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Abstract
Background: With the rapid development of high-throughput genotyping technologies, efficient
methods for identifying linked regions using high-density SNP genotype data have become more
and more important. Recently, a deterministic method that works very well on SNP genotyping
data has been developed (Lin et al. Bioinformatics 2008, 24(1): 86–93). However, that program can
only work on a limited number of family structures. In particular, the results (if any) will be poor
when the genotype data for the whole chromosome of one of the parents in a nuclear family is
missing.

Results: We have developed a software package (LIden) for identifying linked regions using high-
density SNP genotype data. We focus on handling the case where the genotype data for the whole
chromosome of one of the parents in a nuclear family is missing. We use the minimum recombinant
model for haplotype inference in pedigrees. Several local optimization algorithms are used to infer
the haplotype of each individual and determine the linked regions based on the inferred haplotype
data. We have developed a more flexible method to combine nuclear families to further refine
(reduce the length of) the linked regions.

Conclusion: Our new package (LIden) is efficient software for linked region detection using high-
density SNP genotype data. LIden can handle some important cases where the existing programs
do not work well. In particular, the new package can handle many cases where the genotype data
of one of the two parents is missing for the entire chromosome. The running time of the program
is O(mn), where m is the number of members in the family and n is the number of SNP sites in the
chromosome. LIden is specifically suitable for handling big sized families. This research also
demonstrates another practical use of the minimum recombinant model for haplotype inference in
pedigrees.

The software package can be downloaded at http://www.cs.cityu.edu.hk/~lwang/software/Link.

Background
With the completion of the human genome sequencing
project and the development of HapMap project [1], our

understanding of human genomic sequences has been
extended dramatically. Due to the development of SNP
genotyping technology, genotyping of hundreds of thou-
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sands of single nucleotide polymorphism (SNP) markers
in a high-throughput format has become a routine job in
many labs.

Compared to classical genotyping methods mainly using
microsatellite markers, SNP genotyping is faster and eas-
ier. It provides complete coverage of the genome and
much more information on covered regions. Linkage
analysis is a method to identify genomic regions that
cosegregate with an inherited disease in a family and to
facilitate the eventual identification of the mutation in
that region causing the disease. Leykin et al. in [2] and
Sellick et al. in [3] demonstrated that high-density SNP
genotype data, such as that from microarrays, can be used
for large-scale and cost-effective linkage analysis. The
main reason is that there will be a sufficient number of
informative markers between any two recombination
points and thus the allele sharing status among the family
members can be precisely determined. Therefore, efficient
programs are highly demanded for allele sharing determi-
nation that work on a large number of markers and big
sized families.

Classical linkage analysis methods are designed for sparse
microsatellite markers. They are mainly based on two
algorithms, the Elston-Steward algorithm that is limited
by the number of total markers used [4] and the Lander-
Green algorithm that is limited by the total number of
individuals in a family [5]. As a result, they either cannot
handle genotype data based on large number of SNPs at
all or they cannot handle families of a large size, especially
together with large numbers of genotyped SNPs, due to
memory constraint.

Recently, a deterministic method that works very well on
SNP genotyping data [6] has been developed. This was
one of a series of efforts to develop software that is partic-
ularly suitable for SNP genotyping data and runs in time
linear to both the number of SNP sites and the number of
family members. However, the program in [6] can only
work on a limited number of family structures. Here we
use the minimum recombinant model for haplotype
inference in pedigrees and develop a set of algorithms to
minimize the total number of recombinants and produce
a software package that works on a much wider range of
family structures. Extensive simulations on Affymetrix
Human Mapping 50 K/250 K GeneChips showed that the
new package can correctly identify the linked regions on a
wide range of family structures. In particular, the new
package outperforms the old program in many important
cases where the genotype data of one of the parents is
missing on the entire chromosome. This research also
demonstrates another practical use of the minimum
recombinant model for haplotype inference in pedigrees.

Implementation
We use the minimum recombinant model to infer the
haplotype configuration for all the family members. In
2002, Qian and Beckman [7] proposed a model to recon-
struct haplotype configurations from genotype data in a
pedigree under the Mendelian law of inheritance. In this
model, the resulting haplotype configurations should
have the minimum number of recombinants (i.e. recom-
bination events).

Minimum Recombinant Haplotype Configuration
Given a pedigree and the genotype information for each
member, the object is to find a haplotype configuration
such that the total number of recombinants in the whole
pedigree is minimized.

The problem is called Minimum Recombinant Haplotype
Configuration (MRHC). The MRHC problem was proved
to be NP-hard by Li and Jiang [8]. Lots of algorithms have
been proposed. Some algorithms run in time exponential
in terms of the number of SNP sites and some algorithms
run in time exponential in terms of the number of family
members [9]. An integer linear programming approach
was proposed to handle incomplete genotype data [10].

Linkage analysis aims to identify regions whose allele is
shared by all or most diseased members in a family but by
none or few normal family members. In dominant inher-
itance situations, sharing of one mutation allele can cause
a disease phenotype. In recessive cases, sharing of two dis-
ease alleles in that region is necessary for there to be a dis-
eased status. We will first design algorithms to infer the
allele sharing status with minimum recombinants and
then use an algorithm to find the linked regions(regions
shared by all or most of the diseased individuals but not
shared by any normal individuals) by possibly changing
the inferred allele sharing status.

Algorithm
Our package contains a set of (heuristic) algorithms to
handle various kinds of situations and sometimes for one
case, we use two (local optimization) algorithms to itera-
tively refine the output. Before we discuss the algorithms,
we give the basic data structures used in the package.

