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Abstract

Background: A major challenge in computational biology is to extract knowledge about the
genetic nature of disease from high-throughput data. However, an important obstacle to both
biological understanding and clinical applications is the "black box" nature of the decision rules
provided by most machine learning approaches, which usually involve many genes combined in a
highly complex fashion. Achieving biologically relevant results argues for a different strategy. A
promising alternative is to base prediction entirely upon the relative expression ordering of a small
number of genes.

Results: We present a three-gene version of "relative expression analysis" (RXA), a rigorous and
systematic comparison with earlier approaches in a variety of cancer studies, a clinically relevant
application to predicting germline BRCAI mutations in breast cancer and a cross-study validation
for predicting ER status. In the BRCAI study, RXA yields high accuracy with a simple decision rule:
in tumors carrying mutations, the expression of a "reference gene" falls between the expression of
two differentially expressed genes, PPPICB and RNF/4. An analysis of the protein-protein
interactions among the triplet of genes and BRCAI suggests that the classifier has a biological
foundation.

Conclusion: RXA has the potential to identify genomic "marker interactions" with plausible
biological interpretation and direct clinical applicability. It provides a general framework for
understanding the roles of the genes involved in decision rules, as illustrated for the difficult and
clinically relevant problem of identifying BRCA| mutation carriers.

Background challenges of computational biology is to extract this
In principle, an enormous amount of information about ~ knowledge using techniques from machine learning and
biological function and the genetic mechanisms of disease ~ statistical inference. In particular, many classification
resides in high-throughput data and one of the major  techniques developed in the statistical learning commu-
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nity have been applied to cancer diagnosis, prognosis and
sub-type identification based on gene expression microar-
rays.

Nonetheless, the clinical applications resulting from sta-
tistical analyses remain somewhat limited. Indeed, a cer-
tain skepticism is well-founded since results, for instance
"signatures" and reported error rates, obtained in one
study often do not generalize to another. In the case of
molecular cancer diagnosis and prognosis from gene
expression data, there are several plausible reasons for
these difficulties. One issue is certainly the high dimen-
sionality of the data relative to the typical sample size, the
well-known "small n, large p" dilemma. A typical micro-
array data set contains expression values of thousands to
tens of thousands of transcripts but for only tens or at
most hundreds of samples. This technical barrier can be
somewhat lowered by aggregating data from different
studies so as to reach samples sizes in the hundreds, but
this may still be "small" relative to the complex interac-
tions among the observed variables that one would like to
uncover.

Another important obstacle to both biological under-
standing and clinical applications is the "black box"
nature of the decision rules produced by most machine
learning classification methods. These rules generally
involve a great many genes combined in a highly nonlin-
ear fashion. This is not surprising: by and large, these tech-
niques were developed in other communities, notably
pattern recognition, computational vision and computa-
tional speech, where data are plentiful and transparency
of the decision rules is generally not a criterion for success.
In contrast, simplicity and interpretability are highly
desirable features for biomedical applications.

Breast cancer prognosis is at the forefront of the applica-
tion of classification rules based on gene expression, as
three such assays have been recently approved for use in
clinical management of patients. For a complete review of
these assays and their validation see [1]. The three assays
differ in several respects: the technology used to measure
gene expression, the classification algorithms used, the
number of genes considered (2, 21, and about 1900
respectively), the way they were developed, and the degree
of their validation on independent populations in real
clinical settings. Importantly, none of the classification
algorithms used is easily categorized into a well-known
machine learning technique. All are based on thresholds
applied to compounded continuous scores obtained
through a mix of classification techniques, empirical
observations, and biological insight applied to the train-
ing sets. This puts a barrier between statistical learning
and current clinical applications, and emphasizes the
need for classification rules that are interpretable and as
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independent as possible from the specific technology
used for the measurement of biological markers, since
technology is continuously evolving.

