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Abstract 

Background:  In recent years, gene clustering analysis has become a widely used 
tool for studying gene functions, efficiently categorizing genes with similar expression 
patterns to aid in identifying gene functions. Caenorhabditis elegans is commonly used 
in embryonic research due to its consistent cell lineage from fertilized egg to adult-
hood. Biologists use 4D confocal imaging to observe gene expression dynamics 
at the single-cell level. However, on one hand, the observed tree-shaped time-series 
datasets have characteristics such as non-pairwise data points between different 
individuals. On the other hand, the influence of cell type heterogeneity should also be 
considered during clustering, aiming to obtain more biologically significant clustering 
results.

Results:  A biclustering model is proposed for tree-shaped single-cell gene expression 
data of Caenorhabditis elegans. Detailedly, a tree-shaped piecewise polynomial function 
is first employed to fit non-pairwise gene expression time series data. Then, four factors 
are considered in the objective function, including Pearson correlation coefficients 
capturing gene correlations, p-values from the Kolmogorov-Smirnov test measuring 
the similarity between cells, as well as gene expression size and bicluster overlapping 
size. After that, Genetic Algorithm is utilized to optimize the function.

Conclusion:  The results on the small-scale dataset analysis validate the feasibility 
and effectiveness of our model and are superior to existing classical biclustering mod-
els. Besides, gene enrichment analysis is employed to assess the results on the com-
plete real dataset analysis, confirming that the discovered biclustering results hold 
significant biological relevance.

Keywords:  Single-cell gene expression, Tree-shaped dataset, Biclustering, Genetic 
algorithm

Introduction
The process of how a single-cell fertilized egg develops into adulthood is a fundamental 
yet unsolved problem in biology, where gene-selective expression plays a crucial role [1]. 
Due to the transparency and consistent cell lineage, Caenorhabditis elegans (C.elegans) 
has remained a vital model organism in molecular biology and developmental biology 
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[2]. Especially, with the emergence of time-lapse confocal laser microscopy technology 
developed by [3, 4], researchers can conduct further analysis to quantitatively examine 
the expression patterns of various genes and their relationships with cell fates [5–7]. The 
real dataset produced by such technology traces the time-series fluorescence intensity of 
labeled genes within each cell. Starting from the organism’s developmental origin, each 
cell divides into two new cells, thus forming a binary structure. By tracking its devel-
opmental process, such binary tree-shaped time-series data is generated. Each data file 
records the expression of one labeled gene on one C.elegans individual and can be con-
sidered as tree-shaped single-cell gene expression data. Figure 1 displays examples of cell 
lineage subtrees from two data files. Each horizontal line represents a cell division event, 
and the length of each vertical line corresponds to the lifetime of a single cell. Compared 
to scRNAseq data, tree-shaped data clearly displays the cell lineage relationship, elimi-
nating the need for inferring pseudotime. Therefore, tree-shaped data enables research-
ers to more easily track and understand the dynamic changes in gene expression during 
the development and differentiation processes of organisms. Although such dataset pro-
vides dynamic gene expression information within single cells, the gene expression pat-
terns at cellular level have not been well understood. Interested readers can refer to [8] 
for a probabilistic conception regarding tree-shaped datasets.