The basic data structures
For each individual in the family, we use five arrays: gen-
otype, paternal-h, maternal-h, which-p and which-m to
store the information. The possible values for each ele-
ment in the arrays are given in Table 1. The genotype value
of individual I at site i is in I. genotype [i], which is {A,
A}, {A, B} or {B, B}. The haplotype value of individual I
from the father at site i is in I.paternal-h [i], which is
either A or B. Similarly, the haplotype value of individual
I at site i from the mother is in I. maternal-h [i], which is
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either A or B. For each individual, there are two (paternal
and maternal) copies of haplotypes. We use 0 and 1 to dis-
tinguish them. I.which-p [i] can be 0 or 1.

I.which-p [i] = 0 indicates that the haplotype I.paternal-
h [i] of individual I is from his/her father's 0-th haplotype
and I.which-p [i] = 1 indicates that the haplotype I.pater-
nal-h [i] of individual I is from his/her father's 1-th hap-
lotype. Similarly, I.which-m [i] = 0 indicates that the
haplotype I. maternal-h [i] of individual I is from his/her
mother's 0-th haplotype and I.which-m [i] = 1 indicates
that the haplotype I. maternal-h [i] of individual I is from
his/her mother's 1-th haplotype. The main purpose here is
to keep a record of which grandparent the allele came
from.

The algorithms for nuclear families with data available for 
both parents
Let us consider a nuclear family with two parents and n
children C1, C2,..., Cn. The pedigree is shown in Figure 1.
A box represents a male individual and a circle represents
a female individual. The filled circles/boxes indicate dis-

eased individuals and the open circles/boxes indicate nor-
mal individuals. This setting applies to all the figures in
this paper. To handle nuclear families with both parents,
we use two algorithms, the basic algorithm and the horizon-
tal local optimization algorithm.

The basic algorithm
In our basic algorithm, we consider a site at a time. Sup-
pose that paternal [i], maternal [i], which-p [i] and which-m
[i] of each individual at site i have been fixed. For site i +
1, there are (at most) 4 different haplotype configurations
of the two parents fitting the given genotype data. For each
of the 4 haplotype configurations of the two parents, we
can fix Cj.paternal-h [i + 1], Cj.maternal-h [i + 1], Cj.which-
p [i + 1] and Cj.which-m [i + 1] for every child Cj (j = 1, 2,...,
n) such that the number of break points of child Cj
between site i and i + 1 is minimized. Note that, for each
child Cj, the number of breakpoints between site i and site
i + 1 could be 0, 1 or 2. When two choices are equally
good for child Ck, we arbitrarily select one. We then
choose one of the 4 haplotype configurations of the par-
ents at site i + 1 such that the total number of break points
for all the n children between site i and site i + 1 is mini-
mized. It is worth pointing out that the basic algorithm
here considers all the children site by site while the old
algorithm in [6] considers all the sites for every child and
then handles the children of the nuclear family one by
one. Clearly, the quality of the solution at site i + 1 heavily
depends on the quality of the solution at site i. Thus, we
will first use a method to select a starting site that gener-
ates a good solution and then we use the algorithm to
compute the solution to the left and right ends of the
chromosome, respectively.

Finding a good starting site
Here we try to find a site, where the haplotypes for all indi-
viduals are uniquely determined according to the given
genotype data. This can be done if both genotypes of the
parents are "AB", and every child's genotype is "AA" or
"BB". If there is no such site, we look for the "second best"
site, where some of the individuals' haplotypes can be par-
tially fixed. The second best site is a site where the geno-
type of one parent is "AB", and the genotype of each child
is "AA" or "BB". In this case, we can uniquely determine
the haplotypes for all children, but partially determine the
inheritance information, i.e., one parent has genotype
"AA" ("BB") and the inherited "A" ("B") of a child from
this parent could be any one of "AA" ("BB"). For this case,
we arbitrarily give a solution which fits the genotype data.
The third best site is a site where both genotypes of father
and mother are "AB", and the genotypes of some (but not
all) children are "AA" or "BB". In this case, we can fix the
haplotypes of those children with "AA" or "BB" correctly.
But for a child with genotype "AB", we have a risk of mak-
ing mistakes. Again, in this case, we arbitrarily give a solu-

Table 1: The possible values of each element in the five arrays.

Array Name Possible Values of each element

genotype {AA}, {AB}, {BB}

paternal-h A, B

maternal-h A, B

which-p 0, 1

which-m 0, 1

A family with n childrenFigure 1
A family with n children. A nuclear family with two par-
ents and n children C1, C2,..., Cn. A box represents a male indi-
vidual and a circle represents a female individual. The filled 
circles/boxes indicate diseased individuals and the open cir-
cles/boxes indicate normal individuals. This setting applies to 
all the figures in this paper.
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tion which fits the genotype data. The worst case is that
both genotypes of father and mother are "AA" or "BB". In
this case, we cannot fix the inheritance source for any
child. In practice, we can always find a site which is one of
the first three types.

Note that there is no guarantee that we can always find a
starting site with uniquely determined haplotypes. When
the solution on the starting site is wrong, our algorithm
may produce a short segment with many breakpoints.
Whenever such a segment is found, our algorithm will re-
calculate the solution of the segment using the reverse
order and thus another starting point.