In view of these considerations, achieving statistically sta-
ble and biologically relevant results argues for a different
strategy, particularly if we wish to go beyond a mere list of
"biomarkers" to identifying potential "marker interac-
tions" among several genes. A promising alternative is to
base prediction entirely upon the relative expression
ordering of a small number of genes. The simplest varia-
tion on this theme is to base classification on ratios of
expression values, first introduced in a heuristic way in [2]
and independently developed as a general, data-driven
procedure, the TSP algorithm, by [3], and later applied to
learn cancer biomarkers and induce elementary predic-
tion rules for cancer diagnosis and prognosis in [4-6]. It
has also recently been applied to differentiate between
gastrointestinal stromal tumors and leiomyosarcomas [7],
resulting in a nearly-perfect two-gene classifier, and to pre-
dict response to the farnesyltransferase inhibitor tipi-
farnib in acute myeloid leukemia [8]. Specifically, one
need only compare the expression values among two
genes, thus providing a specific hypothesis for follow-up
studies.

The TSP algorithm is illustrated in Figure 1 for the Lung
data from [2], where the objective is to distinguish
between malignant pleural mesothelioma (MPM) and
adenocarcinoma (ADCA) of the lung. The purpose of this
example is only to visualize the TSP decision process, not
to re-analyze the Lung data. In the left panel, MPM and
ADCA samples are well-separated by comparing the
expression values of the genes KIR2DL3 and ROCK2
whereas in the right panel the comparison is based on
BIN1 and Anxa4. The high accuracy obtained, roughly
98%, corroborates the findings in [2], in which several
genes are first identified based on fold changes, standard
t-tests, expression cutoffs, etc., and then multiple ratios
are formed and used both individually and in combina-
tion. In contrast, the pairs in Figure 1 are unrestricted,
allowing for non-differentially-expressed genes to appear.
Whereas ad hoc, and not rank-invariant, the approach in
[2] illustrates the power and transparency of simple deci-
sion rules.

A remaining obstacle to an even broader applicability of
the TSP methodology is the heterogeneity of molecular
mechanisms underlying the same disease phenotype. In
cancer, for example, tumors that would look similar
under a microscope can present different expression pat-
terns. When this is the case, it is a challenge to identify sin-
gle pairs with good discrimination. This is illustrated by a
simple, artificial example in Figure 2. There are two latent
subclasses among the cancer samples, captured by the two
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Expression patterns for two pairs of genes in the Gordon lung study. In the Gordon lung study, there are two pairs of
genes which best discriminate between the MPM and ADCA (lung cancer). The figure shows graphs of the raw expression val-
ues for each of the two genes for the 31 MPM and 150 ADCA samples. The decision rule for the left pair is to choose MDM if
KIR2DL3 is more expressed than ROCK2 and choose ADCA otherwise; for the right pair, the rule is to choose MPM if BIN| is

less expressed than Anxa4.

relative orderings between gene 1 (in blue) and gene 2 (in
orange). These could be two genes whose activity is suffi-
cient to activate the same cancer-related pathway, or they
could each flag the activation of alternative cancer-related
pathways. Using these two genes alone we cannot distin-
guish between a normal and an ill patient based on their
relative ordering since the cancer phenotype can have
either ordering. However, if we combine these two genes
with a suitable "reference" gene, the cancer can then be
identified, since the reference gene, while relatively stable
overall, is the most highly expressed in most of the normal
samples but rarely in cancer.

Motivated by these considerations, as well as the broader
goal of extending TSP to more genes in order to increase
accuracy without sacrificing interpretability, we explore
the differing roles the genes play in the decision mecha-
nism and apply this methodology to two problems in
breast cancer. The first is of direct clinical applicability,
while the second is chosen because it provides opportuni-
ties for cross-study validation.

