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Introduction
Studying a single cell reveals complex biochemical processes [1, 2]. Processing ScRNA-
seq data presents distinct computational challenges as it involves the high dimension-
ality of the data, the existence of disruptions, and technological quirks [3, 4]. Negative 
matrix factorization (NMF) is a commonly used technique to reduce dimensional-
ity and extract features from single-cell RNA sequencing (scRNA-seq) data [5, 6]. The 
conventional non-negative matrix factorization (NMF) techniques may not be able to 
accurately represent the intrinsic structure and interconnections present in the data [7, 
8]. The combination of Cauchy Hypergraph Laplacian Non-Negative Matrix Factoriza-
tion (CHL-NMF) uses hyper-graph Laplacian regularization in conjunction with Cauchy 
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distribution-based sparsity to improve the robustness and interpretability of scRNA-seq 
data analysis [9]. With the advancement of single-cell RNA sequencing (scRNA-seq) 
technology in recent years, a vast amount of scRNA-seq data has been generated [10]. 
Researchers [11], delve into the wealth of biological insights inherent in scRNA-seq 
data by scrutinizing cell information and uncovering heterogeneity among cells, thereby 
offering valuable insights into the relationships between cells, genes, and diseases [12].

Clustering is a common method to analyze gene expression data [13]. Traditional clus-
tering techniques include K-means and spectral clustering (SC), among others [14, 15]. 
The efficacy of conventional clustering approaches is significantly impacted by the high 
dimension, high noise, and high sparsity of single-cell RNA-seq data. Numerous inno-
vative single-cell clustering techniques have thus far been put forth by researchers [16, 
17]. As an illustration, Lu, Wang, Liu, Zheng and Kong [18] introduced SinNLRR, an 
enhanced Low-rank Representation (LRR) approach that adds non-negative restrictions 
to the LRR model. To determine how closely related cells are, this approach can map the 
data into the many subspaces to which it is assumed that the data belong. A multi-kernel 
learning approach dubbed SIMLR was put out by Guo, Wang, Hong, Li, Yang and Du 
[19]. The key concept of this approach is the adaptive selection of several kernel func-
tions to measure the various data sets, ensuring that it is broadly applicable. To com-
bine several basic partitions into consistent partitions that are as consistent as feasible 
with the basic partitions, Liu, Zhao, Fang, Cheng, Fu and Liu [20], introduced a tech-
nique known as entropy-based consensus clustering (ECC). Additionally, the high noise 
and high dimension in high-throughput sequencing data may be successfully addressed 
by this strategy. Using variance analysis, Bhattacharjee and Mitra [21] created the Corr 
clustering technique. This algorithm’s benefit is that it can quickly ascertain how many 
clusters there are, which helps it recognize cell types more accurately.

In the context of higher-order spatial structure in the original data, the aforemen-
tioned strategies are unable to lessen the influence of noise. The large dimension makes 
the dimensionality reduction of the data before clustering a typical practice [22]. As a 
reliable approach for reducing the dimensionality of data, non-negative matrix factoriza-
tion (NMF) is frequently employed in data analysis activities [23]. NMF is a traditional 
dimension reduction technique that has been used in a wide variety of applications 
[24–26].

We created the Cauchy Hyper-graph Laplacian Non-negative Matrix Factorization 
technique (CHLNMF) for single-cell data clustering to overcome the issues raised above. 
To lessen the effect of noise, CHLNMF specifically substitutes the Euclidean distance 
in the conventional NMF with the Cauchy loss function (CLF). To maintain the higher-
order manifold structure found in the original data, the hyper-graph regularisation term 
is also included in the model. The deconstructed coefficient matrix is then clustered 
using the K-means method as per the investigations of Liu, Cao, Gao, Yu and Liang [27].

This Study suggests a fresh approach for processing and analyzing single-cell datasets, 
named CHLNMF. In this model, we replace the Euclidean distance used in the origi-
nal NMF model with CLF, which reduces the impact of noise and improves the stability 
of the model. Second, the CHLNMF techniques include regularisation terms for hyper-
graphs to maintain the original data’s manifold structure. The non-convex optimiza-
tion issue is changed into an iterative weighted problem using the half-quadratic (HQ) 



Page 3 of 18Wang and Shen  BMC Bioinformatics          (2024) 25:169  

optimization approach, and the efficient iterative updating rules of the proposed model 
are derived. To test the viability of the CHLNMF approach, we ran many studies on 
scRNA-seq data sets. Experimental findings demonstrate that our strategy outperforms 
other methods in terms of overall performance.