The horizontal local optimization algorithm
After we obtain a haplotype solution from the basic algo-
rithm, we can look at three individuals, two parents and
one of their children Cj, at a time. Assuming that the hap-
lotypes of the two parents are fixed, the number of break
points in Cj might be further reduced if we change the
haplotypes of Cj. This is due to the existence of multiple
solutions at a site and the fact that the haplotype solution
at site i heavily depends on that of its previous site. Thus,
we use an algorithm that can give a haplotype of Cj with
minimum number of break points when the haplotypes
of the two parents are fixed (by the basic algorithm). In
this way, the total number of break points can be reduced.
Let Dpq(i) be the minimum number of breakpoints of Cj
for the first i sites such that at site i the paternal haplotype
is from the p-th haplotype of the father and the maternal
haplotype is from the q-th haplotype of the mother, where
p = 0, 1 and q = 0, 1. Then Dpq(i + 1) can be computed
based on D00 (i), D01 (i), D10 (i) and D11 (i). For example,
the value of D00 (i + 1) can be one of D00 (i), D01 (i) + 1,
D10 (i) + 1 or D11 (i) + 2. We can check each of the cases
and see if the genotype of Cj at site i + 1 can fit each of the
four configurations under the Mendelian law of inherit-
ance. Among all the possible configurations, we choose
the one corresponding to the minimum value. The run-
ning time of the algorithm is O(n), where n is the number
of sites in the chromosome.

We apply the horizontal local optimization algorithm to
each of the n children in the nuclear family one by one in
an arbitrarily fixed order. (The order among the children
does not affect the results.)

The whole algorithm for a nuclear family
Consider a nuclear family containing two generations. For
a segment from position i to position i + k, we can use the
basic algorithm in two ways, i.e., from left to right or from
right to left. We may get different solutions since the start-
ing points are different. After we obtain a solution using
the basic algorithm, we can use the horizontal local opti-

mization algorithm to further improve the solution. The
whole algorithm is as follows:

1. Find a good starting point as described.

2. Use the basic algorithm to get a solution for all individ-
uals in the nuclear family.

3. Identify a short segment with a large number of break-
points and apply the basic algorithm to this segment to re-
calculate using the inverse order (thus a different starting
point). If we can reduce the total number of break points
then we use the new solution for this segment.

4. Use the horizontal local optimization algorithm for
each child to refine the solution.

The algorithms for nuclear families with data available for 
single parents
Now, we consider the case, where the genotype data of
one of the parents in the nuclear family is unknown over
the entire chromosome. To handle this case, the basic idea
is similar to that for nuclear families with data available
for both parents. For the basic algorithm, we guess the
haplotype of the unknown parent whenever needed.
Since each individual has two copies of haplotypes on
each chromosome, there are four different haplotype con-
figurations at each site. The two haplotypes for an individ-
ual can be AA, AB, BA, and BB. Thus, we can modify the
basic algorithm to handle this case, where the genotype
data for one parent is missing. In the basic algorithm,
instead of considering at most 4 configurations of the two
parents, we consider at most 8 configurations, where the
unknown parent has 4 configurations, and the known
parent has at most 2 configurations. Similarly, for each of
the 8 configurations of the two parents, we can fix Cj.pater-
nal-h [i + 1], Cj.maternal-h [i + 1], Cj.which-p [i + 1] and
Cj.which-m [i + 1] for every child Cj (j = 1, 2,..., n) such that
the number of breakpoints of child Cj between site i and i
+ 1 is minimized. The rest of the algorithm remains the
same.

The algorithm for a family with three or more generations
To handle a family with three generations, we will view
the set of all individuals in the first and second genera-
tions as a nuclear family which is referred to as the main
nuclear family. For any child Cj in the main nuclear fam-
ily, if Cj has his/her own children (third generation indi-
viduals), then we will view Cj as a super child representing
the second generation nuclear family including Cj, Cj's
spouse and all their children. The basic algorithm for a
family with three generations is similar to the basic algo-
rithm for a nuclear family. Here we focus on the main
nuclear family and give some special treatment for super
children.
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The basic algorithm for a family with three generations
Again, we consider a site at a time. Suppose that paternal-
h [i], maternal-h [i], which-p [i] and which-m [i] of each
individual in the main nuclear family for site i are fixed.
Let us consider site i + 1. If the genotype data is known for
both parents, there are (at most) 4 different haplotype
configurations of the two parents (first generation indi-
viduals) fitting the given genotype data. If the genotype
data of a parent is missing, there are at most 8 different
haplotype configurations of the two parents. Let C1, C2,...,
Cn be the n children in the second generation and some of
them might be super children. For each possible haplo-
type configurations of the two parents (first generation
individuals), we try to fix Cj.paternal-h [i + 1], Cj.maternal-
h [i + 1], Cj.which-p [i + 1] and Cj.which-m [i + 1] for every
child Cj (j = 1, 2,..., n) as follows:

A1: if Cj is not a super child, we fix Cj.paternal-h [i + 1],
Cj.maternal-h [i + 1], Cj.which-p [i + 1] and Cj.which-m [i +
1] such that the number of breakpoints of child Cj
between site i and i + 1 is minimized. Note that for each
child Cj, the number of breakpoints between site i and site
i + 1 could be 0, 1 or 2.

A2: if Cj is a super child, we fix Cj.paternal-h [i + 1],

Cj.maternal-h [i + 1], Cj.which-p [i + 1] and Cj.which-m [i +

1] such that the number of breakpoints  in the second

generation nuclear family Cj represented by Cj between

site i and i + 1 is minimized. Here if the genotype data for
both Cj and Cj's spouse is given, there are at most two

choices for each of Cj and Cj's spouse. We can call the basic

algorithm to get . Note that  could be greater than

2.

