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Abstract 

Background: As genomic studies continue to implicate non-coding sequences 
in disease, testing the roles of these variants requires insights into the cell type(s) 
in which they are likely to be mediating their effects. Prior methods for associating non-
coding variants with cell types have involved approaches using linkage disequilibrium 
or ontological associations, incurring significant processing requirements. GaiaAssocia-
tion is a freely available, open-source software that enables thousands of genomic loci 
implicated in a phenotype to be tested for enrichment at regulatory loci of multiple 
cell types in minutes, permitting insights into the cell type(s) mediating the studied 
phenotype.

Results: In this work, we present Regulatory Landscape Enrichment Analysis (RLEA) 
by GaiaAssociation and demonstrate its capability to test the enrichment of 12,133 
variants across the cis-regulatory regions of 44 cell types. This analysis was completed 
in 134.0 ± 2.3 s, highlighting the efficient processing provided by GaiaAssociation. The 
intuitive interface requires only four inputs, offers a collection of customizable func-
tions, and visualizes variant enrichment in cell-type regulatory regions through a heat-
map matrix. GaiaAssociation is available on PyPi for download as a command line tool 
or Python package and the source code can also be installed from GitHub at https:// 
github. com/ Greal lyLab/ gaiaA ssoci ation.

Conclusions: GaiaAssociation is a novel package that provides an intuitive and effi-
cient resource to understand the enrichment of non-coding variants across the cis-
regulatory regions of different cells, empowering studies seeking to identify disease-
mediating cell types.

Keywords: Cell-type prioritization, Non-coding enrichment, Chromatin architecture, 
GWAS

Background
Despite the immense number of genome-wide association studies (GWAS) performed 
to study human diseases and traits, understanding how to progress from variant identi-
fication to the testing of their properties in vivo remains a difficult task, as the variants 
alone are not readily associated with the cell type(s) in which they may be preferentially 
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exerting their effects. Most DNA sequence variants implicated in GWAS occur in the 
non-coding majority of the human genome, and are explored with functional genomic 
approaches to identify the subset of variants with effects on gene expression or tran-
scriptional regulatory processes [1]. Non-coding variants have been demonstrated to 
alter transcriptional regulatory elements such as enhancers [2, 3] and to have effects on 
chromatin state [4], a potential mechanism for mediating the organismal phenotype. 
Functional non-coding variants are thus defined by their effects at regulatory loci, using 
assays such as those identifying open (non-nucleosomal) chromatin [5], patterns that are 
highly cell type-specific [6]. Studies have demonstrated significant enrichment of GWAS 
variants within open chromatin regions (OCRs), suggesting a transcriptional dysregula-
tory mechanism for non-coding variation [7]. Mechanistically, non-coding variants have 
been shown to contribute to disease risk through transcription factor (TF) binding dys-
regulation resulting in altered chromatin organization [8, 9]. Given the cell type specific-
ity of the regulatory landscape, a variant may overlap and have effects on a regulatory 
locus such as an enhancer active in one cell type, but have no effects in any other cell 
type as the locus is not otherwise used for transcriptional regulatory purposes.

A challenge in following up on GWAS or other studies of non-coding variants impli-
cated in a disease or phenotype is to identify the cell type(s) in which these variants are 
active. Our assumption is that disease-relevant functional variants are likely to be more 
frequent in regulatory regions that are active in the cell or tissue types mediating the 
condition. With the increasing availability of data from chromatin state assays such as 
ATAC-seq [10] that enable the identification of loci involved in cell type-specific gene 
regulation, we sought to develop a computationally-efficient way to use GWAS results to 
identify disease-mediating cell types [11–13].

Limitations of current methodologies

There are now tens of thousands of GWAS in the NHGRI-EBI GWAS Catalog [14] and 
over 1,400 chromatin accessibility (ATAC-seq) results in the ATACdb database [15]. 
Tools are needed that can identify the tissue or cell types in which non-coding sequence 
variants are active [16–18], working with potentially very large sources of data. To inves-
tigate the relationship between variants and cell type effects, three approaches have 
been described. FUMA (Functional Mapping and Annotation) [19] serves to annotate 
and visualize GWAS results but is limited by its inability to incorporate user-customized 
annotation data for analysis and include tissue enrichment results as part of its output. 
Although FUMA accommodates positional expression quantitative trait loci (eQTL) and 
cell/tissue specific chromatin data, it relies on loci that have been functionally annotated 
and only indirectly links GWAS loci with specific cell or tissue types. Additionally, since 
it is a web-based platform, it does not support batch submissions and requires consistent 
server maintenance which limits the submission of tasks.

The Genomic Regulatory Elements and Gwas Overlap algoRithm (GREGOR) was devel-
oped to identify cell types and tissues implicated by GWAS studies [20]. This algorithm 
generates a list of candidate variants by filtering for those in strong linkage disequilib-
rium (LD) (r2 > 0.7) with trait-associated index SNPs from whole genome sequencing [20]. 
GREGOR examines the overlap of potential causal SNPs with tissue OCRs and calculates 
the number of trait-associated loci at which either the index SNP or at least one of its LD 
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proxies overlaps with a regulatory region [20]. Finally, GREGOR estimates the likelihood of 
the observed overlap of GWAS SNPs relative to expectation using a set of matched control 
variants (∼500 randomly selected SNPs that match the index SNP). Although GREGOR 
represents an advance in the study of the association of variants with the local regulatory 
landscape that defines cell types, its dependency on variants in LD introduces several com-
plexities. GREGOR’s usage of LD variants can only be exclusively applied to human data-
sets, and is also limited to GWAS datasets where LD testing is relevant, excluding studies of 
other types of non-coding associations, such as de novo variant (DNV) association studies. 
In addition, GREGOR requires that the variant set and LD reference be derived from com-
parable genetic ancestries for biologically meaningful comparisons.