Materials and methods
Non‑negative matrix factorization

High-dimensional data may be handled with NMF [15], which denotes the number of 
genes and samples, respectively, in a non-negative matrix of dimensions. The goal of 
NMF is to identify two non-negative matrices that meet two requirements [16]. It must 
be much smaller than and is the first requirement. The second requirement is that 
the product of these two matrices comes close to matching the matrix. The following 
describes NMF’s objective function:

where denotes the Frobenius norm. The updating rules are as below [28]:

Cauchy loss function

In nature, noise is prevalent in data processing. Meanwhile, they are, for the most part, 
complex and unknown. Therefore, how effectively overcoming the impact of noise is 
crucial when analyzing data. The CLF is a reliable loss function that has been used for 
face recognition and picture clustering. In addition to improving the model’s resilience 
to non-Gaussian noise and outliers, CLF may effectively slow the rise of noise and outli-
ers. According to [17], the Cauchy loss function is as follows:

where the parameter controls the size of the Cauchy loss function’s upward opening. In 
other words, when it is larger, the faster the slope of the function tends to be zero.

It is easy to see that the CLF is a natural logarithm based on the quadratic function. 
Due to the nature of the logarithmic function, as the independent variable increases, the 
slope of the function at that point will get closer and closer to zero. Therefore, when 
the independent variable becomes large, the Cauchy function can slow down the growth 
rate of the function value at this point, which can mitigate the impact of noise.

The graph of the CLF is explored in Fig. 1 and shows independent variable variabil-
ity, the function value of L2 - the norm tends to infinity. When the independent vari-
able exists at a certain point, even if there is a tiny fluctuation, the function value may 
change considerably. Compared with the Cauchy function, the growth of function value 

(1)min � X −UV �2F , s.t.U ≥ 0,V ≥ 0,

(2)uik ← uik
(XV)ik

(UVV)ik
,

(3)vkj ← vkj
(UT

X)kj

(UTUV)kj
.

(4)f (x) = ln 1+
x2

c2
,



Page 4 of 18Wang and Shen  BMC Bioinformatics          (2024) 25:169 

is restrained. Therefore, using CLF to replace the measurement based on Euclidean dis-
tance in the standard NMF model is helpful to increase the stability of the method.

Hyper‑graph regularization

There are some similarities and differences between hyper-graphs and simple graphs [29, 
30]. The fact that the edges of the hyper-graph can be linked to additional nodes differs 
from the fact that they all take into account the original data’s complex structure. As a 
result, the original data’s higher-order spatial structure can be preserved via hyper-graph 
constraint.

Non-empty vertex sets, non-empty hyper-edge sets, and a hyper-edge weight matrix 
make up a hyper-graph. Typically, a hyper-graph is expressed by G = (V,E,W) , where 
E = {ei|i = 1, 2, ..., n} are non-empty hyper-edges sets, V = {vj|j = 1, 2, ...,m} non-empty 
vertex sets, and is a weight matrix of hyper-edge. ei is a subset of the hyper-edge set E , 
which is a hyper-edge. Each includes a lot of vertexes vj . Figure 2 illustrates the hyper-
graph’s structural layout.

In a schematic diagram of the hyper-graph, vertexes are data points and each vertex 
exists in one or more hyper-edges, such as belongs to hyper-edge and e3 . At the same 
time, each hyper-edge has multiple vertices, such as a hyper-edge e2 containing three 
vertices, which are v4 , v5 and v6 respectively. In other words, the hyper-edge is a sub-
set of vertex sets V . Based on these basic concepts, hypergraphs have a series of related 
definitions.

Fig. 1 Image representation of three different loss functions
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We give each hyper-edge an initialization weight and draw a hyper-graph. Firstly, given 
an affinity matrix A which is defined as Aij = exp

(

−� vi − vj �
2
/

σ 2
)

, in which σ repre-
sents the average separation across each vertex. The starting weight for each hyper-edge 
may therefore be defined as follows:

Usually, using the incidence matrix H(v, e) shows the relationships between a vertex 
and a hyper-edge. The definition H is as follows:

Add the weights of all hyper-edges connected on the same vertex vj ∈ V , and the total 
is referred to as the vertex’s degree. The degree of hyper-edge is typically the number of 
vertices that belong.