Again, when several choices are equally good for child Ck,
we arbitrarily select a choice.

Among all the possible haplotype configurations of the
parents (first generation individuals) at site i + 1, we select
one such that the total number of breakpoints for all the
individuals in the three-generation family between site i
and site i + 1 is minimized. This process can be used recur-
sively to handle more than three generations. In fact, for
our package, there is no limit on the number of genera-
tions in the family. Clearly, if the genotype data of both
parents in all nuclear families is known, the running time
of the basic algorithm is O(mn), where m is the total
number of individuals in the whole family and n is the
number of SNP sites in the chromosome.

Dealing with missing individuals in the second generation
In this subsection, we deal with the cases where the geno-
type data for one of the parents in a second generation
nuclear family is missing. The algorithm is similar to the
basic algorithm for a family with three generations. Let Cj
be a super child. Two cases arise.

The genotype data for Cj's spouse is missing
For this case, when we try to fix Cj.paternal-h [i + 1],
Cj.maternal-h [i + 1], Cj.which-p [i + 1] and Cj.which-m [i +
1] such that the number of breakpoints in the second gen-
eration nuclear family represented by Cj between site i and
i + 1 is minimized as in A2, we have to guess the haplotyes
of Cj's spouse by trying all possible haplotypes AA, AB, BA
and BB. When the genotype data for Cj's spouse is given,
there are two choices. This will slightly slow down the pro-
gram. Moreover, if there are more than one second gener-
ation nuclear families missing the super child's spouse's
genotype data, the speed will not be affected too much,
since children in the second generation are processed one
by one.

The genotype data for Cj is missing
For this case, when we try to fix Cj.paternal [i + 1], Cj.mater-
nal [i + 1], Cj.which-p [i + 1] and Cj.which-m [i + 1] such
that the number of breakpoints in the second generation
nuclear family represented by Cj between site i and i + 1 is
minimized as in A2, we have to guess the haplotyes of Cj
by trying all possible haplotypes AA, AB, BA and BB with-
out genotype data. Again, the running time is still O(m ×
n) since children in the second generation are processed
one by one.

Remarks
For the algorithm in [6], a top-down approach is used to
deal with three-generation families. The algorithm proc-
esses nuclear families (with two generations) one by one
from the top to the bottom. The old approach cannot give
good solutions when the size of the main nuclear family
is small. The reason is that the quality of solutions heavily
depends on the sizes of nuclear families and if the size of
the main nuclear family is small, the obtained haplotypes
for the (super) children in the second generation could be
wrong and this wrong information will be passed to the
processing of the third generation. A better strategy is to
work on big nuclear families first. However, even this
strategy is not as good as our approach here since we do
not fix the solution of super children in the second gener-
ation. We have observed that the inferred haplotypes for
big sized second generation families such as two parents
and 5 children could be wrong though the breakpoint
positions are very accurate. If the wrong haplotyes are
used to handle other nuclear families, the whole linked
region could be missed.

BC j

BC j
BC j
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Table 2: The experimental results for nuclear families when the genotype data for both parents is available.

2 children 3 children 4 children 5 children 6 children

No. of Breakpoints 11.11 (10.59) 15.63 (15.50) 21.32 (21.28) 26.61 (26.60) 31.66 (31.60)

precision 0.47 (0.50) 0.93 (0.98) 0.95 (0.97) 0.98 (0.99) 0.98 (0.99)

recall 0.47 (0.48) 0.91 (0.96) 0.94 (0.97) 0.96 (0.98) 0.96 (0.98)

length of real linked region (cM) 76.66 59.51 40.82 35.97 29.90

length of found linked region (cM) 78.70 (79.51) 60.79 (60.77) 42.15 (42.13) 37.00 (37.01) 30.97 (30.99)

overlap/real 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

overlap/found 0.97 (0.96) 0.97 (0.97) 0.96 (0.96) 0.96 (0.96) 0.95 (0.95)

linked region recovery 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

The row "No. of Breakpoints" indicates the number of breakpoints in the whole family. The row "precision" is the ratio of the number of correctly 
inferred breakpoints to the total number of inferred breakpoints. The row "recall" is the ratio of the number of correctly inferred breakpoints to 
the number of real breakpoints. The row "length of real linked region (cM)" is the length of the linked region generated in the simulation. The row 
"length of found linked region (cM)" is the length of the linked region calculated by our program. The row "overlap/real" is the length of the region 
shared by both the real linked region and the inferred linked region divided by the length of the real linked region. The row "overlap/found" is the 
length of the region shared by both the real linked region and the inferred linked region divided by the length of the inferred linked region. The row 
"linked region recovery" is the number of times that the inferred linked region contains the mutation site divided by the total number of 
experiments. In each cell, the first value is by our program and the one in brackets is by the program in [6].

Table 3: The experimental results for nuclear families when the genotype data of only one parent is available and this parent is 
diseased. 