The third approach comparable to GaiaAssociation is the recently-described enrichment 
tool SpecVar, which uses both chromatin accessibility and gene expression data and con-
ducts heritability enrichment analysis using GWAS statistics to identify phenotypically rel-
evant tissues and cell types [21]. As the closest comparable approach, we focus our attention 
in this study on the comparison between the performance of GaiaAssociation and SpecVar.

Due to the growing availability of chromatin accessibility data in public repositories, 
along with an increased understanding of non-coding contributions to human phenotypes, 
the possibility of improving upon approaches like GREGOR or SpecVar has become timely. 
GREGOR’s LD approach is computationally costly, significantly reducing its performance 
capacity when compared to non-LD approaches. This efficiency cost is heightened as mul-
tiple studies and cell types are studied simultaneously. Its requirement of a pre-assembled 
LD reference library, and for variants and regulatory features to be aligned to the GRCh37 
reference genome limit its applicability as chromatin accessibility technologies expand in 
their use.

To address these potential limitations and to test for the enrichment of loci in the regula-
tory elements of different cell types, we developed the GaiaAssociation package to perform 
Regulatory Landscape Enrichment Analysis (RLEA). Unlike previous enrichment software, 
GaiaAssociation evaluates the distribution of variants between the open chromatin archi-
tectures of cell types and does not require LD information, since all comparisons are made 
against their own null hypothesis. The implementation of RLEA partitions the genome into 
equally sized windows and then models the number of overlaps between single nucleotide 
variants (SNVs) or small indels and ATAC-seq peaks in each window as a binomial random 
variable. For the entire genome, the number of overlaps is modeled as a sum of independent 
binomial random variables, estimated using saddlepoint approximation [22]. GaiaAssocia-
tion allows users to efficiently test variant enrichment from multiple loci sets against the 
chromatin data of numerous cell-types simultaneously. This method highlights candidate 
cell types mediating the effects of genetic variants on the phenotype, a valuable post-GWAS 
insight, while also clustering cell types by their OCR profiles.

Implementation
Regulatory landscape enrichment analysis (RLEA): statistical design

Statistical testing by GaiaAssociation begins with creating a null distribution–a binomial 
distribution–for each GaiaAssociation window based on a specific local environment. 
This null distribution is built relative to the density of OCRs and number of loci in that 
GaiaAssociation window. In doing this we ensure a null distribution that does not naively 
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assume that either a locus or an OCR could land anywhere in the genome, instead con-
sidering only the local environment where the loci was found. Taking every GaiaAssoci-
ation window that contains a locus, we examine the chance of this variant falling into an 
OCR (or not) based on the proportion of open chromatin within that GaiaAssociation 
window. If a particular locus falls within a GaiaAssociation window where no OCRs are 
found, there is a 0% chance of a loci landing in an OCR. The null distribution (and bino-
mial test) for this GaiaAssociation window will reflect this point. In the example where 
a locus falls in a GaiaAssociation window with 98% OCR coverage, the null distribution 
for that GaiaAssociation window will reflect the high probability of overlapping with an 
OCR, giving a relative probability related to the local region where the locus was found. 
The final null distribution for p-value generation is calculated by summing the null dis-
tributions for all individual GaiaAssociation windows across the genome for a provided 
cell type. Thus, when the global overlap count of loci which landed in open chromatin 
regions is considered, the null distribution is constructed considering each GaiaAssocia-
tion window’s local environment.

Implementation of regulatory landscape enrichment analysis (RLEA)

The architecture of RLEA by GaiaAssociation is represented in Fig.  1. To calculate 
the sum of independent but non-identical binomial random variables, RLEA takes a 
user-provided chromosome size file based on the genome build of choice and divides 
the chromosomes into GaiaAssociation windows of equal length, as close to a user-
defined window size as possible (a default value of 100 kb is applied if no value is pro-
vided). For each GaiaAssociation window in which there is at least one query/SNP, a 
binomial random variable is modeled using the total number of loci which fall within 
that GaiaAssociation window, and the percentage of that window which overlaps a 
particular cell type’s OCRs, serving as the number of tests and the probability of suc-
cess, respectively. The null distribution is then calculated as the sum of these inde-
pendent binomial random variables. This summed distribution is then compared to 
the total genome-wide number of overlaps between a set of loci and a given OCR 
dataset. This comparison determines how likely it is to observe that number of over-
laps considering the environment of each window independently. This comparison 
generates a p-value representing the likelihood of observing that many overlaps given 
a null hypothesis that each locus was randomly distributed within its local environ-
ment. This distribution is estimated using saddlepoint approximation [22], allowing 
the query set to be tested for enrichment, given the observed number of overlaps. 
This is summarized in the following formula below. β represents a binomial distri-
bution, where β (nw, pw) is a binomial distribution defined by the variables (n & p). 
The binomial variable for GaiaAssociation window 1 (w = 1), would be defined by n1 
and p1. The n signifies the number of trials, which here represents the number of loci 
within that GaiaAssociation window. The p signifies the probability of success, which 
in our usage case represents the proportion of the GaiaAssociation window covered 
by OCRs. This GaiaAssociation window (w) is therefore modeled as a single binomial 
distribution, and this distribution serves as the null distribution for that GaiaAssocia-
tion window. All overlaps (i.e. overlapsall, meaning the total number of overlaps across 
the entire genome) are then compared to the sum of all these null distributions, which 
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are each an independent binomial distribution. These non-identical independent 
binomial variables are summed into a single null distribution to compare against for 
significance providing a p-value.