The Top-Scoring Triplet (TST) classifier is based on the
expression orderings among three genes. In both TSP and

TST, "score" refers to the apparent classification rate,
defined here as the average of sensitivity and specificity.
Given any triplet of genes, the classification rule is then
determined by maximum likelihood: choose the class for
which the observed ordering is most likely. The probabil-
ities (six for each class) are estimated from the training
data. As with TSP, there are no parameters to tune and
classification results are invariant to any form of data pre-
processing and normalization which preserves the rank-
ing among the expression values within a sample. Clearly,
TST is potentially more discriminating than TSP since
there are now six possible orderings and this refinement
of two-gene orderings can sometimes capture interactions
that are not accessible to the TSP classifier; in particular,
TST significantly out-performs TSP in detecting BRCA1
mutations. We refer to the family of methods encompass-
ing both TSP and TST as RXA, for "relative expression
analysis."

The simplicity of RXA for a small number of genes allows
for an exploration of the differing roles played by the
genes in phenotype distinction. Returning to Figure 1,
notice that both genes for the pair on the right are differ-
entially expressed, although BIN2 more so than Anxa4,
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Phenotype discrimination with gene triples. Expression pattern of normal and cancer samples, separated by the vertical
line. There are two latent subclasses among the cancer samples, represented by the two relative orderings between gene | and
gene 2. Whereas the normal and diseased samples cannot be separated by this relative ordering alone, refining it by a third
gene identifies the normal samples as those for which the pivot gene is the most expressed among the three.

whereas clearly only KIR2DL3 is differentially expressed
for the pair on the left, in which the gene ROCK2 serves as
a "pivot" or "reference". Moreover, the situation depicted
in the artificial example Figure 2 appears in our featured
application to detecting BRCA1 mutations: the top-scor-
ing triplet of genes contains a pivot gene, TMEM57, which
always sits between two differentially expressed genes,
PPP1CB and RNF14, in mutated tumors. PPP1CB encodes
for a protein shown to directly interact with BRCA1, and
is expressed at high levels in mutants. RNF14 is a co-factor
that modulates hormone nuclear receptors activity,
including the estrogen and androgen receptors, an activity
similar to that of the BRCAI protein itself, and is
expressed at low levels in mutants. The role of pivot genes
is elaborated in the Discussion.

In summary, we report on i) a computational advance,
namely a general RXA framework for phenotype identifi-
cation based on genomic features, including a rigorous
and systematic comparison with earlier approaches in a
variety of cancer studies; ii) a cross-study validation based
on the notoriously hard problem of predicting ER status
in breast cancer; and iii) a clinically relevant application
to predicting germline BRCA1 mutations in breast cancer,
including extensive bioinformatic analysis to provide bio-
logical interpretation for the proposed predictor.

Results

The performance of the TSP algorithm has been previ-
ously validated in [3-8]. This section is organized as fol-
lows. First, general validation results are presented which
demonstrate the advantages of bringing in a third gene for
a variety of well-known studies in molecular cancer diag-
nosis and subtype identification from microarray data.
Next, we focus on interpreting the decision rules in terms
of the different biological roles played by the three partic-
ipating genes. The main application - detecting BRCA1
mutations - is then presented. Our three-gene classifier
achieves an overall accuracy of 94% in cross-validation on
the combined van't Veer and Hedenfalk datasets, which
well exceeds the performance of several well-known
methods. Finally, we present a cross-study validation of
our methodology in the context of another important
classification problem in breast cancer - predicting ER sta-
tus.

General Validation

In Table 1 we compare the classification accuracy of two-
gene and three-gene versions of RXA for nine cancer data-
sets summarized in Table 2. The three-gene version is
TST(10, 10, 10), which restricts all three genes to the ten
most differentially expressed; see Methods. In order to
ensure a fair comparison, we restricted the two genes in
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TSP to be among the sixteen most differentially expressed.
Since the number of ways to select three genes from ten,
namely 120, is the same as the number of ways to select
two genes from among sixteen, the total number of candi-
date classifiers is identical.

Score permutation tests for TST(10, 10, 10) for six of the
nine datasets are depicted in Figure 3. For each dataset, we
randomly permuted the class labels 1000 times and com-
puted the score S(i, j, k), the average of sensitivity and spe-
cificity, for the top-scoring triplet. Artificial data created in
this way preserves both the sample sizes and the overall
dependency structure among the genes. Shown is the his-
togram of scores with the score of the real dataset marked
by a red cross. As can be seen, all six scores are highly sig-
nificant with p-values of zero.