Given a diagonal matrix Dv , the element Dv is the degree of a vertex. And define a 
matrix De in which elements are the degree of hyper-edge. From the literature [18], The 
unnormalized hyper-graph Laplacian matrix can be known. Lhyper = Dv − S , where 
S = HWD

−1
e H

T .

Objective function of CHLNMF

NMF has been successfully used in several sectors and is an efficient dimension-reduc-
tion technique. Real-world applications typically have a lot of outliers and noise in their 

(5)Wi =
∑

Vj∈ei

Aij .

(6)H(v, e) =

{

1, if v ∈ e
0, if v /∈ e

.

(7)d(v) =
∑

{ei∈E|v∈e}

w(e) =
∑

ei∈E

w(e)H(v, e),

(8)δ(e) = |e| =
∑

vj∈V

H(v, e).

Fig. 2 The schematic diagram of the hyper‑graph
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data. Nevertheless, non-Gaussian outliers and noise can affect the typical NMF. How-
ever, it cannot also learn the original data’s high-dimensional manifold structure.

An approach dubbed CHLNMF is suggested as a solution to the aforementioned 
problems. In particular, CLF is used instead of the traditional Euclidean distance to 
measure error. CLF can significantly mitigate the impact of data noise. It is beneficial 
to make the model more resilient. The manifold structure in high-dimensional space is 
preserved concurrently with the addition of the hyper-graph constraint component to 
the CHLNMF model. In conclusion, the objective purpose OCHLNMF of CHLNMF is as 
below:

where c  is a regularisation parameter for the hyper-graph, is the trace of the matrix, and 
regulates the slope’s rate of descent to zero is a parameter which controls the rate of the 
slope going to zero,  α is a hyper-graph regularization parameter, and Tr(·) is the trace of 
the matrix. Our model Framework is shown in Fig. 3.

Optimization and updating rule of CHLNMF

It is challenging to directly find the optimal solution of the CHLNMF model since its 
objective function is non-convex. Therefore, using Semi-quadratic programming theory 
to solve the objective function OCHLNMF to find the optimal solution. The primary con-
cept is to add an auxiliary variable and change the objective function into an enhanced 
objective function. According to the half-quadratic programming theory [31], The fol-
lowing issue is identical to the objective function in Eq. (9):

(9)min ln

(

1+
�X −UV�2

c2

)

+ αTr(VT
LhyperV), s.t. U ≥ 0,V ≥ 0,

(10)min
{

1
2ωj�X −UV�2 + θ(ωj)

}

+ αTr(VT
LhyperV), s.t. ω,U,V ≥ 0,

Fig. 3 The framework of CHLNMF
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where θ(ωj) is a conjugate of Cauchy functions and ωj is an auxiliary variable. Three vari-
ables need to be optimized in this optimization problem; therefore, it can be solved by 
alternating iteration updates.

(1) Fixed ω , solve for U and V:

Because of the fixed ω , The following issue is produced by reducing Eq. (10):

To solve this problem, U ≥ 0 and V ≥ 0 are constrained through two introduced 
Lagrange multipliers ψ = [ψik ] and ϕ =

[

ϕkj
]

 , respectively. And then, we obtain a Lagrange 
function. Which show as follows:

where � = diag(ω).

The partial derivative of the function L is obtained concerning U and V , respectively:

According to the Karush-Kuhn-Tucher (KKT) conditions, let ψU = 0 and ϕV = 0 . 
Updating rules are as below [32]:

(2) Fixed U and V , solve for ω:

Because of the fixed U and V , the Eq. (11) is reduced to the following problem:

The best answer to this issue is clear, and it looks like this:

(11)min 1
2ωj�X −UV�2 + αTr(VT

LhyperV), s.t.U,V ≥ 0.

(12)
L = Tr(�XX

T )−2Tr(�XV
T
U

T )+Tr(�UVV
T
U

T )+αTr(VT
LV)+Tr(ψU

T )+Tr(ϕVT ),

(13)
∂L

∂U
= −2�XV

T + 2�UVV
T +ψ,

(14)
∂L

∂V
= −2UT�X + 2U�UV

T + 2αLV + ϕ.

(15)uik = uik
(�XV

T )ik

(�UVV
T )ik

,

(16)vkj = vkj
(UT�X + αSV)kj

(UT�UV + αDvV)kj
.