Gene clustering analysis is a method used to explore genes functions, aiming to group 
genes based on their expression patterns under different experimental conditions. The 
goal of traditional clustering algorithms is to identify non-overlapping sets of genes that 
exhibit similar expression patterns across all experimental conditions, typically par-
titioning the data solely based on a single dimension [9–12]. In contrast to traditional 
clustering, biclustering can capture similar gene expression patterns in specific subsets 
of conditions (such as specific cells), revealing critical genetic pathways [13, 14]. Cheng 
and Church [15] first applied biclustering to gene expression data, leading to the emer-
gence of more effective biclustering algorithms [16–22]. These algorithms have played 
an important role in understanding various aspects of gene regulation, evolution, devel-
opment, and disease mechanisms.
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Fig. 1  An example of real data. The figure illustrates cell lineage subtrees from two genes, pha-4 and ref-1, 
where each horizontal line represents a cell division event, and each vertical line represents a cell. The cell 
names are annotated on the right side of each line. The length of the vertical line is proportional to the cell’s 
lifetime, and the color of the lines corresponds to the fluorescence intensity of the labeled genes
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Despite the great promise of biclustering methods, effectively capturing analogous 
gene expression patterns within distinct conditions on tree-shaped single cell gene 
expression data involves two key challenges. First, while C.elegans shares consistent cell 
lineages, the lifetimes of the same cell in different embryos are usually different. Thus, 
since the measurement intervals are all 1.5 min in each experiment, non-pairwise time-
series data points are recorded for different target genes. Taking Fig. 1 as an example, 
the two subtrees both start from the ‘Ep’ cell at time zero, but the data points within two 
subtrees are non-pairwise. Therefore, it is hard to computing correlations between genes 
based on the raw data. Second, with the availability of cellular and temporal informa-
tion, it is crucial to consider the parent–child relationships during cell division within 
each subtree and the correlation between temporally adjacent data points within each 
cell. However, conventional biclustering algorithms primarily cater to gene-cell (or gene-
tissue) count data and lack the ability to tackle time-series data.

These challenges are overcome by proposing a Tree-Shaped single-cell gene expression 
data Biclustering model for C.elegans. The model initially utilizes piecewise polynomial 
functions to fit the tree-shaped gene expression data. Subsequently, by considering the 
entire gene expression data, an objective function for the biclustering model is intro-
duced and solved using Genetic Algorithm (GA). Finally, experiments using both small-
scale and complete real datasets are completed.

Materials and methods
A Tree-Shaped single-cell gene expression data Biclustering model for C.elegans is pro-
posed (TSBic). The overview of TSBic is shown in Fig. 2, and the TSBic method consists 
of the following three-step approach:
• Step 1: Preprocessing data for subsequent analysis.
• Step 2: Establishing the objective function and setting hyper-parameters of the 

biclustering model.
• Step 3: Applying GA to search for biclusters until the stopping criterion is satisfied.
All experiments in this study are conducted on a server equipped with 4 CPUs (Intel 

(R) Xeon (R) Platinum 8270 with 2 threads * 26 cores, @ 2.70GHz), 6.5TB of non-system 

Fig. 2  TSBic overview. Here, ts(m, n) represents gene expression data, F(m, n) represents piecewise 
polynomial functions, F ′(m, n) representing gene expression rate functions, and �ts(m, n) represents gene 
expression rate data
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disk storage, and 1TB of RAM. The code uses R 4.1.3 as the primary programming 
language.

Data preprocessing

The real dataset used in this experiment can be found at http://​epic.​gs.​washi​ngton.​edu/ 
[5]. Due to limited observation time, missing values are calculated for each cell and each 
gene. Genes and cells with missing value proportions exceeding 60% are subsequently 
removed.

After then, let XM×N denote the gene expression data matrix, where rows corre-
spond to genes, and columns represent cells. Each entry of the matrix are time series 
data ts(m, n) , indicating the expression data of the m-th gene within the n-th cell, and 
remaining missing data in X are not involved in the subsequent calculation. Besides, 
based on the gene expression onset detection by [6], a binary matrix YM×N indicating 
the gene expression 0-1 matrix is constructed, where ymn = 1 signifies that gene m was 
expressed in cell n, while ymn = 0 indicates that gene m was not expressed in cell n.