For each GaiaAssociation window, the proportion that is occupied by OCRs is calcu-
lated for each cell type, and the total number of loci within that GaiaAssociation window 
is found. In the case of loci that overlap the OCR and have a length greater than one 
base pair, such as an insertion or deletion event, the size of each OCR in the GaiaAsso-
ciation window is extended to include the length of these extended loci. This is a slight 
adjustment to the more conventional single base pair loci calculation which is made to 
account for the possibility that an indel could land outside the OCR region but still over-
lap with it. This proportion of OCR coverage and the count of loci within that GaiaAs-
sociation window, along with the total number of loci that overlap OCRs genome-wide, 
are used to calculate a p-value for global enrichment using the sinib package [22], which 
has been translated from R to Python and included with GaiaAssociation. This p-value is 

overlapsall =
#windows

w=1
β(nw , pw)

Fig. 1 GaiaAssociation platform architecture. This flowchart demonstrates the data input, Regulatory 
Landscape Enrichment Analysis (RLEA), and visualization stages available through GaiaAssociation. During 
the data input stage, GaiaAssociation is provided a dataset of loci of interest (which could be GWAS loci 
or de novo variants, as examples, represented as red asterisks) along with cell type chromatin accessibility 
data (represented as narrow vertical rectangles). Each chromosome is divided into a set of GaiaAssociation 
windows (represented as broad horizontal rectangles) based on a user-defined window size. In the following 
step, loci of interest that land within GaiaAssociation windows (represented as red broad horizontal 
rectangles) are modeled as a binomial random variable for each cell type independently. During this RLEA 
stage, GaiaAssociation calculates the number of loci within a GaiaAssociation window (n) and the percentage 
of the GaiaAssociation window that is occupied by open chromatin regions (p) throughout the genome, 
modeling each as an independent binomial variable before summing these across all GaiaAssociation 
windows (w) by cell-type. This is then compared against the global overlap count between the loci data set 
and each cell type. This comparison provides a p-value representing the enrichment likelihood of a set of loci 
of interest within a cell type set against a random distribution null hypothesis. The final stage visualizes the 
enrichments calculated by GaiaAssociation as a heatmap matrix between all cell types and datasets of loci of 
interest, while clustering cell types by their shared OCR profiles
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calculated for each cell type (n values) and loci dataset (m values) combination, to create 
an n x m matrix which describes the relative enrichment of these loci in each cell type.

Interface for data input

The GaiaAssociation package requires four inputs for analysis: 1) a folder containing the 
chromatin regulatory region bed files of interest in a text (.txt) format, 2) a folder con-
taining the genomic loci of interest in tab-separated values (.tsv) or comma-separated 
values (.csv) format, 3) a.csv file containing the chromosome sizes of the desired genome 
build, and 4) a folder location for the output of GaiaAssociation analyses.

Data pre‑processing

The most straightforward example of the use of GaiaAssociation is represented by the 
input of a list of loci to test for overlap with OCRs from multiple cell types. The package 
supports SNVs and small indels, not larger copy number variants, with the primary goal 
of supporting data typical of GWAS results. When entering multiple sets of genomic 
loci, the user can define cutoff values to filter for a minimum size requirement for a 
dataset, for example. We used a minimum cutoff of 200 genomic loci as a conservative 
threshold.

GaiaAssociation also permits the user to incorporate their own ATAC-seq loci or reg-
ulatory loci defined by other genome-wide assays (DNase-seq, ChIP-seq, etc.). The soft-
ware tests the relatedness of the loaded regulatory profiles as a pre-processing step. Cell 
types with a greater degree of chromatin sharing (relatedness) cluster closely resulting 
in a smaller weight (closer to 0). Cell types with limited (or zero) chromatin relatedness 
receive a larger weight score (closer to 1) and cluster farther apart. GaiaAssociation pro-
vides a weight score (from 0–1) for all regulatory profiles, where degree of chromatin 
overlap between cell types is represented by smaller scores. This relationship between 
each pair of cell types is defined using the following formula:

This weighted matrix is used to generate a dendrogram, based on the Euclidean dis-
tance metric and hierarchical clustering, using the SciPy8 algorithm [23], highlighting 
the similarities in chromatin organization between cell types.

Interface features and functionality

GaiaAssociation also allows prioritization of regulatory regions that are cell type-spe-
cific. Accessible regions of chromatin ubiquitously shared across cell types possess 
a stronger signal compared to cell-type selective OCRs. However, unlike ubiquitous 
OCRs, cell-type specific OCRs harbor DNA sequence motifs corresponding to mas-
ter regulators of cell identity and occur near selectively expressed genes [24]. For this 
reason, considering the degree of cell type OCR specificity can help clarify meaning-
ful variant-cell type associations. Distinguishing global enrichment of loci in ubiquitous 
OCRs (near housekeeping genes for example) from cell-specific enrichment is a valuable 
feature for the study of non-coding variants. This degree of OCR cell type specificity 
can be examined via GaiaAssociation using the “peak uniqueness value” function. This 

Weightij = 1− (
Overlap of i and j Peaks

Sumof Cell Type i peaks
)(

Overlap of i and j Peaks

Sumof Cell Type j peaks
)
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function outputs the number of cell types that possess an overlapping OCR, allowing 
filtering prior to analysis as an option. If this function is provided with a value of 3, for 
example, then only OCRs found in three cell types or fewer are considered, removing 
OCRs shared by four or more cell types. This will allow for enrichment to be assessed 
on the chromatin regions unique to cell types, defined as cellular “fingerprints”. GaiaAs-
sociation peak uniqueness results are highly specific and influenced by the number and 
class of cell types analyzed. Therefore the “peak uniqueness value” option is best uti-
lized in highly discretionary circumstances across limited cell types within a single cell-
type domain to avoid heavy imbalances created by the choice of input sets. This option 
was designed to increase the flexibility of GaiaAssociation to approach highly refined 
questions. Additional user-defined settings, such as GaiaAssociation window sizes and 
masks, are also available and described below.