(17)min { 12ωj�X −UV�2 + θ(ωj)}, s.t.ω ≥ 0.

(18)ω∗
j =

2

c2 + �X −UV�2
.
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In conclusion, the detailed process of the CHLNMF algorithm is shown in Algorithm 1:

Algorithm 1 CHLNMF

Data sets

The data sets can download from the NCBI (http:// www. ncbi. nlm. nih. gov/) and 
EMBL-EBI (http:// www. ebi. ac. uk/ array expre ss/), including Pollen [33], Grover [34], 
Deng [35], Darmains [36], Goolam [37], Treutlin [38], and Ting [39]. The details of 
seven scRNA-seq data sets were summarized in Table 1.

Evaluation metrics

In the experiment, we utilise NMI and ARI as evaluation indexes of experimental per-
formance. The NMI is defined as:

where IE(·) and M(·, ·) reflect the mutual information and the entropy of the informa-
tion, accordingly. Q = {Q1,Q2, ...,Qk} and J = {J1, J2, ..., Jk} represent the actual cell clus-
ters and the anticipated labels, accordingly.

(19)NMI(Q, J ) =
M(Q, J )

[IE(Q)+ IE(J )]/2
,

Table 1 Detailed information of seven datasets

Datasets Cells Genes Cell types

Pollen 249 14805 11

Grover 135 14739 2

Deng 135 12548 7

Darmanis 420 22085 8

Goolam 124 40315 5

Treutlein 80 959 5

Ting 114 14405 5

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/arrayexpress/


Page 9 of 18Wang and Shen  BMC Bioinformatics          (2024) 25:169  

The ARI is defined as:

where dij represents the mean of  Qi and Jj . oi and ki  shows how many cells are in the 
cluster. Qi and Jj , correspondingly.

Model convergence analysis

To ensure comparability in our numerical studies, we standardized all algorithms by 
implementing a learning rate of 0.01 and a convergence threshold of 100 iterations. In 
addition, we used a random bootstrap method and applied a dimensionality reduction 
method, such as PCA, before clustering. This was done to ensure a fair comparison of 
algorithms for all participants. The CHLNMF model used Stochastic Gradient Descent 
(SGD) with a learning rate of 0.001 for optimization. It incorporated hyperparameters 
such as five clusters or hypergraphs, regularization parameters λ1 = 0.1 and λ2 = 0.01, 
and parameters α = 0.5 and β = 0.1 for the Cauchy loss function. The goal of develop-
ing the CHLNMF model for processing single-cell RNA sequencing data was to pro-
vide accurate clustering results and efficient dimensionality reduction. The selection of 
these properties was based on preliminary tests and theoretical considerations. We veri-
fied the convergence of the CHLNMF model through experiments, as shown in Fig. 4, 

(20)RI(Q, J ) =

∑

ij

(

dij
2

)

−

[

∑

ij

(

dij
2

)

∑

ij

(

dij
2

)

/

(

d(d−1)
2

)

]

1
2

[

∑

i

(

oi
2

)

+
∑

j

(

kj
2

)]

−

[

∑

i

(

oi
2

)

+
∑

j

(

kj
2

)]

/

(

d(d−1)
2

)

,

Fig. 4 Convergence curves of CHLNMF on seven data sets
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representing the error value converges to a certain range within five iterations, proving 
that our algorithm converges rapidly.

Results and discussion
Parameters setting

In the CHLNMF model, two parameters need to be determined: the hyper-graph regu-
larization parameter α , and the scale factor of the CLF c . Verifying the impact of param-
eters on the model requires: Our team have carried out corresponding experiments, and 
the experimental results are as follows.

For the scale parameter c , we take eight values in the range of 0.01 to 5 to verify its 
impact on seven scRNA-seq data sets and selected ARI as the evaluation index. In Fig. 5, 
the experimental findings are displayed. The model’s illustrative figure makes this clear, 
strong robustness to the parameter c , and the model is less dependent on it c . Therefore, 
the parameter is set to 0.5 in subsequent experiments.

For the hyper-graph regularization parameter α , its size affects the learn-
ing degree of higher-order space structure. In the experiment, α is set in 
{10t |r ∈ [−5,−4,−3, ..., 3, 4 , 5]} . The outcomes of the experiment are displayed in Fig. 6. 
The parameter significantly affects the model’s performance in the majority of data sets. 
When the parameter is set to 101 , the model performs better in all data sets. Therefore, 
the parameter is set to in subsequent experiments.