Furthermore, due to the varying lifetimes of individual cells, the time-series data are 
not pairwise, rendering the calculation of Pearson correlation coefficients infeasible. 
To address this challenge, a piecewise polynomial function F(m, n) called gene expres-
sion function is applied to fit tree-shaped gene expression data ts(m, n) . In detail, for five 
main cell lineage trees, denoted by ‘AB’, ‘C’, ‘D’, ‘E’, and ‘MS’, constrained linear regression 
is employed to fit gene expression data for each subtree. Specifically, for each cell, if the 
number of data points is less than 10, a 3-degree polynomial function is used to fit the 
data. For cells with at least 10 time points, the degree of the polynomial is increased 
by one for every n additional point, where n is chosen according to the Bayesian Infor-
mation Criterion [23].During the process, constraints are imposed to ensure that the 
polynomial function is differentiable at each cell division point. The histogram of the 
coefficient of determination R2 for a total of 870 fitted subtrees is shown in Fig. 3a, and 
an example of the fitting results for the ‘D’ lineage of gene cnd-1 is shown in Fig. 3b.
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Fig. 3  Fitting result. a Histogram of coefficient of determination R2 . The mean value of R2 is 0.64, the standard 
deviation is 0.32. The 25% percentile is 0.3, the 50% percentile is 0.75, the 75% percentile is 0.95, and the 100% 
percentile is 0.98. b Time series plot of gene cnd-1 in ‘D’ subtree and fitted curves. The X-axis represents time, 
the Y-axis represents gene expression. Points indicate the gene expression data, and lines represent the fitted 
curves, with colors indicating different cells
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Afterward, since fluorescent proteins are resistant to degradation in biological organ-
isms, most gene expression data in cells does not decrease [6]. Hence cointegration 
effects might lead to excessively high Pearson correlation coefficients, making it chal-
lenging to identify the true clusters. Therefore, after the model is well-fitted,the gene 
expression rate function F ′(m, n) can be obtained by taking the derivative of F(m, n) with 
respect to time. These functions can be converted to the same interval through trans-
lation and scaling, enabling the calculation of Pearson correlation coefficients. Addi-
tionally, a first-order difference is applied to ts(m, n) to obtain gene expression rate data 
�ts(m, n) . The steps of data preprocessing are detailed in Supplementary A.

Biclustering model

In this paper, Bk = {Gk ,Ck} represents the k-th biclustering submatrix of X , with 
dimension mk × nk and k = 1, · · · ,K  . Gk = {g1k , · · · , g

mk

k } denotes the set of gene indices 
for the k-th biclustering, and Ck = {c1k , · · · , c

nk
k } represents the set of cell indices for the 

k-th biclustering. Corr(·, ·) denotes the Pearson correlation coefficient function, KS(·, ·) 
represents the p-value of the Kolmogorov-Smirnov (KS) test [24], ES(Bk) represents the 
gene expression size in the biclustering Bk . For the k-th ( k ≥ 1 ) biclustering, the objec-
tive function is defined as f (Bk) , which can be expressed as follows:

where m and m′ ∈ {1, · · · ,mk} , n and n′ ∈ {1, · · · , nk} . α , � , β , and δ are tuning param-
eters, and to prevent identifiability issues, β was set to 1. In the last term, G0 = C0 = ∅ . 
The goal is to use GA to sequentially detect biclusters that maximize argmax f (Bk).

It is essential to note that Formula (1) imposes the requirement that the biclustering 
must have at least 2 rows and 2 columns to be meaningful. Formula (1) comprises four 
indices representing four key components: gene correlation, cell similarity, gene expres-
sion size, and overlap penalty term. Below, a detailed explanation of the motivations and 
meanings of the four indices will be provided.

Gene correlation

The Pearson correlation coefficients between genes are computed across all cells. Due 
to the presence of multiple copies of the same gene across multiple measurements, 
relatively high correlation is typically observed among these different gene copies. 

(1)
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Additionally, higher correlation is observed among some genes with similar or related 
functions [25], and it is expected that these genes will be grouped into the same cluster. 
Therefore, the consideration of the correlation between genes is incorporated into For-
mula (1). Here, the correlation between genes is measured by the Pearson correlation 
coefficient, which quantifies the linear association between genes. The definition of gene 
correlation is as follows. First, calculate the correlation coefficient between the expres-
sion rate functions of two genes within a single cell. Second, take the average of the 
correlation coefficients for these two genes across all cells within the bicluster. Finally, 
calculate the correlation coefficients among all gene pairs within the bicluster using the 
aforementioned steps and take the average. Details can be found in Supplementary B.