Based on a given GaiaAssociation window size–defined by the user (with a 100  kb 
default size)–each chromosome is defined into GaiaAssociation windows of equal size. 
Due to the impossibility of dividing a number into ranges of precisely equal length, for 
example dividing a 305  kb chromosome into GaiaAssociation windows of 100  kb, a 
GaiaAssociation window size is determined using a mathematical ceiling process. In this 
process a chromosome is divided by the user provided GaiaAssociation window size, 
and the result of this division is rounded up to the nearest integer. In this example, 305 
divided by 100 provides a value of 3.05, which when rounded using this ceiling process 
provides a value of 4. The chromosome is then divided into four GaiaAssociation win-
dows, leaving a base window size of 76, which is calculated by rounding down 305/4. 
This process is done to provide a standardization for dealing with this remainder diffi-
culty. In this case, dividing 305 kb by 4 still provides a remainder of 1. This remainder is 
distributed into each window 1 by 1 until no remainder is left. The result of dividing our 
305 kb example is four windows of size 76, 76, 76, and 77 kb.

A user-defined mask allows for the subsetting of open chromatin data based on regions 
of interest. If, for example, a list of genes, enhancers, or promoters is provided, then only 
the OCRs that overlap these masked regions will be retained for analysis. For instance, 
provided a set of loci and genes related to a particular function/condition, GaiaAssocia-
tion can highlight cell types enriched for loci near these genes, and implicated in mediat-
ing the geneset’s function. The availability of these user-defined settings allows for the 
investigation of more precise questions via GaiaAssociation. The GaiaAssociation soft-
ware source code for the execution of these functions has been provided in Additional 
file 1.

Comparison of GaiaAssociation with GREGOR and SpecVar

GaiaAssociation and SpecVar / GREGOR comparisons were performed in accordance 
with the provided documentation provided for each software. The steps and choices 
made for our comparison are provided in Additional file 8.

Results
Examples of regulatory landscape enrichment analysis (RLEA) studies

We applied GaiaAssociation to identify the cell types through which variants may 
impact a trait or disease. We selected ATAC-seq data from 44 cell types, derived from 



Page 8 of 18Rosean et al. BMC Bioinformatics          (2024) 25:179 

the ATACdb database and from a published dataset of human brain samples [13]. 
The NHGRI-EBI GWAS catalog v1.0 was used to identify 412 studies containing a 
variety of traits that could potentially be mediated by one or more of the 44 selected 
cell types. All ATACdb datasets were converted to the current GRCh38.p13 genome 
build using the UCSC Genome Browser LiftOver function. Here we demonstrate how 
RLEA yields insights into the cell types potentially mediating the traits and diseases 
studied by GWAS.

RLEA was applied to 17 of the 412 studies that contained ≥ 200 loci reach-
ing genome-wide significance and could be mediated by the 44 selected cell types 
(Fig.  2a). A supplementary file has been provided to show these studies in greater 
detail [see Additional file 2]. Although non-exhaustive, our selection of cell types rep-
resents a diversity of functions ranging from neurologic, immunologic, metabolic, 
and hematological, highlighting how RLEA can be used in a hypothesis-free way if 
the researcher wants to examine a broad range of cell types. RLEA generated a heat-
map matrix summarizing the significant and nonsignificant cell type-variant associa-
tions in red and white, respectively. Associations in darker red represent those that 
achieved multiple testing significance (p: ≤ 0.0002), while those in pink represent 
those with a p value ≤ 0.05. Cell types on the y-axis self-clustered into three groups: 
hematopoietic, brain, and other, with the latter representing broader functions. 
Bolded cell types were significantly enriched for variants from GWAS studies listed 
on the x-axis. RLEA highlighted nine studies (bolded on the x-axis) that were associ-
ated with six cell type classes (labeled I -VI).

Fig. 2 Regulatory Landscape Enrichment Analysis visualizes the enrichment of genomic loci across cell-type 
regulatory regions. We show the results of enrichment of significant loci from 17 GWAS and the cis-regulatory 
regions of 44 cell types, selected for their potential to mediate the GWAS phenotypes. a RLEA p-values were 
visualized using a matrix heatmap, using darker red to indicate the cell types that survive correction for 
multiple comparisons. We highlight a few associations in particular, (I) the association of multiple sclerosis 
with the regulatory loci of a number of immune cell types, (II) erythroblasts with erythrocyte count, (III) 
Th-17 and CD4 + lymphocytes with chronic inflammatory diseases (ankylosing spondylitis, ulcerative 
colitis, Crohn’s disease, psoriasis, sclerosing cholangitis), (IV) pancreatic islets with type 2 diabetes mellitus, 
(V) primary visual cortex with schizophrenia, and (VI) oligodendrocytes with attention deficit hyperactivity 
disorder (ADHD), autism spectrum disorder (ASD) and intellectual impairment. b The p-values for the top 5 
cell type associations for each of the 6 highlighted examples from panel (a) are shown. The orange dashed 
lines at − log10 (P) = 1.30 represents a p-value cutoff of ≤ 0.05. These analyses illustrate some of the potential 
applications of RLEA
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The statistical association of these cell types and GWAS variants were analyzed as 
shown in Fig. 2b. Each panel summarizes the five cell types most significantly enriched 
for each GWAS study, with significance measured on the x-axis (−  log10 p value). The 
orange dashed line indicates the significance threshold (p: ≤ 0.05). Results from panel 
I show that the cell types of the adaptive immune system (Regulatory T cells,  CD4+, 
 CD8+, and Bulk/Memory B cells) were significantly enriched for variants from multiple 
sclerosis, while variants from chronic inflammatory diseases were enriched in cell types 
of the adaptive and innate immune system (monocytes and myeloid cells) (panel III). 
Variants from studies of erythrocyte count were significantly enriched in erythroblasts 
(panel II, p: 7.22 ×  10–12), while those from type 2 diabetes (T2D) mellitus were most 
enriched in pancreatic islets (panel IV, p: 2.51 ×  10–9). Individuals with schizophrenia 
possessed variants enriched across a plethora of neuronal tissues with primary visual 
cortex having the strongest enrichment (panel V, p: 0.02). Variants from the study of 
ADHD, ASD, and intellectual impairment were enriched in the regulatory regions of a 
heterogenous group composed of neuronal, immune, and human embryonic stem cells 
(hESCs), with oligodendrocytes possessing the most significant enrichment (panel VI, 
p: 0.0002). These findings demonstrate how RLEA links GWAS results with cell types 
potentially mediating the studied trait or disease. These associations are consistent with 
prior studies linking GWAS variants with putative immune cell regulatory loci in auto-
immune or inflammatory diseases [11, 12] or psychiatric disease and neurodivergent 
traits [25, 26]. Similarly, the enrichment of T2D variants further supports the genetic 
dysregulation of pancreatic islet cells as an underlying etiology in T2D [27], supporting 
the value of the RLEA approach.