2 children 3 children 4 children 5 children 6 children

No. of Breakpoints 3.68 (3.75) 7.47 (14.59) 10.32 (25.47) 12.90 (34.83) 15.48 (50.38)

precision 0.33 (0.39) 0.78 (0.26) 0.89 (0.23) 0.94 (0.24) 0.96 (0.21)

recall 0.23 (0.27) 0.72 (0.48) 0.86 (0.55) 0.91 (0.63) 0.92 (0.66)

length of real linked region (cM) 83.14 57.98 45.62 35.15 31.01

length of found linked region (cM) 111.1 (91.45) 65.08 (66.32) 48.85 (49.38) 37.40 (38.02) 32.57 (32.80)

overlap/real 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

overlap/found 0.86 (0.94) 0.93 (0.94) 0.94 (0.93) 0.93 (0.92) 0.93 (0.92)

linked region recovery 1.00
(255/285)

1.00
(229/285)

1.00
(267/285)

1.00
(276/285)

1.00
(281/285)

The meaning of each line is the same as in Table 2.
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The current version of our program works for any number
of generations. It can handle the case, where the genotype
data for one of a couple is missing.

Genotype data error correction
For large-scale SNP genotyping, a certain number of
experimental errors is unavoidable. We observe that when
genotype data errors occur, the inferred haplotypes con-
tain many breakpoints that are close to each other. In
order to get the correct allele sharing status, our algorithm

will simply delete both breakpoints that are within x SNP
sites. We suggest setting the value of x based on the error
rate. When the error rate is smaller than 0.1%, x = 5. When
the error rate is between 0.1% and 0.3%, x = 8. When the
error rate is between 0.3% and 0.5%, x is set to be 10.
When the error rate cannot be estimated, we simply use x
= 8.

Identifying mutation regions
After obtaining the inferred haplotype data for all the
individuals in the family, we can find possible mutation
regions by looking at the SNP sites one by one. The possi-

Table 4: The experimental results for nuclear families when the genotype data of only one parent is available and this parent is normal. 

3 children 4 children 5 children 6 children

No. of Breakpoints 7.39 (13.47) 10.29 (24.47) 12.94 (35.69) 15.23 (55.84)

precision 0.75 (0.31) 0.89 (0.25) 0.94 (0.24) 0.96 (0.19)

recall 0.68 (0.53) 0.86 (0.59) 0.90 (0.65) 0.92 (0.66)

length of real linked region (cM) 55.56 43.61 36.61 28.45

length of found linked region (cM) 67.66 (59.25) 43.90 (44.14) 36.87 (35.83) 29.23 (28.12)

overlap/real 0.99 (0.99) 0.99 (0.98) 0.99 (0.98) 0.99 (0.97)

overlap/found 0.85 (0.94) 0.99 (0.98) 0.99 (0.99) 0.98 (0.98)

linked region recovery 1.00
(275/285)

1.00
(274/285)

1.00
(274/285)

1.00
(266/285)

The meaning of each line is the same as in Table 2.

Pedigrees P1 to P4Figure 2
Pedigrees P1 to P4. Pedigrees P1 to P4. A slash on an indi-
vidual indicates that the genotype data for this individual is 
missing.

Table 5: The experimental results for pedigrees P1 to P4. 

P1 P2 P3 P4

No. of Breakpoints 20.49 20.20 14.20 20.38

precision 0.58 0.77 0.49 0.57

recall 0.63 0.72 0.43 0.53

length of real linked region (cM) 34.69 36.42 43.89 41.28

length of found linked region (cM) 45.84 47.28 62.88 43.25

overlap/real 0.99 1 1 1

overlap/found 0.83 0.80 0.75 0.95

linked region recovery 1 1 1 1

The meaning of each line is the same as in Table 2.
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ble mutation regions should be regions shared by all or
most of the diseased family members (considering phen-
ocopy) but none or few of the normal family members
(considering penetrance). Those regions are reported as
suspected mutation regions. Due to the existence of mul-
tiple solutions and haplotype inference error, it is possible
that the reported regions do not completely overlap the
true mutation region. In our algorithm, we use a subrou-
tine to extend the suspected mutation regions site by site
in both directions, where we can revise the haplotype
allele such that the allele is shared by diseased family
members, but not shared by the normal family members.
Unlike the program in [6], here we have to extend in both
directions.

The current version of the package reports all the possible
regions. The users are asked to input the maximum
number of normal individuals to be allowed to share the
mutation allele (allowing for penetrance) and the maxi-
mum number of diseased individuals in the family to be
allowed not to share the potential mutation region
(allowing for phenocopy).

Results and Discussion
In this section, we will test our software package using
simulated data. We have considered a wide range of pedi-
gree structures.

Table 6: The experimental results for pedigrees P5 to P8.

P5 P6 P7 P8

No. of Breakpoints 20.81 (31.60) 26.37 (47.27) 38.83 (108.4) 44.65 (145.4)

precision 0.86 (0.45) 0.96 (0.41) 0.97 (0.26) 0.90 (0.23)

recall 0.82 (0.66) 0.94 (0.71) 0.93 (0.71) 0.92 (0.76)

length of real linked region (cM) 38.58 19.77 21.92 12.37

length of found linked region (cM) 41.00 (43.28) 22.98 (23.51) 23.37 (24.57) 16.04 (16.20)

overlap/real 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

overlap/found 0.93 (0.93) 0.86 (0.84) 0.91 (0.91) 0.79 (0.78)

linked region recovery 1.00
(232/285)

1.00
(266/285)

1.00
(228/285)

1.00
(265/285)

The meaning of each line is the same as in Table 2.

Table 7: The experimental results for pedigrees P9 to P12.

