing; this leads to better 
designed experiments, more tailored analyses, and more cost-effective sequencing runs.

Conclusions
We developed a novel approach for generating artificial datasets that can mimic deep 
and ultra-deep targeted sequencing data, and took advantage of them to tune and 
benchmark variant calling algorithms. Our approach is useful and flexible, and can 
be reliably used to simulate various types of data for different experimental needs, 
thus supporting generalizability. Furthermore, the integrated benchmark of variant 
calling methods allows effortless evaluations of the performance of most relevant var-
iant callers on the specific data generated. We expect our approach and its implemen-
tation to be a relevant and practical contribution to the bioinformatics community 
towards the design of faster and more precise methods for DNA variant analysis.
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