The probability tables for these same six datasets are given
in Table 3 and the names of the genes in the top-scoring
triple are listed in Table 4. For example, from Table 3 we
see that, for the Colon study, the preferred ordering
among normal samples is x; <x; <x;, and x;, is never the least
expressed among these samples; as seen in Table 4, g; g,
g, represent VIP, DARS, FCGR3A. Similarly, in the Lung
data, among the MPM samples, gene g; is always the least

expressed, but never so among the cancer samples.

The histograms of scores for the top-scoring triple classi-
fier for the other three datasets are given in Figure 4. As
can be seen, the top scores for Prostate2 and Prostate3 are
still significant, although less so than for the six studies in
Figure 3, whereas the top score for the CNS dataset is at
best borderline significant. This may not be surprising in
view of the very small number of samples for the minority
class in both Prostate3 and CNS. Over-fitting is very diffi-
cult to avoid with only nine samples for one of the classes;
see Table 2.

Biological Roles

For the TSP algorithm, there are two prototypical situa-
tions: either both g; and g; are differentially expressed in
opposite directions or only g; is differentially expressed
and g; serves as a "pivot" or "reference" for g; in effect a
random threshold; see Methods. Call these two cases (d,
d) and (d, p). A biological mechanism leading to the (d, d)

http://www.biomedcentral.com/1471-2105/10/256

case may occur when the two genes are involved in com-
peting processes, e.g., one gene may be an oncogene and
the other a tumor suppressor gene.

The (d, p) case was illustrated in Figure 1 for separating
malignant pleural mesothelioma (MPM) and adenocarci-
nomas (ADCA): ROCK2 serves as a pivot for KIR2DL3,
which is up-regulated in MPM samples. The expression of
ROCK?2 is relatively stable across the two phenotypes. The
role of "pivot genes" is elaborated in the Discussion sec-
tion.

Several typical cases emerge for three genes. One is (d, d,
d), meaning that all three genes in the top-scoring triplet
are differentially expressed. This is illustrated for the Lung
study in the left panel of Figure 5, where the gene triplet is
the one selected by the TST(10, 10, 10) algorithm.
Another case is (d, d, p), signifying that two of the three
genes are differentially expressed and the third is not, serv-
ing instead as a reference for the other two. This is illus-
trated in the right panel of Figure 5; the gene triplet comes
from TST(10, 10), in which one of the three genes is unre-
stricted. This is also what emerges for the top-scoring tri-
plet in the BRCA1 study; see again the treatment of pivot
genes in the Discussion section

Identifying BRCA I-related Breast Cancer

We now consider the identification of breast tumors that
arose as the result of an inherited deleterious mutation of
the BRCA1 gene. BRCA1 is a tumor suppressor gene
whose altered function is associated with breast, ovarian
and other cancers [9]. Deleterious germline mutations of
BRCA1 have been estimated to occur in 1 in 40 Ashkenazi
Jews and 1 in 400 non-Ashkenazi [10] and are responsible
for a significant fraction of inherited breast cancer cases
[11]. Genetic testing for germline mutations is available
commercially. Testing is expensive and, despite significant
recent improvements, still incomplete in its sensitivity
[12]. For women newly diagnosed with breast cancer, and
a family history of the disease, knowledge of whether they
harbor germline mutations is of help in guiding decisions
about prevention of contralateral breast cancer and ovar-
ian cancer. Prevention options include radical surgery.
Therefore, the availability of inexpensive expression
markers for BRCA1 mutations based on tumor samples

Table I: Comparison of classification accuracies for a two-gene classifier, TSP, and a three-gene classifier, TST, for ten cancer studies.