Cell similarity

After differentiating ts(m, n) to obtain �ts(m, n) , it is observed that the distribution of 
�ts(m, n) for cells within the same lineage is similar. Hence, the KS test is employed to 
assess differences in data distribution and examine the similarity in gene expression rata 
data. In KS test, the null hypothesis assumes that two samples are drawn from the same 
distribution. The p-value obtained from KS test serves as a metric to measure cell simi-
larity, with higher p-values indicating that cells are more similar in terms of data distri-
bution. The corresponding heatmap of KS test p-values between 145 known cell fates 
can be found in Figure S3 of Supplementary C, and the definition of cell similarity is 
as follows. First, conduct a KS test on the rate data of two cells within a single gene to 
obtain a p-value. Second, take the minimum p-value obtained for these two cells across 
all genes within the bicluster. Finally, use the aforementioned steps to calculate p-values 
for all pairs of cells within the bicluster and take the average.

Gene expression size

Based on the matrix Y  obtained in preprocessing, the gene expression 0-1 matrix Yk for 
genes and cells in the corresponding bicluster Bk is obtained. The gene expression size is 
defined as the number of entries 1 in Yk =

∑

g , c ∈ Bk
ygc . In the process of searching 

for biclusters, on one hand, it is essential to incorporate as many relevant key genes and 
cells as possible. On the other hand, there is a requirement to expedite convergence to 
some extent. Therefore, the gene expression size within biclusters is introduced as a key 
factor in the objective function.

Overlap penalty term

Considering that certain genes or cells may play different roles in distinct biological pro-
cesses, allowing a certain degree of overlap between biclusters may be more biologically 
plausible. However, to prevent the discovery of highly repetitive biclusters, an overlap 
penalty term is introduced into Formula (1). This term penalizes the intersection of 
genes and cells between the current bicluster Bk and the preceding Bk−1 biclusters, with 
the aim of restricting overlap between biclusters. When searching for the first bicluster, 
the value of the overlap penalty term is set to 0.
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Algorithm 1  Biclustering search algorithm

Algorithm 2  Initialization algorithm
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Algorithm 3  Crossover algorithm

Algorithm 4  Mutation algorithm

Genetic algorithm

GA is primarily employed to sequentially detect biclusters that maximize the objective 
function. The core of this GA is the biclustering search algorithm, and the specific pro-
cess is outlined in Algorithm 1.

The biclusters are first initialized as detailed in Algorithm  2. The underlying idea is 
to random generate an initial set of biclusters with relatively large gene expression size. 
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Our approach involves first sampling gene indices and then cell indices. This sequencing 
of sampling helps eliminate cells that lacked gene expression, thereby resulting in initial 
biclusters with larger gene expression sizes. This approach contributes to expediting the 
convergence speed of Algorithm 1 to some extent.

In each iteration, crossover is performed as described in Algorithm 3. The idea is to 
randomly pair biclusters and select a certain number of genes or cells to exchange within 
each pair. Then, mutations are applied to them, as outlined in Algorithm 4. The funda-
mental idea is to randomly add or remove genes or cells within the bicluster. At the end 
of Algorithm 3 and Algorithm 4, it is checked whether the gene expression proportions 
of each row and column are less than a certain threshold (set to 0.6). If the gene expres-
sion proportion is below the threshold in any row or column, the rows or columns with 
the smallest gene expression proportions are iteratively removed until no row or column 
within the bicluster has a gene expression proportion below the threshold. This opera-
tion helps improve the quality of the bicluster population, which accelerates the conver-
gence of the objective function towards the maximum value.

The number of biclusters, denoted as K, is determined using the following method, 
serving as the stopping criterion mentioned in Algorithm  1: Calculate the 99% quan-
tile Qk of the 100 submatrices randomly generated by Algorithm 2 in searching for k-
th bicluster, and the objective function value f (Bk) for the candidate bicluster Bk . If 
f (Bk) ≤ Qk , then stop searching. The hyperparameter settings for all algorithm are 
shown in Table 1.