P9 P10 P11 P12

No. of Breakpoints 23.43 (41.07) 18.46 (26.38) 37.44 (92.49) 20.68 (31.52)

precision 0.95 (0.40) 0.92 (0.49) 0.91 (0.29) 0.94 (0.47)

recall 0.91 (0.67) 0.89 (0.68) 0.89 (0.70) 0.91 (0.71)

length of real linked region (cM) 29.80 26.06 22.26 22.05

length of found linked region (cM) 32.01 (36.72) 28.26 (31.93) 24.07 (24.53) 29.78 (30.57)

overlap/real 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

overlap/found 0.90 (0.81) 0.91 (0.83) 0.90 (0.89) 0.80 (0.78)

linked region recovery 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (90/95)

The meaning of each line is the same as in Table 2.
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Generating haplotype data using the Chi-square model
In order to test the program, we generated haplotype data-
sets based on the Chi-square model to see if our program
can infer the haplotype data correctly from the corre-
sponding genotype data. The founder haplotypes were
obtained from real datasets (Affymetrix Human Mapping
50 K/250 K GeneChips [11]), and children haplotypes
were generated through random inheritance of paternal/
maternal alleles using the Chi-square model for recombi-

nation with m equals 4 [6,12,13] and according to male/
female averaged genetic map for chromosome 1 down-
loaded from HapMap [14]. The simulation process is
identical to that of [6,15]. When disease status was consid-
ered, a mutation was randomly assigned to be close to a
SNP site (called mutation site), and the diseased individu-
als were forced to inherit the mutation strand and the nor-
mal individuals were forced not to inherit the mutation
strand. This process is done generation by generation.

Table 8: The experimental results for pedigrees P13 to P16. 

P13 P14 P15 P16

No. of Breakpoints 23.56 (46.66) 44.20 (124.0) 31.37 (48.25) 34.60 (69.26)

precision 0.97 (0.37) 0.98 (0.27) 0.96 (0.47) 0.88 (0.38)

recall 0.94 (0.71) 0.95 (0.75) 0.93 (0.71) 0.87 (0.75)

length of real linked region (cM) 21.36 18.22 21.41 18.40

length of found linked region (cM) 25.61 (25.91) 19.68 (20.42) 25.12 (27.60) 21.81 (22.39)

overlap/real 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00)

overlap/found 0.86 (0.84) 0.90 (0.89) 0.88 (0.81) 0.86 (0.85)

linked region recovery 1.00 (84/95) 1.00 (75/95) 1.00 (1.00) 1.00 (1.00)

The meaning of each line is the same as in Table 2.

Pedigrees P5 to P8Figure 3
Pedigrees P5 to P8.

Pedigrees P9 to P12Figure 4
Pedigrees P9 to P12.
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Nuclear families with data available for both parents
Let us consider a nuclear family as shown in Figure 1.
When the genotype data for both parents is given, the
results are shown in Table 2. Here we test the cases, where
there are 2, 3,..., 6 children in the nuclear family. The
results are listed in column 2, 3,..., 6, respectively. We have
selected individuals to form 95 couples as in [6]. We have
done experiments on 285 datasets (three times for each
couple) and calculated the average. For all the simula-
tions, the number of data sets is a multiple of 95. Each cell
in the table contains two values. The first one is by our
program and the one in brackets is by the program in [6].
A breakpoint is correctly inferred if the inferred break-

point is within 20 SNPs away from the real location. From
Table 2, we can see that all the elements in the row "over-
lap/real" are 1 indicating that our package can always
identify the whole mutation region. The elements in the
row "overlap/found" are about 0.97 or 0.96 indicating
that the sizes of the reported regions are slightly larger
than (almost identical to) that of the real mutation
regions. The values of recall and precision are also very
good when there are more than two children. The values
in brackets are by the program in [6]. We can see that both
programs perform very well in those cases.

Nuclear families with data available for single parents
Let us consider nuclear families with a single parent. In
this case, the genotype data for the other parent is missing.
About half of the children are diseased. There are two
cases: (1) the available parent is diseased and (2) the
available parent is normal. The results are shown in Table
3 and Table 4, respectively. Each cell in the tables contains
two values. The first one is by our program and the one in
brackets is by the program in [6]. We consider the cases
where there are 2, 3,..., 6 children. For both cases, we can
see that for our program, the precision and the recall are
slightly worse than that in Table 2. The length of the
inferred region is slightly longer. Most importantly, all the
elements in the row "linked region recovery" are 1 for our
program. This indicates that our program can always find
the linked region that contains the mutation site. We can
also see that our new program performs much better than
the program in [6] in those cases. Comparing case 1 and
case 2, we can see that case 2 is harder to handle. In case
2, the result for 2 children is very poor and this case is not
solvable by our program.

Complicated pedigrees
We did experiments on some complicated pedigrees. First
we study some pedigrees, where the genotype data for the
super children in the second generation (shared by two
nuclear families) is missing. See P1–P4 in Figure 2. A slash
on an individual indicates that the genotype data for this

Pedigrees P13 to P14Figure 5
Pedigrees P13 to P14.

Pedigrees P15 to P16Figure 6
Pedigrees P15 to P16.

A pedigree for case studyFigure 7
A pedigree for case study.
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individual is missing. This setting applies to all the figures
in the paper.