Data Set Leukemia CNS DLBCL Colon Prostatel Prostate2 Prostate3 Lung GCM BRCAI
TST 98% 82% 95% 92% 93% 67% 95% 98% 82% 77%
TSP 91% 73% 98% 93% 89% 69% 91% 94% 79% 66%

The classification rates are estimated by leave-one-out cross validation. In both cases, the genes are restricted to a subset of differentially expressed
genes based on a Wilcoxon rank test; the details appear in §2.3 and §3.1. The subsets are selected to ensure that the number of possible two-gene
and three-gene classifiers are the same.
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Table 2: Nine cancer datasets used for comparing the classification performance of two-gene and three-gene versions of RXA.

Dataset Platform No. of Genes No. of Samples Reference
Class | Class 2

Colon cDNA 2000 40(T) 22(N) [40]
Leukemia Affy 7129 47(ALL) 25(AML) [41]
CNS Affy 7129 25(C) 9(D) [42]
DLBCL Affy 7129 58(D) 19(F) [43]
Lung Affy 12533 31(MPM) 150(ADCA) [2]
Prostatel Affy 12600 52(T) 50(N) [44]
Prostate2 Affy 12625 38(T) 50(N) [45]
Prostate3 Affy 12626 24(T) 9(N) [46]
GCM Affy 16063 190(C) 90(N) [47]

would significantly improve the clinical management of
these women, and contribute to more efficient prevention
within their families.

We apply the TST(10,10) algorithm (see Methods) to pre-
dict BRCA1 mutant status, using two breast cancer gene

expression microarray data sets available from the public
domain. The raw data can be downloaded from the sup-
porting websites of the two published manuscripts
[13,14]. The two studies, designated van't Veer and
Hedenfalk, are generated from two different platforms.
After data preprocessing and cross-platform matching (as
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Figure 3

Significance of top-scoring gene triples in different studies. The score histograms for the top-scoring gene triple for
one thousand random permutations of the class labels. Top row: Colon, DLBCL, Prostate| data. Bottom row: Leukemia, Lung,
GCM data. In each case, the red cross marks the top score on the real data.
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Table 3: Relative frequencies of the six possible orderings among the expression values of the top-scoring triple for various studies. .

Colon Study DLBCL Study Leukemia Study

Ordering Tumor Normal DLBCL FL ALL AML
| X <X; <X 0.125 0.045 0.362 0 0.340 0
2 Xi <X <X 0.4 0 0.569 0 0 0.04
3 X <X <X 0.075 0.864 0.052 0 0.660 0
4 X <X <X 0 0.091 0 0.684 0 0.08
5 X <X <X 0.4 0 0.017 0.053 0 0.76
6 X <X <X 0 0 0 0.263 0 0.12

Prostatel Study Lung Study GCM Study

Ordering Cancer Normal MPM ADCA Tumor Normal
| X <X <X 0.04 0 0 0.12 0.8 0.222
2 Xi <X, <X 0.1 0 0 0.827 0.113 0.5
3 X <X <X, 0.02 0.115 0.258 0.007 0.079 0.022
4 X <X <X 0.06 0.807 0.742 0 0 0.044
5 X <X <X 0.5 0.019 0 0.02 0.008 0.179
6 X <X <X 0.28 0.059 0 0.027 0 0.033

Each portion of the corresponds to one study with two phenotypes. For each study and each phenotype, the table shows the relative frequencies of
the six possible orderings among the expression values of the top-scoring triple for the samples in the study. The gene triple (g, g; g) for each

study is given in Table 4

described in Cope, L., Zhong, X., Garrett-Mayer, E., Parmi-
giani, G. and Gabrielson, E.: Cross-study validation of a
molecular profile for BRCA1-linked breast cancers, work-
ing paper), we obtain a combined dataset with 1658 fea-
tures and 118 samples. The two classes (sometimes
referred to as "phenotypes" although they refer to proper-
ties of germline DNA) are BRCA1l-mutant cancers and
non-BRCA1 cancers, with sample sizes 25 and 93, respec-
tively.