Results
Clustering analysis

First, cells are clustered using traditional clustering. Specifically, hierarchical clustering 
[26] is employed based on the preprocessed gene expression 0-1 matrix Y  . The num-
ber of clusters is determined with the assistance of the Adjusted Rand Index [27]. The 
results of cell clustering are detailed in Supplementary D. The distribution of cell names 
displayed in the results indicates a certain level of consistency within the same cluster, 
while cell names in different clusters exhibit noticeable differences. Moreover, from a 
cellular fate perspective, most cells within the majority of clusters exhibit relatively pure 
cell fates.

Table 1  Hyperparameters in biclustering model search algorithm

Algorithm Hyperparameter Dataset

1 max_i 1000

α 0.55

� 0.25

β 1

δ 0.065

2 num 100

nr 10

nc 15
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Therefore, it is believed that the results of cell clustering are meaningful, as gene 
expression patterns vary among different cell clusters, and these variations might be 
overlooked by directly clustering genes. To validate this idea, a comparison of two gene 
clustering approaches is conducted. The first one involves gene clustering using all cells 
as features, while the second one involves separate gene clustering within each cell clus-
ter obtained above. The clustering results are provided in Supplementary D, and large 
differences are observed between these two clustering results. Therefore, during the 
gene clustering process, it is necessary to consider the impact of heterogeneity among 
cells. This consideration is also the inspiration behind the adoption of biclustering algo-
rithms in this study.

Toy example analysis

Before this, ablation experiments are conducted on the objective function using toy 
examples, focusing on three components: gene correlation, cell similarity, and gene 
expression size. These experiments fail to produce satisfactory biclustering results and 
all ablation experiment results are included in the Supplementary F. Upon removing 
gene correlation, it is found that different copies of the same gene are barely clustered 
together within the same biclusters, and there is almost no evident regulatory relation-
ship between different genes. Removing cell similarity results in a diverse range of cell 
fates within the same biclusters. Removing gene expression size results in a significant 
decrease in the number of genes and cells within biclusters, and most genes and cells 
lack apparent correlations.

The feasibility and effectiveness of TSBic are validated using a small-scale dataset. 
Genes with three or more copies are selected out, including 51 copies from 13 different 
genes, and 145 cells with known cell fates, covering a total of 10 cell fates. The results 
are evaluated according to the criterion that different copies of the same gene should be 
clustered to the same bicluster, and cells within the same lineage or share the same cell 
fate should be clustered to the same bicluster.

Algorithm  1 is applied to the small-scale dataset, with a total runtime of 45  h. The 
memory usage during execution on the server is 1.2GB. As a result, a total of nine biclus-
ters are obtained. Gene correlation heatmaps, cell similarity heatmaps, and cell fate scale 
maps are demonstrated for each bicluster. Only the first biclustering result is showcased 
in Fig. 4, while the remaining biclustering results can be found in Supplementary F.

From Fig. 4, the first identified bicluster comprises 16 copies and 16 cells, where all 
the copies of gene pha-4 and tbx-11 are included. For gene B0310.2, except for one copy 
that isn’t detected due to relatively low expression size, all other copies are present in the 
bicluster.

In this bicluster, based on gene information retrieved from WormBase [25], it is found 
that gene pha-4 and nhr-57 are both expressed in the intestine, and an indirect regu-
latory relationship exists between gene pha-4 and tbx-11. Specifically, according to the 
biomedical interaction repository BioGRID [28], gene pha-4 is regulated by pop-1, and 
gene pop-1 is regulated by tbx-11. Furthermore, all 16 cells within the first bicluster 
belong to the ‘intestine’ fate. Actually, the majority of discovered biclusters reveal that 
different copies of the same gene, as well as cells with the same cell lineage or cell fate, 
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belong to the same bicluster. In summary, the experimental results on the small-scale 
dataset validate the feasibility and effectiveness of the proposed biclustering model.