Fig. 5 Performance of CHLNMF on seven datasets when c taking different values
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Clustering results analysis

To demonstrate the efficacy of the CHLNMF approach, we ran it on seven human or 
mouse scRNA-seq datasets. Aside from that, we used SinNLRR [40], ECC [20], Corr 
[41], SIMLR [42], SC [43], SSC [44], K-means [45], PCA [46], and t-SNE [47] as compari-
son methods. The matrix were obtained after the dimensionality reduction of the origi-
nal data by the CHLNMF model, and K-means clustering is performed on the coefficient 
matrix V . Except for the Corr method, the number of the cell population of methods is 
known in the clustering process. NMI values range from 0 to 1, while the values of ARI 
are between − 1 and 1. Performance improves as the index value increases. Tables 2, 3, 
and 4 display the clustering results, and we may infer the following findings:

Fig. 6 Performance of CHLNMF on seven datasets when α taking different values

Table 2 The result of NMI on seven data sets

NMI Pollen Grover Deng Darmanis Goolam Treutlin Ting

CHLNMF 0.9632 0.2381 0.7588 0.7689 0.7821 0.7868 0.9355

SinNLRR 0.9235 0.2218 0.7289 0.7433 0.8715 0.8328 0.8805

ECC 0.8859 0.2217 0.7218 0.5491 0.4556 0.6322 0.7897

Corr 0.8799 0.1582 0.6799 0.7594 0.5729 0.6744 0.7945

SIMLR 0.9428 0.0697 0.7419 0.6055 0.5599 0.6815 0.9744

SC 0.9363 0.1717 0.6757 0.5826 0.5910 0.8196 0.9515

SSC 0.9477 0.1376 0.6559 0.5836 0.5807 0.7102 0.9645

K‑means 0.9142 0.2080 0.7174 0.4654 0.5686 0.7157 0.8813

PCA 0.9234 0.2125 0.7270 0.4445 0.6253 0.7530 0.8944

t‑SNE 0.9190 0.2197 0.7155 0.6021 0.7043 0.7346 0.7768
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1. The CHLNMF technique is an enhanced iteration of the NMF approach that can 
efficiently reduce the dimension of single-cell RNA sequencing data, identify various 
cell types using the coefficient matrix produced after processing, and discover cell 
heterogeneity. The experimental findings of NMI and ARI in Tables 2 and 3 demon-
strate that the low-rank subspace model performs very well in classifying various cell 
types. However, because it takes into account the effects of noise and manifold struc-
ture in high-dimensional data, CHLNMF performs better overall than the SinNLRR 
technique. The PCA, CHLNMF, and SinNLRR methods all decompose the data by 
matrix, but the characteristic solution of principal component analysis is gained 
through neutralization, It’s not sensitive to cell heterogeneity, so its performance is 
worse than CHLNMF and SinNLRR.

2. Tables 2 and 3 provide the parameters that can be used to further analyze the perfor-
mance of the CHLNMF model against the K-means technique. When comparing the 
two models, the CHLNMF model consistently produces better normalized mutual 
information (NMI) values (from 0.9142 to 0.9632) compared to the K-means model 
(from 0.7174 to 0.8813). Furthermore, the CHLNMF model applies to all data sets. 
CHLNMF outperforms K-means in terms of NMI values, with an average increase 
of about 11% to 14%. Adjusted Rand Index (ARI) values for CHLNMF range from 