For the TST(10,10) algorithm, the score for the top-scor-
ing triplet is .936. The estimated gene expression ordering
probabilities for the genes in this triplet are shown in

10
Table 5. Since there are about [ ) ] x 1658 ~ 100,000 tri-

plets having at least two differentially expressed genes, a
high score might happen by chance. However, a permuta-
tion test demonstrates that the p-value of score of the top-
scoring triplet is virtually zero; see Figure 6.

Table 4: Top scoring triples for each of six studies.

Gene name

Study g g; 8
Colon VIP DARS FCGR3A
DLBCL YWHAZ SNRPB TXPBI5I
Leukemia ZYXIN CST3 CCND3
Prostatel HPN NELL2 TMSL8
Lung SEPPI ARL6IP5 BIRC3
GCM BTN2AI NT2RAMI PHLDB2

The three genes in the top-scoring triplet for each of the six studies.

Performance

We compare the performance of the TST(10,10) algo-
rithm with TSP and four well-known machine learning
methods: naive Bayes (NB), k-nearest neighbor (k-NN),
support vector machine (SVM), and random forest (RF).
We use the WEKA machine learning package [15] which
contains all but TSP and TST, as well as several R packages.
For TSP and TST we have developed an R package for rel-
ative expression analysis (RXA) which incorporates all the
versions of TSP and TST used in this paper and which is
available for download at https://jsharejohnsho
kins.edu/dnaiman1/public html/rxa/. For NB, Fk-NN,
SVM and RF, in order to optimize performance, we report
the best results we obtained by taking either the WEKA
default parameters or systematically exploring the param-
eter spaces, estimating generalization errors with cross-
validation. In the case of SVMs, this included trying a wide
range of combinations for the scale and penalty parame-
ters with the RBF kernel. Table 6 summarizes the results of
LOOCV. As seen, TST has the best overall classification
accuracy (.936) and the best sensitivity (1.0). (The
LOOCV rate for TST is the same as the re-substitution rate
because the same top-scoring triple is found in each loop
of the cross-validation.) Equally noteworthy, TST involves
only three genes whereas the four traditional machine
learning methods use many more.

The top-scoring gene triplet is (PPP1CB, TMEMS57,
RNF14). Table 5 gives the empirical probability distribu-
tion over the six possible orderings of expression values
for each of the two phenotypes. Interestingly, the expres-
sion values of this triplet are in the same order
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Insignificance of top-scoring gene triples in some
studies. The score histograms for the top-scoring gene tri-
ple for one thousand random permutations of the class labels
for Prostate2, Prostate3 and CNS data. Small sample sizes
reduce score significance.

RNF14 < TMEM57 < PPP1CB

for all BRCAl-mutant samples; for nonBRCA1l-mutant
samples, the probability distribution is dispersed, almost
uniform.

In our study there are 12 nonBRCAl-mutant samples
which exhibit the relation RNF14 <TMEM57 <PPP1CB, of
which 7 are "basal-like" tumors, a subtype of breast cancer
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associated with lack of expression of the estrogen receptor
and poor prognosis. Interestingly a strong association
between the "basal-like" subtype and BRCA1 mutation
has been suggested in a number of molecular and patho-
logical studies [16,17].

The top panel in Figure 7 shows the expression pattern of
the top-scoring triplet. We can see that PPP1CB is up-reg-
ulated in BRCA1 samples, RNF14 is down-regulated in
BRCA1 samples, while TMEM57 is rather stable across the
two phenotypes. Both PPP1CB and RNF14 are highly dif-
ferentially expressed, actually among the top three, with p-
values of 2.09E - 08 and 7.08E - 09, respectively.

The benefit of the reference gene TMEM57 is displayed in
the bottom panel of Figure 7. The decision boundary of
the two-gene TSP classifier based on PPP1CB and RNF14
is the line y = -x: the upper right area corresponds to
PPP1CB > RNF14 and the lower left area corresponds to
RNF14 > PPP1CB. Incorporating TMEM57 into the deci-
sion narrows the upper right "mutant" region to the indi-
cated rectangle where RNF14 <TMEMS57 <PPP1CB. The
samples in the two triangular areas would be misclassified
based on the expression ordering of the gene pair PPP1CB
and RNF14 alone whereas they are correctly classified by
the TST algorithm.