In addition, more experiments are completed. On one hand, three classical biclus-
tering models are utilized, including the CC model [15], the plaid model [17], and the 
xMOTIFs model [29]. On the other hand, a comparison is conducted with two recently 
developed biclustering models: the QUBIC2 model [21] and the ARBic model [22]. In the 
context of these biclustering models, multiple experiments are conducted with different 
parameter settings and random seeds. However, the CC model and xMOTIFs model do 
not identify any biclusters, while three biclusters are detected by the plaid model, four 
biclusters are detected by the QUBIC2 model, and five biclusters are detected by the 
ARBic model. In these biclusters, the expression of genes is minimal or virtually absent 
in certain cells. Additionally, many cells from the same lineage are omitted, and there is a 
mixture of cells from different lineages, including cells with different cell fates. The spe-
cific details of these biclusters can be found in the Supplementary G.

Fig. 4  The first biclustering result of toy example analysis. a Heatmap of Pearson correlation coefficient 
matrix between genes. b Heatmap of KS test p-values matrix between cells. c Cell fate proportion diagram. 
Colors represent cell fates, sector area represents proportions, and the legend indicates cell fate names. The 
number before “/” represents the number of cells with the specified fate within that cluster, and the number 
after “/” represents the total number of cells with that fate. The value in parentheses indicates the p-value of 
cell fate enrichment analysis for that fate
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Additionally, the computational time and memory usage of these algorithms are being 
considered. In terms of computational time, the TSBic method has an average running 
time of 45 h on this dataset, outperforming the CC (60 h), ARBic (65 h), and xMOTIFs 
models (72 h) but being lower than the Plaid model (42 h) and the QUBIC2 model (38 h) 
in terms of efficiency. In terms of memory usage, the TSBic method occupies 1.2GB 
of memory, less than that of QUBIC2 (1.4GB), ARBic (1.4GB), and xMOTIFs models 
(1.5GB), but more than the Plaid model (0.5GB) and the CC model (0.7GB).

Complete real data analysis

The complete dataset consists of 174 copies (including 104 different genes) and 724 cells 
(including 145 cells with known cell fates). For the complete dataset, some minor modi-
fications are made to the original biclustering algorithm. In detail, all copies correspond-
ing to the same gene are added to or removed from the bicluster as a whole. To this 
end, for gene correlation, the correlation coefficient of two genes within the bicluster is 
defined as the average of correlation coefficients between pairwise copies. For cell simi-
larity, the similarity between two cells is defined as the minimum p-value from the KS 
test conducted on all gene copies between these two cells.

The Algorithm 1 is applied to the complete dataset, with a total runtime of 145 h. The 
memory usage during execution on the server is 1.5GB. A total of ten biclusters are 
detected and only the first bicluster with 19 genes and 18 cells are presented, including 
the gene expression heatmap and cell similarity heatmap as shown in Fig. 5. Due to the 
fact that only about 20% of cells in the complete real data have known cell fate informa-
tion, it is not feasible to observe the proportion of cell fate in the biclusters. Therefore, 
the results on the complete data do not include the cell fate scale map. The remaining 
biclustering results can be found in Supplementary H.

Based on the obtained biclustering results, an evaluation is conducted from both the 
gene and cell perspectives. On one hand, the cell clustering results are assessed based on 
the cell lineages. It can be observed that, similar to the first bicluster in the toy example 
analysis, the cells in the first bicluster are all from the ‘E’ lineage. The other bicluster-
ing results also show cases where multiple cell lineages cluster together within a cluster. 

Fig. 5  The first biclustering result of the complete real dataset. a Heatmap of Pearson correlation coefficient 
matrix between genes. b Heatmap of KS test p-value matrix between cells
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For instance, in the second bicluster, most cells are from the ‘AB’ lineage, but there are 
also cells from the ‘C’ and ‘MS’ lineages. The majority of cells from the ‘C’ and ‘MS’ line-
ages are found to share a fate associated with dermal tissue, aligning with the fate of 
cells from the ‘AB’ lineage. In fact, ‘E’ lineage cells are mainly concentrated in the first 
and seventh biclusters; ‘C’ lineage cells are mainly concentrated in the eighth and tenth 
biclusters; ‘MS’ lineage cells are mainly concentrated in the fifth and ninth biclusters; 
‘AB’ lineage cells are distributed in the remaining biclusters. These findings indicate that 
most of the biclusters we found have cell clustering results that are consistent with the 
biological backgrounds.