We have done 285 experiments on each of P1–P4. From
Table 5, we can see that the inferred region of our program
can almost always cover the entire real linked region. The
length of the inferred linked region is a bit (about 15%)
longer than that of the real linked region. From the row
"linked region recovery", we can see that our program can
always precisely find the linked region that contains the
mutation site. Note that the program in [6] cannot handle
P1–P4 at all. This is a significant improvement in our new
program. Let us consider pedigrees P5–P8 in Figure 3,
where individuals with missing genotype data are not
super children (not shared by two nuclear families). We
have done 285 experiments for each of the pedigrees. The

results are listed in Table 6. From the row "linked region
recovery", we can see that, if the nuclear family of the first
generation has a single parent, and the nuclear family of
the second generation has at least three (with both par-
ents) or four (with single parent) children, we can always
find the linked region that contains the mutation site. The
program in [6] missed the mutation site at a rate of about
13.07%. Now we consider pedigrees P9–P16 in Figures 4,
5 and 6. The experimental results are shown in Table 7
and Table 8, respectively. We can see that for common
pedigrees of different structures, our program can always
find the linked region containing the mutation site and
our program reports the linked region more precisely than
the program in [6]. Note that the program in [6] some-
times missed the mutation sites. From all the listed exper-
imental results, we can see that our program has much

The simulated grand-paternal haplotype allele sharing status among all members, excluding grandmotherFigure 8
The simulated grand-paternal haplotype allele sharing status among all members, excluding grandmother. 
Each individual has two haplotypes, paternal haplotype and maternal haplotype. Note that individual D is the founder of the dis-
ease in the family. The two haplotypes of individual D are shown as 1-th haplotype and 0-th haplotype at the top and at the 
bottom, respectively. Any other individual may inherit alleles from both 0-th haplotype and 1-th haplotype of individual D. 
Thus, any other individual in the family appears twice (upper part and lower part) in the figure. The upper part shows the seg-
ments inherited from the 1-th haplotype of D and the lower part shows the segments inherited from the 0-th haplotype of D. 
The segments from diseased individuals are red and the segments from normal individuals are blue. The simulated (true) linked 
region is indicated by the horizontal black double-direction arrow in the middle.
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higher precision and recall than the program in [6], which
indicates that our new program can infer the haplotypes
more precisely.

A Case Study
We studied a pedigree to see if the program can correctly
identify the linked region when some of the family mem-
bers are purposely excluded. The pedigree is shown in Fig-
ure 7. The simulated allele sharing status and the linked
region are shown in Figure 8. Each individual has two
haplotypes, paternal haplotype and maternal haplotype.

Note that individual D is the founder of the disease in the
family. The two haplotypes of individual D are shown as
1-th haplotype and 0-th haplotype at the top and at the
bottom, respectively. Any other individual may inherit
alleles from both 0-th haplotype and 1-th haplotype of
individual D. Thus, any other individual in the family
appears twice (upper part and lower part) in the figure.
The upper part shows the segments inherited from the 1-
th haplotype of D and the lower part shows the segments
inherited from the 0-th haplotype of D. The segments
from diseased individuals are red and the segments from

The inferred grand-paternal haplotype allele sharing status among all members, excluding grandmotherFigure 9
The inferred grand-paternal haplotype allele sharing status among all members, excluding grandmother.

Table 9: The experimental results for genotype data error correction using Affymetrix 50 K GeneChips data.

precision recall linked region recovery overlap/real overlap/found

No error 97.74% 95.05% 100% 99.98% 92.46%
(69.62%) (86.56%) (100%) (100%) (91.78%)

0.1% error 84.40% 94.94% 100% 99.93% 92.00%
(67.19%) (86.19%) (100%) (100%) (91.13%)

0.5% error 79.00% 93.76% 100% 99.84% 92.57%
(61.81%) (86.10%) (100%) (100%) (91.94%)
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normal individuals are blue. At any position in the chro-
mosome, each second generation individual gets an allele
from D that is either from the 0-th haplotype or 1-th hap-
lotype. For the third generation individual, say, C1, the
allele at a position may or may not be from D. The simu-
lated (true) linked region is from 189.61 cM to 211.55 cM
(physical position from 169183745 bps to 197201161
bps) indicated by the horizontal black double-direction
arrow in the middle. The inferred configuration is shown
in Figure 9. We can see that the inferred configuration is
roughly the same as the simulated configuration except
that it is upside down. The inferred linked region is from
189.61 cM(169174855 bps) to 211.63 cM(197295627

bps). The inferred linked region remains the same if we
exclude individual E or F. The inferred linked region also
remains unchanged if we simultaneously remove E, M
and N. When we simultaneously remove E, K, N, D1, D2
and D3, the inferred linked region is from 189.61 cM to
225.48 cM, which is only slightly enlarged. When we
simultaneously remove E, F, M, C1, C2, C3 and C4, the
inferred linked region is again enlarged and the region is
from 172.07 cM to 211.63 cM. When F, K, N, D1, D2 and
D3 are simultaneously removed from the pedigree, the
inferred linked region is from 189.61 cM and 221.90 cM.

Table 10: Comparison with Merlin using Affymetrix 50 K 
GeneChips. 