10 \
—k— Gene Sepp1
—e—Gene Vcam1
Gene GLRB

—

10° S : :
0 50 100 150 200

Expression patterns for two top-scoring triplets for the Lung study. Left: (d, d, d) case; all three genes are differen-
tially expressed. Right: (d, d, p) case; two of the genes are differentially expressed and the other, GLRB, serves as a pivot.
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Table 5: Ordering probabilities for the top-scoring triplet in the
BRCAI study.

Ordering BRCAI nonBRCAI
X <X; <X;3 0 204
X <X3<X, 0 226
X, <X, <X3 0 065
X, <X3<X, 0 172
Xy <X <X, 0 204
X5 <X, <X, | .129

Estimated probabilities for the six possible orderings among the three

genes in the top-scoring triplets for each of the two classes. Here, X,

Xy, and X; refer to the expression values of PPP|CB, TMEM57 and

RNF 14, respectively. Mutant samples are characterized by a single

preferred ordering whereas non-mutant samples display all orderings.
Cross-Study Validation for ER Status
Estrogen receptor (ER) has been studied in clinical breast
cancer for more than 30 years. Approximately two-thirds
of all breast cancers are ER+ at the time of diagnosis [18].
The expression of ER has important implications for
breast cancer diagnosis and treatment. In particular, ER
status correlates well with response to hormonal therapy:
ER+ patients are much more likely to benefit from such
therapy [18]. Research shows that ER+ and ER- tumors
display remarkably different gene-expression patterns
[19]. Here we use the TST method to classify tumors
according to their ER status.

Three breast cancer microarray data sets are included in
this study and they are denoted as Miller, Sotiriou and
expObreast. The raw data of Miller and Sotiriou can be
downloaded from Gene Expression Omnibus or support-
ing web sites [20,21], and expObreast can be downloaded
from [22]. Miller and Sotiriou are generated from the
Affymetrix HGU133a microarray platform and expO-
breast are generated from HGU133plus2. MAS5 was used
to pre-process the raw data to get probe sets level data. In
order to match the two microarray platforms, we only
keep those probe sets that are present on both. There is an
88-patient overlap between Miller and Sotiriou, so we
exclude the replicate patients from the original Sotiriou.
The sample sizes and the phenotype information are
shown in Table 7.

Two types of cross-study validation were performed, each
involving learning three classifiers. In the first, there is one
classifier for each of the three ways of integrating two of
the three microarray data sets to obtain a training set and
then using the third one for testing. In the second case,
each classifier is trained on only one dataset and tested on

http://www.biomedcentral.com/1471-2105/10/256

the data obtained by merging the other two. We restrict
our search to genes on five breast cancer related pathways.
There are 69 such genes present on the microarray, which
correspond to 128 probe sets. Information about the five
pathways and the 128 probe sets can be obtained from the
additional files 1 and 2.

Table 8 provides the test results for TSP and TST (path)
(see Methods). The results are similar for TSP and TST,
and for the two types of cross-study validation, and both
methods generalize well from training to testing. The rea-
son that TSP performs as well as TST when training on a
single dataset is that TST, which estimates more parame-
ters, is probably more affected by the reduction in sample
size.

Figure 8 shows the reproducibility of top-scoring pairs
and triplets. In both pictures there is an antenna located at
the upper right corner. These are the pairs (triplets) that
work well on both training and testing data sets, and
hence we expect it to involve a small minority of points.
These two pictures indicate that both TSP and TST are
reproducible across studies.