To demonstrate the application of RLEA by GaiaAssociation beyond GWAS data, 
analysis was performed on 433 DNVs from individuals with epilepsy, of which 81 were 
non-coding. The epilepsy DNV data were acquired from the de novo mutation database 
[28] and analyzed to identify potentially mediating cell types or tissues. GaiaAssociation 
highlighted four brain regions and one neuronal cell type enriched for regulatory DNVs 
from individuals with epilepsy (Additional file  3 Fig. S1). Glutamatergic neurons (p: 
0.038) was the only cell type enriched across epilepsy studies, consistent with its role in 
synaptic excitatory transmission that underlies hyperactivity and epileptogenesis upon 
dysregulation [29].

Evaluation of GaiaAssociation performance

Simulations were conducted to assess the true (TPR) and false positive rate (FPR) of 
RLEA as a function of SNP count and GaiaAssociation window size (Fig. 3). In the null 
simulations, SNPs were randomly selected from the genotyped and imputed SNPs in 
the UKB database. The association of these SNPs with regions defined by ATAC-seq 
peaks in glutamatergic neurons was assessed at a variety of window sizes, along with 
the “naive” binomial test, which can be regarded as using a window size incorporating 
the whole genome. All simulations were calculated for varying GaiaAssociation window 
sizes ranging from 25,000 to 1,000,000 bp in length. Null simulations demonstrate that 
the RLEA FPR declines as a GaiaAssociation window is defined and as the number of 
SNPs increases (Fig. 3a). Of note, the FPR increases for the naive binomial test as the 
number of SNPs used to assess association with the ATAC-seq peaks is increased. This 
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suggests a weak colocalization of all SNPs with regions defined by ATAC-seq peaks, for 
which the naive binomial test fails to account. The FPR for RLEA decreases as the num-
ber of SNPs increases as the testing unit. Using a GaiaAssociation window–instead of 
the whole genome (naïve window)–accounts for the baseline colocalization of SNPs with 
ATAC-seq peaks explaining why the FPR does not increase as SNPs increase in simula-
tions with a defined window. FPR analyses for RLEA demonstrate that the presence of a 
GaiaAssociation window provides an increasingly rigorous analysis and that the speci-
ficity of RLEA increases in studies with more SNPs.

Power simulations also drew SNPs from the UKB dataset to test for their association 
with the same ATAC-seq peaks as above. Fixed numbers of SNPs were drawn from a 
list that overlapped with ATAC-seq peaks and a list that did not. Increased SNP num-
ber and GaiaAssociation window size were directly correlated with TPR (Fig. 3b). The 
proportions of overlapping to non-overlapping SNPs correspond to enrichment levels of 
30–50% over the expected value of the naive binomial distribution in the absence of any 
association (Additional file 4 Fig. S2). Unsurprisingly, the naive binomial has an advan-
tage over RLEA as it does not account for the unsimulated association between SNPs 
and ATAC-seq peaks. This advantage is most obvious when the enrichment and number 
of SNPs are low. At moderate to higher values for enrichment and SNP numbers, the 
power of RLEA and the naive binomial are equivalent, with RLEA having the advan-
tage of a lower FPR. The choice of window size, except for the genome-wide window 
in the naive binomial, will only lead to significantly different results if the proportion 
of the window occupied by ATAC-seq peaks differs significantly between them. These 
simulations indicate that selective GaiaAssociation window sizes in RLEA are associ-
ated with increasingly stringent testing and sensitivity. Importantly, these simulations 
demonstrate that FPR and loci number are inversely correlated and suggest a minimum 
threshold of ≥ 200 loci. Although simulations suggest this threshold, GaiaAssociation 

Fig. 3 RLEA performance as a function of GaiaAssociation window size and loci count across 100,000 
simulations. a False positive rate (FPR) declines as the number of SNPs increases and window size is defined. 
RLEA FPR was calculated for varying GaiaAssociation window sizes ranging from 25,000–1,000,000 base pairs 
in length. The naïve window size (black line) represents the entire genome in the absence of GaiaAssociation 
window selection. b Increased SNP number and GaiaAssociation window size are directly correlated with 
true positive rate (TPR) in RLEA (ignoring the naïve window). The TPR of the naïve window (black line) 
plateaus before all defined window sizes. Larger GaiaAssociation window sizes provided a higher TPR at 3,000 
SNPs since decreased window sizes are associated with an increasingly conservative enrichment. All SNPs 
in this simulation analysis were selected at random from the UKB database and tested for enrichment in 
glutamatergic ATAC-seq peaks
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can effectively analyze datasets with any loci count, as all null distributions are built rela-
tive to the density of OCRs and number of loci per GaiaAssociation window. The TPR 
and FPR simulations here should serve as a reference to determine the desired level of 
sensitivity and specificity.