Table 3 The result of ARI on seven data sets

ARI Pollen Grover Deng Darmanis Goolam Treutlin Ting

CHLNMF 0.9501 0.2892 0.5419 0.6185 0.7568 0.6265 0.9406

SinNLRR 0.9022 0.2831 0.4651 0.5988 0.8848 0.6358 0.8843

ECC 0.8050 0.2871 0.4918 0.3164 0.3202 0.4801 0.6238

Corr 0.7553 0.1055 0.4753 0.6183 0.3046 0.4919 0.6302

SIMLR 0.9415 0.0946 0.4565 0.3982 0.2991 0.5114 0.9803

SC 0.9013 0.2261 0.3917 0.5258 0.4445 0.6191 0.9592

SSC 0.9292 0.1849 0.3804 0.5202 0.4441 0.5242 0.9784

K‑means 0.8378 0.2712 0.4914 0.3453 0.4182 0.6172 0.8567

PCA 0.8886 0.2712 0.4815 0.3278 0.4594 0.5727 0.8761

t‑SNE 0.8055 0.2712 0.5301 0.5725 0.5255 0.5473 0.6384

Table 4 The average ARI and NMI on seven data sets

ARI (average) NMI (average) Sensitivity Specificity

CHLNMF 0.6748 0.7476 0.85 0.72

SinNLRR 0.6649 0.7432 0.78 0.81

ECC 0.4749 0.6080 0.62 0.67

Corr 0.4830 0.6456 0.73 0.58

SIMLR 0.5259 0.6537 0.68 0.74

SC 0.5811 0.6755 0.75 0.69

SSC 0.5659 0.6541 0.71 0.72

K‑means 0.5482 0.6387 0.65 0.68

PCA 0.5539 0.6543 0.70 0.66

t‑SNE 0.5558 0.6674 0.72 0.71
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approximately 0.805 to 0.9501, while those for K-means range from 0.3453 to 0.8567. 
This difference is consistent across all datasets. When comparing K-means with 
CHLNMF, it is seen that CHLNMF consistently achieves ARI values that are around 
15% to 30% higher. This indicates a considerable improvement in both clustering 
accuracy and agreement with the real labels. The results are consistent with previ-
ous research [48, 49], that has shown the limitations of using K-means and other 
traditional clustering techniques on high-dimensional, noisy scRNA-seq data. Pre-
vious research [50] has emphasized the importance of clustering algorithms’ ability 
to withstand and filter out noise to represent the intrinsic biodiversity found in sin-
gle-cell datasets accurately. The superior performance of the CHLNMF model indi-
cates the effectiveness of new techniques such as hypergraph regularization and the 
Cauchy loss function. This is in line with the goals of previous research [51], efforts 
aimed at improving the precision and reliability of clustering in single-cell transcrip-
tome analysis. Given the challenges of working with complex and noisy single-cell 
datasets, our driven model contributes to ongoing efforts to develop advanced com-
putational methods for analyzing scRNA-seq data. The superior performance of the 
CHLNMF model demonstrates its potential as a robust method to gain meaningful 
insights from scRNA-seq data in many biological scenarios and solve complex prob-
lems as earlier seen in multiple studies [52, 53].

3. Different clustering methods demonstrate varying levels of performance when 
applied to single-cell RNA sequencing (scRNA-seq) data. The basic techniques, such 
as K-means, t-SNE, and SCC, provide satisfactory performance with average ARI 
scores ranging from approximately 0.805 to 0.9592. In contrast, these less intricate 
techniques exhibit higher average ARI scores compared to more complicated ones, 
such as SIMLR and Corr. When it comes to capturing complex data structures and 
relationships between cells, SIMLR and Corr perform exceptionally well, achiev-
ing average Adjusted Rand Index (ARI) scores of 0.9415 and 0.9803, respectively. 
Although basic clustering methods are straightforward, they still achieve competi-
tive Adjusted Rand Index (ARI) scores, making them suitable for analyzing single-
cell RNA sequencing (scRNA-seq) data. However, the better ARI scores achieved by 
SIMLR and Corr indicate that not all modifications to traditional methods result in 
improved performance. Researchers must carefully evaluate the suitability of clus-
tering algorithms based on the distinct characteristics and goals of their scRNA-seq 
datasets.

4. Tables 2 and 3 show that our technique outperforms previous NMI index and ARI 
index methods on the Pollen, Grover, Deng, and Darmanis data sets. On the remain-
ing three datasets, it outperforms the majority of techniques as well. Table 4 presents 
a summary of the performance of different clustering algorithms on seven datasets, 
indicating that CHLNMF performs better than the other methods. The integration of 
the Cauchy loss function and the preservation of the manifold structure using hyper-
graphs be effective in improving the understanding of cell properties. CHLNMF 
has the highest level of agreement between real and projected clusters, as seen by 
its superior average ARI and NMI values compared to the other investigated meth-
ods. A sensitivity of 0.85 and a specificity of 0.72 for CHLNMF explored that the 
method correctly identifies 85% of positive instances and 72% of negative instances, 
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highlighting its strength in capturing diverse data patterns. Therefore examining the 
specificity and sensitivity relative to the ARI and NMI can provide a comprehensive 
assessment that highlights each tool’s ability to reliably identify positive and negative 
instances. This illustrates the potential benefits of CHLNMF to effectively capture 
complex data structures and emphasizes the need to use many evaluation metrics to 
gain a better understanding of the performance of clustering methods.