On the other hand, gene enrichment analysis is employed to evaluate the clustering 
results of genes in biclusters, according to the Gene Ontology annotation database [30]. 
To present the results, bubble diagrams showcasing the most prominent pathways and 
gene network diagrams for each pathway are applied. In the main text, the results of 
gene enrichment analysis for the first bicluster are displayed in Fig.  6. The remaining 
biclustering results can be found in the Supplementary H.

From Fig. 6a, it is observed that several pathways are significantly enriched at a signifi-
cance level of 0.05. In fact, within the first bicluster, eight genes elt-7, end-3, dpy-31, nhr-2, 
nhr-68, nhr-69, nhr-79, and sma-9 demonstrate enrichment in the zinc ion binding process 
at a highly significant p-value of 0.002. This highlights that the gene biclustering outcomes 
hold substantial biological significance within the context of molecular function and cell 
component [31]. Furthermore, based on the existing research results on gene regulatory 
relationships from BioGRID [28], it is found that in the first bicluster, genes elt-7, end-3, 
nhr-2, nhr-79, pha-4, and tbx-11 exhibit DNA-binding transcription factor activity and 
RNA polymerase II-specific activity. They play important roles in gene transcription regu-
lation and influence cellular function by regulating gene transcription mediated by RNA 
polymerase II. Genes nhr-2, nhr-79, and tbx-11 are involved in the regulation of cell fate 
and transcriptional control, functioning in cell differentiation and specialization processes, 
thereby affecting cell function and fate by regulating the transcription of specific genes. 
Genes elt-7, end-3, nhr-2, nhr-79, pha-4, tbx-11, and T23H4.2 are expressed in the cell 

Fig. 6  Gene enrichment analysis results. a Gene enrichment analysis bubble plot. The X axis represents 
the enrichment multiple, and the Y axis represents the name of the enriched pathway. The size of the 
bubble indicates the number of genes enriched, and the color of the bubble indicates the p-value of gene 
enrichment analysis. b Gene network diagrams for each pathway. The gray dot represents the name of 
the enriched gene in the class, the yellow dot indicates the name of the enriched pathway, with the size 
indicating the number of enriched genes. The lines connect each pathway with its enriched genes, and the 
color indicates the category of the pathway
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nucleus and are involved in regulating RNA synthesis and gene transcription. They play 
crucial roles in regulating gene expression within cells, thereby influencing cell function 
and characteristics. The findings affirm that a majority of the biclustering results discovered 
in this study carry significant biological relevance, effectively capturing the spatiotemporal 
expression patterns among genes within different cells.

Discussion and conclusion
In this paper, a biclustering model TSBic is proposed based on the tree-shaped single-cell 
gene expression data in C.elegans, and the biclusters are detected by Genetic Algorithm 
through maximizing the specially designed objective function. Gene enrichment analysis 
evaluates the obtained biclusters, and the results indicate that most of the gene and cell 
biclusters discovered exhibit meaningful biological relevance and importance. These find-
ings affirm the effectiveness of the proposed method.

Although our study has yielded some meaningful results, there are still that could be fur-
ther improved. First, this study introduces a constrained piecewise polynomial function to 
address the issue of non-pairwise data when fitting gene expression data. In this process, 
the fitting may not be well enough, especially for cells with shorter lifetimes. Therefore, fur-
ther exploration is needed to investigate fitting function forms that better match the data, 
aiming to enhance the accuracy of the fitting. Second, Genetic Algorithms are computa-
tionally intensive methods, and the size and dimensions of the data may pose challenges in 
terms of computational complexity. Further exploration of optimization methods is needed 
to accelerate the convergence of algorithm and handle large-scale dataset.
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