Given that GWAS variants do not fully account for phenotype heritability, we exam-
ined how the selection for highly significant genome-wide loci influences cell type 
prioritization. Cell type prioritization by GaiaAssociation was compared between 
GWAS variants possessing a more stringent p-value of ≤ 5.0 ×  10–  8 and a less strin-
gent ≤ 1.0 ×  10–  5 (Additional file  5 Fig. S3). Variants were acquired from the EMBL-
EBI GWAS catalog and tested against the same 44 cell types analyzed in Fig. 2a. Studies 
highlighted in Fig. 2b (labeled Additional file 5 Fig. S3a-f ) and three additional studies 
from Fig. 2a–systemic lupus erythematosus (Additional file 5 Fig. S3g), leukocyte count 
(Additional file 5 Fig. S3h), and inflammatory bowel disease (Additional file 5 Fig. S3i)–
were used for this comparative analysis. Cell type prioritization between variants from 
both p-value groups demonstrated strong concordance and positive association  (R2 
ranges: 0.82–0.996). Multiple sclerosis (Additional file 5 Fig. S3a) exclusively received a 
lower correlation score  (R2: 0.82) due to the limited number of loci available for enrich-
ment testing after filtering for those with a p-value ≤ 5.0 ×  10–8. The remaining GWAS 
studies (Additional file 5 Fig. S3b–i) exhibited a substantial correlation  (R2: 0.92–0.996) 
between both variant groups evidencing that cell type prioritization by GaiaAssociation 
is negligibly influenced by SNP p value threshold. The linear diagonal trendline (dashed 
red line) indicates that the regression model provides an excellent fit, and that most cell 
types were ranked analogously between both variant groups. Notably, the most highly 
ranked cell type–receiving a score of 1 and labeled in each plot–was concordant between 
both p value groups across all nine GWAS studies.

Cell type enrichment comparison between GaiaAssociation and GREGOR

We compared the performance of GaiaAssociation with GREGOR on the six GWAS 
studies highlighted in Fig. 2b. To use GREGOR’s LD assembly function, GWAS variants 
and ATAC-seq datasets were converted from GRCh38 to GRCh37 coordinates using the 
UCSC LiftOver function. Across the six GWAS studies, GREGOR detected a greater 
level of non-specific global enrichment (Additional file 6 Fig. S4). GaiaAssociation pro-
vided a more rigorous analysis of loci from the ADHD, ASD, and Intellectual impair-
ment study, highlighting 6 significant cell types out of 44 (p ≤ 0.05) (Additional file 6 Fig. 
S4a). GREGOR provided significant enrichment scores for 43 out of the 44 cell types 
analyzed, emphasizing a major difference in the specificity of the results generated. In 
the schizophrenia GWAS, GaiaAssociation found significant enrichment for only 4 neu-
ronal cell types while GREGOR highlighted 44 (Additional file 6 Fig. S4b). In studies of 
erythrocyte count and multiple sclerosis, both computational toolkits highlighted many 
cell types. GaiaAssociation and GREGOR highlighted 34 and 44 cell types in the eryth-
rocyte count study, respectively, with erythroblasts having the strongest enrichment 
in both (Additional file 6 Fig. S4c). Concordantly,  CD4+ and  CD8+ cells were the most 
enriched immune cells for variants from MS across both programs (Additional file  6 
Fig. S4d). In the study of T2D mellitus, both toolkits similarly found the largest vari-
ant enrichment in cis-regulatory regions of pancreatic islet cells, an established cell-type 
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association. However, GREGOR also detected that all but one of the 44 cell types was 
significantly enriched for T2D variants. In the chronic-inflammatory disease GWAS set, 
GREGOR identified 32 significantly enriched cell types across the immune, neuronal, 
and “other” groups. GaiaAssociation only prioritized 15 cell types, 12 of which were 
from the immune system, concordant with our current understanding of inflammatory 
processes in chronic disease. The results from these six comparative analyses are pro-
vided in Additional file 7 Table S1.

While GREGOR could prioritize a likely mediating cell type consistently with GaiaAs-
sociation, its results were overall extremely non-specific. Additionally, GREGOR’s need 
to include LD analysis, while valuable for expanding loci to population-level linked 
alleles, contributes a significant computational and memory burden demanding substan-
tially longer computation times.

Cell type enrichment comparison between GaiaAssociation and SpecVar

Comparative analyses were conducted to validate and assess the cell type enrichment 
highlighted through RLEA by GaiaAssociation. GaiaAssociation was compared to the 
recently described enrichment tool SpecVar, which synthesizes chromatin accessibility 
and gene expression data into regulatory categories and conducts heritability enrich-
ment analysis with GWAS statistics to identify phenotypically relevant tissues and cell 
types [21]. A comparative analysis between GaiaAssociation and SpecVar was performed 
using four GWAS catalog phenotypes–rheumatoid arthritis (RA), multiple sclerosis 
(MS), systemic lupus erythematosus (SLE), and Alzheimer’s disease (AD)–for which 
RLEA indicates mediating cell types (Fig.  4). All studies provided (1) summary statis-
tics, (2) loci-specific effective sample sizes, (3) effect allele frequencies (EAF), and a (4) p 
value for each variant as required by SpecVar’s LDSC functionality [30]. Relevant context 
identification by SpecVar was performed on the full summary statistics for each dataset, 
while GaiaAssociation was executed on those SNPs that achieved a genome wide signifi-
cance of p ≤ 5.0 ×  10–8. The three most significantly enriched cell types (GaiaAssociation 
p value ≤ 0.001; SpecVar R-score ≥ 100 and FDR ≤ 0.01) across all phenotypes were used 
for comparison.

The results show that both GaiaAssociation and SpecVar have concordance in their 
cell/tissue type prioritizations, and each has what look to be implausible associa-
tions. B lymphocytes are predicted to be associated with rheumatoid arthritis by both 
approaches, with erythrocytes (GaiaAssociation) and putamen (SpecVar) likely to repre-
sent noise. Both techniques predict immune cells associated with multiple sclerosis and 
systemic lupus erythematosus, with brain tissues associated with Alzheimer’s disease by 
GaiaAssociation and blood cells by SpecVar. The approaches appear to be comparable 
in terms of generating reasonably plausible candidate cell types mediating the diseases 
studied by these GWAS studies.