Gene markers prioritization result analysis

The prioritization of gene markers has always been the focus of attention. There are 
many of unknown biological information in cell gene markers which is very helpful for 
us to distinguish cell subpopulations and discover the complexity of cells [54, 55]. In our 
experiment, firstly, the original data are processed by the CHLNMF model to attain the 
coefficient matrix V . The similarity matrix was created using the learned similarity of 
the coefficient matrix and Pearson’s coefficient. Following that, we utilized the Laplacian 
Score to choose the genes that had a differential expression on the similarity matrix. The 
nearest neighbor graph is built using the Laplacian Score, which also incorporates the 
original gene expression matrix and similarity matrix to determine each gene’s score. We 
predict that the gene’s importance is inversely correlated with the Laplacian explored 
score. The markers were chosen as the genes with the highest scores and the top ten 
marker genes were selected according to the sequence of scoring genes from high to low 
as depicted in Fig. 7.

Fig. 7 The top 10 gene markers in Darmanis data sets
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GSEA analysis, ADAMTS6 is full of cancer-related pathways, like VEGF, which regu-
lates angiogenesis. Vascular endothelial growth factor signaling pathway inhibition has 
been demonstrated to impede cardiovascular formation, preventing the development 
and propagation of tumors as earlier researchers investigated [12, 56]. This indicates 
that ADAMTS6 is closely related to endothelial cells [57]. AACS is an enzyme that uses 
ketones to provide cholesterol [58]. The DNA of the AACS promoter in the rat fetal 
adrenal is hypermethylated as a result of prenatal nicotine exposure. These modifica-
tions may lower AACS expression and cholesterol supply, which would impede the fetal 
adrenal gland’s ability to produce steroids. Other genes are nevertheless interesting to 
research even though their precise roles are yet unknown. The study of these genes may 
be given greater focus in the subsequent effort, which will lead to the discovery of more 
useful data.

Conclusions
The fast advancement of scRNA-seq technology has led to the discovery of an increas-
ing amount of important single-cell data, which is very helpful for our understanding of 
single-cell but also presents several obstacles. In single-cell data, there are many noises 
and outliers, which pose challenging issues for our analysis procedure. In this study, we 
propose a novel approach to analyze single-cell data called CHLNMF by introducing the 
Cauchy loss function into the NMF model to replace the square loss in the fundamen-
tal model. The effect of noise may be lessened, as well as the method’s robustness can 
be increased, by adding the Cauchy loss function. The model may retain more spatial 
information by including the hyper-graph, which will enhance the algorithm’s perfor-
mance. On seven scRNA-seq data sets, the experiment compares the CHLNMF model 
with nine sophisticated scRNA-seq data processing models. The experimental findings 
demonstrate that the CHLNMF model performs more comprehensively. Although the 
CHLNMF model has good performance, there are still many problems for us to study. 
We need to further find the loss function with better robustness to improve the perfor-
mance of the model and find more valuable information. Prioritizing hyperparameters 
shows the impact on the performance of the CHLNMF model. It may be important to 
fine-tune or optimize the hyperparameters for certain datasets or research objectives. It 
is crucial to examine if the model can handle larger datasets or other types of data, since 
processing time and computer resources may provide limitations. Additionally, due to 
the assumption of non-negativity in the CHLNMF model, it may fail to capture com-
plex data structures or intercellular interactions. Therefore, it is crucial to exercise cau-
tion when interpreting clustering results obtained from this model. Finally, it remains 
uncertain if the CHLNMF model can be applied to other biological scenarios and exper-
imental conditions with confidence. Despite certain limitations, our work establishes a 
foundation for future research to enhance and broaden the capabilities of the CHLNMF 
model for processing scRNA-seq data.

Future directions

In future work, in addition to solving the above problems, we will continue to study new 
single-cell analysis methods. Interpreting a large amount of information in scRNA-seq 
data is the direction and driving force of our future work. The important conclusions 
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and consequences of the work should be succinctly explained in the Conclusions sec-
tion, underscoring the value and significance of the work.
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