Run time (s) overlap/real overlap/found

0+3 16.717 (0.898) 0.941 (0.805) 0.605 (0.862)

0+4 23.325 (1.126) 0.928 (0.824) 0.594 (0.930)

0+5 30.634 (1.746) 0.941 (0.901) 0.587 (0.936)

0+6 39.028 (3.901) 0.987 (0.929) 0.576 (0.969)

2+3(4 bits) 3.276 (1.340) 1.000 (0.928) 0.960 (1)

2+4(6 bits) 4.596 (1.735) 0.9997 (0.937) 0.967 (0.990)

P5(7 bits) 7.714 (2.325) 0.999 (0.933) 0.919 (0.979)

P9(9 bits) 7.365 (3.255) 0.999 (0.879) 0.926 (0.958)

P10(11 bits) 19.15 (8.829) 0.999 (0.797) 0.912 (0.968)

P11(12 bits) 11.37 (14.01) 1.000 (0.938) 0.924 (0.979)

P12(13 bits) 25.62 (31.57) 1.000 (0.922) 0.842 (0.958)

P7(14 bits) 13.58 (58.14) 1.000 (0.949) 0.933 (0.990)

P15(14 bits) 46.96 (43.15) 1.000 (0.906) 0.894 (0.979)

P13(15 bits) 23.72 (1282.05) 1.000 (0.970) 0.875 (1)

P16(15 bits) 37.93 (384.78) 0.988 (0.950) 0.877 (0.990)

P14(16 bits) 15.042 (NA) 1.000 (NA) 0.927 (NA)

P6(17 bits) 40.754 (NA) 1.000 (NA) 0.869 (NA)

Each cell contains two values. The first one is by our program and the 
one in brackets is by Merlin. Pedigree 0+i for i = 3, 4, 5 and 6 stands 
for a nuclear family with i children and the genotype data for parents 
is not available. Pedigree 2+i for i = 3 and 4 stands for a nuclear family 
with i children and the genotype data for both parents is available. 
"NA" means that the program failed to execute on this pedigree.

Table 11: Comparison with Merlin using Affymetrix 250 K 
GeneChips. 

Run time (s) overlap/real overlap/found

0+3 67.680 (2.979) 0.954 (0.975) 0.590 (0.866)

0+4 97.082 (4.067) 0.965 (0.988) 0.548 (0.955)

0+5 124.43 (6.558) 0.983 (0.994) 0.607 (0.960)

0+6 131.71 (12.50) 0.994 (0.992) 0.675 (0.986)

2+3(4 bits) 9.454 (7.122) 1 (0.936) 0.995 (1)

2+4(6 bits) 11.625 (8.133) 1 (0.989) 0.988 (1)

P5(7 bits) 16.662 (8.262) 1 (0.892) 0.983 (0.938)

P9(9 bits) 24.18 (16.65) 1.000 (0.934) 0.973 (1)

P10(11 bits) 38.54 (31.39) 1.000 (0.797) 0.970 (0.938)

P11(12 bits) 29.94 (415.18) 1.000 (0.991) 0.972 (1)

P12(13 bits) 49.28 (1237.7) 1.000 (0.968) 0.871 (1)

P7(14 bits) 31.611 (NA) 1(NA) 0.960(NA)

P15(14 bits) 103.269 (NA) 1(NA) 0.927(NA)

P13(15 bits) 54.114 (NA) 1.000(NA) 0.881(NA)

P16(15 bits) 141.266 (NA) 0.991(NA) 0.922(NA)

P14(16 bits) 52.911 (NA) 1(NA) 0.979(NA)

P6(17 bits) 63.984 (NA) 1.000(NA) 0.862(NA)

Each cell contains two values. The first one is by our program and the 
one in brackets is by Merlin. Pedigree 0+i for i = 3, 4, 5 and 6 stands 
for a nuclear family with i children and the genotype data for both 
parents is not available. Pedigree 2+i for i = 3 and 4 stands for a 
nuclear family with i children and the genotype data for both parents 
is available. "NA" means that the program failed to execute on this 
pedigree.
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Genotype data error correction
To test the effect of genotype data errors on our program,
we did experiments on the pedigree in Figure 7. We gener-
ated genotype errors by randomly changing the genotype
value (which is one of AA, BB and AB) into a different
value (which is one of the other two values) at a position
with probability 0.1% and 0.5%, respectively. We simu-
lated 475 data sets. The length of real linked region ranges
from 0.76 cM to 65.17 cM. The experimental results are
shown in Table 9. For each cell, there are two values. The
first one is by our program and the one in brackets is by
the program in [6]. We can see that our program performs
better and can always recover the real linked regions.

Comparison with Merlin
We compared our program with Merlin [16]. We did the
experiments on a PC with a CPU of 3.0 GHz and 1.00 GB
memory. The results are shown in Table 10 and Table 11
for Affymetrix 50 K GeneChips and Affymetrix 250 K
GeneChips, respectively. We have also considered differ-
ent kinds of pedigrees.

Running time
For small sized families, both programs can generate
results in a few seconds. When the sizes of the families and
the number of the markers increase, the running time of
our program increases linearly. For large families, Merlin
requires really long running time. Most importantly, Mer-
lin needs large memory space for big sized families and
cannot successfully complete the computation for some
pedigrees (see P14 and P6 in Table 10 and Table 11).

Output Quality
We again use "overlap/real" and "overlap/found" to indi-
cate the quality of the computational results. Our pro-
gram always clearly gives a computed candidate region for
each input. Merlin calculates a LOD score for each marker.
We evaluated the segment with the highest LOD score as
the output linked region for Merlin. From Table 10 and
Table 11, we can see that the results of our program are
less than optimal when parental data is not available at
all. When the family size becomes bigger, our program
outperforms Merlin. Our program can quickly produce
accurate linked regions when the family size is big while
Merlin failed to execute on big sized families.

Conclusion
We have developed a software package that infers the hap-
lotype allele sharing status for the members of a pedigree
based on the minimum recombinants model. The run-
ning time of the program is linear in terms of the input
size O(mn), where m is the total number of individuals in
the whole family and n is the number of SNP sites in the
chromosome. The new package can handle a wide range
of pedigree structures. It works very well for cases where

the genotype data of one parent is missing for the entire
chromosome.
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