There are some performance limitations to SpecVar that make it more difficult to 
implement. Unlike GaiaAssociation, SpecVar requires GWAS summary statistics, loci-
specific effective sample sizes, effect allele frequencies, and variant p-values. Conversely, 
GaiaAssociation does not require as many data descriptors, uses minimal loci for com-
parable detection of potentially mediating cell types, and provides a beginner-friendly 
software interface. SpecVar is preloaded with 77 cell types constructed from paired 
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expression and chromatin data taken from ENCODE and ROADMAP and is inflexible 
to the addition of further cell types not derived from these paired reference libraries, 
limiting the breadth of scientific inquiries that can be pursued. SpecVar has the advan-
tage that it can leverage the heritability of variants, providing a useful alternative to 
GaiaAssociation when the number of loci achieving genome-wide significance is limited. 
This comparative analysis demonstrates that GaiaAssociation’s consideration of local 
environment comparably identifies phenotypically relevant cell types while requiring 
fewer genomic inputs and reducing computational barriers.

Discussion
The integration of functional regions and regulatory loci using RLEA facilitates the 
translation of non-coding signals into biological and statistical insights that can be 
utilized in downstream research, such as drug target prioritization. Although approx-
imately 90% of drugs fail during clinal trials, those supported by GWAS evidence are 
twice as likely to be approved for clinical use [31]. This high attrition rate emphasizes the 
need for computational strategies that incorporate novel genomic associations to define 

Fig. 4 Comparative analysis of GaiaAssociation and SpecVar demonstrates comparable cell type 
prioritization. The three most enriched cell types achieving statistical significance across four GWAS 
phenotypes were highlighted for GaiaAssociation (in red) and SpecVar (in blue). a GaiaAssociation detected 
an enrichment of variants from individuals with rheumatoid arthritis in the regulatory regions of erythrocytes, 
myeloid cells, and  CD19+ B cells. SpecVar similarly highlighted primary B cells and suggested the putamen 
region of the brain. b Multiple sclerosis variants are predicted by both algorithms to be enriched in 
regulatory loci of immune cell types and tissues. c In individuals with systemic lupus erythematosus (SLE), 
hoth algorithms identified immune cells but also included what are likely to be spurious associations, with 
GaiaAssociation highlighting erythrocytes and SpecVar implicating cranial neural crest cells. d In Alzheimer’s 
disease (AD), GaiaAssociation highlighted two brain regions, the hippocampus and inferior temporal cortex, 
while SpecVar predicted primary monocytes and blood stem cells (granulocyte-colony stimulating factor 
(G-CSF) mobilized hematopoietic stem cells and hematopoietic multipotent progenitor cells). An RLEA 
p ≤ 0.001 and an R-score ≥ 100 (FDR ≤ 0.01) served as significant enrichment criteria for GaiaAssociation and 
SpecVar, respectively
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appropriate cell types in which the drugs should be active and therapeutic targets for the 
drugs [32]. Growing insight into functional non-coding regions that contribute to human 
disease will shape how molecular targets are prioritized. Recent studies have exempli-
fied the value of integrating genome-scale approaches to prioritize potential drug targets 
to understand the therapeutic landscape across human disease [33, 34]. The strength 
of RLEA stems from its unique consideration of the local chromatin environment sur-
rounding genomic loci, allowing investigators to analyze under-explored variants for 
enrichment across regulatory windows to inform decisions on cell-specific targets to 
pursue. RLEA can influence decisions regarding drug-target specificity by quantifying 
the degree to which a candidate variant affects one or many cell types simultaneously. 
Variants in regulatory regions shared by many cell types require careful consideration as 
their targeting may influence off-target cellular effects [35]. Maximizing the use of func-
tional genomic information, RLEA quantifies the significance of genomic-variant asso-
ciations to guide the selection of cell-specific drug targets, an invaluable contribution to 
drug prioritization and development.

The integration of non-coding variants and cell type data is a process that necessitates 
systematic and reproducible analytical approaches. The functional contributions of non-
coding variants, especially near enhancer elements [36], DNase hypersensitivity regions 
[37], and chromatin marks [38], should be contextually considered. Collective obser-
vations indicate that non-coding variant effects are highly dependent on the genomic 
context and temporospatial activity of cis-regulatory elements [39–41], requiring com-
putational toolkits that integrate context-specific chromatin data to identify regulatory 
variants that cause disease. Here we demonstrated how RLEA unbiasedly clustered 44 
cell types according to their degree of shared regulatory regions. Cells from the adap-
tive immune system clustered tightly at the top (Fig. 2a; blue cell types) indicating their 
shared chromatin landscape and biological function. Notably, cells of the innate immune 
system (monocytes, myeloid cell, and macrophages) clustered separately from those of 
the adaptive system, highlighting differences in chromatin regulatory profiles between 
branches of the immune system. Brain cell types clustered together in the middle (Fig. 2a; 
green cell types), with microglia /astrocytes clustered closely to macrophages, consist-
ent with microglia representing brain-resident macrophages [42]. Analysis of DNVs in 
individuals with epilepsy using GaiaAssociation highlighted brain structures and gluta-
matergic neurons, concordant with our current understanding of the pathogenesis of the 
condition. These examples highlight the clinical utility of RLEA and its ability to group 
cell types based on their chromatin accessibility reflecting cellular properties.

RLEA by GaiaAssociation presents two significant improvements over current com-
putational models to address these limitations in the analysis of non-coding variants. 
Firstly, it does not utilize existing loci or gene annotations to determine cell-type associ-
ations, and instead relies on the chromatin architecture that defines cell types. Previous 
methodologies that directly associate variants with local genes by linkage disequilibrium 
or proximity, without considering chromatin context, can be misleading, especially for 
rare non-coding variants, where low allele frequencies and reduced power challenge our 
interpretation of mediating cell types [43]. Secondly, GaiaAssociation utilizes a local 
architecture dependent binomial test, utilizing the sinib method, which does not naively 
assume a null hypothesis where loci can be randomly distributed anywhere within a 
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chromosome or genome. GaiaAssociation considers the local environment of each locus 
to make determinations on the probability of a loci landing in a cell-specific OCR within 
a given GaiaAssociation window. Through use of a definable GaiaAssociation window 
size, this method allows for fine grained considerations of local environments, which is 
paramount for studies including multiple cell types. Incorporating the regulatory land-
scapes of cell types is necessary for the study of non-coding variants and will be pivotal 
to realizing the clinical utility of whole genome sequencing data.

Conclusions
In recent years there has been considerable need for the development of computational 
tools to guide the study of non-coding DNA sequence variation and cell type prioriti-
zation. In this work, we introduce RLEA by GaiaAssociation, a publicly available, com-
prehensive toolkit for the analysis of variant enrichment across cell-specific chromatin 
architecture. GaiaAssociation is user-friendly and requires minimal computational 
experience, increasing accessibility to the scientific community. It will reduce compu-
tational costs associated with large genomic studies, broadening the potential appli-
cations for this open-source software. Its flexibility ensures its malleability to highly 
particular research questions, based on a clearly defined null hypothesis and statistical 
method which is currently unavailable in alternative analytical methods. GaiaAssocia-
tion remains under active development and will continue to advance as we learn more 
about variant-cell type considerations.
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Additional file 2: Description of Fig. 2 GWAS studies. This excel file (.xlsx) provides the EBI GWAS catalog title name, 
PMID, descriptive name (used in Fig. 2), sample sizes, and number of loci reaching genome-wide significance for all 
of the studies analyzed in Fig. 2.

Additional file 3: Supplementary Figure 1. GaiaAssociation reveals. De novo variant enrichment in regulatory 
regions of brain structures and glutamatergic neurons in individuals with epilepsy. De novo variants in individuals 
with epilepsy taken from the denovo-db database were analyzed using GaiaAssociation for cell type prioritization. 
The analysis consisted of 433 DNVs tested against 44 cell type regulatory profiles. GaiaAssociation highlighted four 
brain structures and one neuronal cell type. The orange dashed line at −log10 (P) = 1.30 represents a p-value cutoff 
of ≤ 0.05. These results highlight the applicability of GaiaAssociation to de novo variant data.

Additional file 4: Supplementary Figure 2. Analysis of the true positive rate (TPR) in GaiaAssociation across 
increasing SNP and enrichment levels. The TPR was tested using randomly genotyped and imputed SNPs from the 
UK Biobank database. These SNPs were overlapped against ATACseq data from glutamatergic neurons. Analyses were 
performed across seven GaiaAssociation window sizes. We studied a naïve GaiaAssociation window (entire genome) 
and GaiaAssociation windows ranging from to 25,000 – 1,000,000 bp. Each power analysis was conducted across 
enrichments of (a) 30%, (b) 35%, (c) 40%, (d) 45%, and (e) 50%. Enrichments are defined by the proportion of SNPs 
that overlap ATAC-seq regions (compared to those that do not); specifically the percentage over the expected value 
of the naive binomial distribution in the absence of any association. When the number of SNPs and enrichment are 
both low, the naive window size has an advantage as it does not account for the unsimulated association between 
SNPs and ATAC-seq peaks, explaining its higher FPR observed in Fig. 3a. At moderate to higher values of enrichment 
and SNP numbers, the power of RLEA and the naive binomial are equivalent, with RLEA having the advantage of 
a lower FPR. The TPR rate is achieved by all window sizes at lower SNP counts, and by all methods equivalently at 
higher enrichments

Additional file 5. Supplementary Figure 3: Cell type prioritization by GaiaAssociation analysis is unaffected 
by the GWAS SNP p‑value threshold. Cell type prioritization by GaiaAssociation was compared between GWAS 
variants from the EMBL-EBI GWAS catalog possessing a p-value ≤ 5.0 x  10−8 (x-axis) and ≤ 1.0 x  10−5 (y-axis) across 
44 cell type regulatory regions. Studies highlighted in Figure 2b (labelled a‑f) and three additional studies from 
Figure 2a – systemic lupus erythematosus (g), leukocyte count (h), and inflammatory bowel disease (i) – were used 
for comparative analysis. Cell type prioritization between variants from both p-value groups demonstrated strong 
concordance and positive association  (R2 ranges: 0.82 - 0.996) providing evidence that SNP selection by p-value 
threshold does not influence the selection of cell type. Cell types colored in red received an RLEA p-value ≤ 0.001 
and achieved multiple testing significance with variants from both p-value thresholds. Cell types colored in pink and 
green received a RLEA p-value of ≤ 0.05 and > 0.05, respectively. The linear diagonal trendline (dashed red line) indi-
cates that the 44 cell types were ranked analogously between both variant groups. Notably, the most highly ranked 
cell type (labelled in each plot) was concordant between both p-value groups across all nine GWAS studies.

Additional file 6: Supplementary Figure 4. Comparative enrichment analysis between RLEA by GaiaAssociation 
and GREGOR. GaiaAssociation performance was compared against GREGOR using ATAC-seq regions from 44 cell 
types and the GWAS studies highlighted in Fig. 2b. While there was a general concordance of enrichment for cell 
type rankings between the methods, GREGOR tended to show a non-specific enrichment in significance across most 
or all cell types, whereas GaiaAssociation was generally more selective, especially for the ADHD, ASD, and Intellectual 
impairment results in (a) and the schizophrenia results in (b).

Additional file 7: Supplementary Table 1. GaiaAssociation and GREGOR comparative analyses results.

Additional file 8: Supplementary Methods 1. Utilizing GREGOR and SpecVar for the purposes of comparisons with 
GaiaAssociation.
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