Discussion

Function and Interactors of TST Genes

In addition to the role of BRCA1 mutations in familial
breast cancer, the reduced expression, or incorrect sub-cel-
lular localization of BRCA1 protein, are postulated to be
important also in the pathogenesis of sporadic breast can-
cer. Evaluation of BRCA1 protein expression in 1940
breast cancer cases has shown that about 50% of the
tumors showed loss of nuclear expression or cytoplasmic
localization of the protein [23]. The evidence of biological
roles of BRCAT1 reveals multiple functions for this protein,
that may contribute to its tumor suppressor activity,
including regulation of cell cycle progression, DNA repair,
DNA damage-responsive cell cycle check-points, apopto-
sis, and the regulation of a set of specific transcriptional
pathways like the androgen receptor's and ESR1 (reviewed
in [24]).

The top scoring triplet identified in our BRCA1 analysis
involves PPP1CB, TMEM57, and RNF14. The PPP1CB
gene is located on chromosomal cytoband 2p23, and
encodes one of the three catalytic sub-units of the phos-
phatase-1 (PP1) serine/threonine-specific protein phos-
phatases. This multimeric complex is involved in protein
dephosphorylation within a variety of cellular processes,
including cell division, muscle contractility, glycogen
metabolism, protein synthesis, and HIV-1 viral transcrip-
tion.

The RNF14 gene, also known as ARA54, is located on
chromosomal cytoband 5g23.3-q31.1 and encodes for a
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Significance of the top-scoring triple in the BRCAI
study. Permutation test for the score of the top-scoring tri-
plet in the BRCAI study. The score of the top-scoring triplet
exceeds the scores under every one of 1,000 random per-
mutations of the class labels, making the triplet found highly
significant.

protein involved in the modulation, by direct protein-pro-
tein interaction, of a number of hormone nuclear recep-
tors, including the androgen receptor (AR), the estrogen
receptor (ESR1), and the growth hormone receptor
(NR3C1). BRCA1 has been shown to directly interact with
the andogen receptor, increasing androgen-dependant
transcription [25,26]. This supports our observation that
the AR cofactor, RNF14 has very low expression in those
samples in which BRCA1 function is impaired. Finally,
the TMEM57 gene, located on chromosomal band
1p36.11, encodes for a protein developmentally regulated
in the brain, with predominant expression in differentiat-
ing neurons [27]. The biological role of this protein is not
yet known.

Since a recent study by Winter and colleagues showed that
all three isoforms of PP1, including PPP1CB, interact with

Table 6: Comparison of accuracies in predicting BRCAI
mutations.

Method TSP TST NB k-NN SVM RF
Accuracy 740 936 .560 714 766 .664
Sensitivity .640 1.00 .280 .600 .640 .360
Specificity .839 871 .839 .828 .892 .968

Estimates are based on leave-one-out cross-validation and accuracy is
defined as the average of sensitivity, the percentage of correctly
classified BRCA| samples, and specificity, the percentage of correctly
classified nonBRCAI samples.

http://www.biomedcentral.com/1471-2105/10/256

BRCA1 [28] we used protein-protein interaction (PPI)
data to understand whether the triplet genes (PPP1CB,
TMEMS57, and RN F 14) directly interact with each other
and with BRCA1. In addition to the interactions described
by Winter and colleagues, PPI interaction gene lists
included information from three sources: the Human Pro-
tein Reference Databases (HPRD) [29], BioGrid [30] and
the Biomolecular Interaction Network Database (BIND)
[31]. All protein-protein interactions reported in any of
these databases to involve the triplet genes were used,
regardless of the techniques employed to identify the
interaction, or the type of evidence supporting its inclu-
sion in the databases. We represented PPI data as adja-
cency matrices (see Figure 9) and displayed the
corresponding networks using undirected graphs, where
each node represents a protein while edges represent
interactions.

No PPI interactions were reported for the pivot gene
TMEM57, while the other two genes (PPP1CB, RN F 14)
were found to interact with several other proteins.
Although none of such inter-actors is in common between
the two proteins, the PPI network revealed a number of
shortest paths connecting these two proteins and involv-
ing a minimum of two proteins (Figure 10). One such
path accounts for BRCA1 and AR, while the other involves
ESR1, SM ARCB1 (SWI/SNF related, matrix associated,
actin dependent regulator of chromatin, subfamily b,
member 1), NR3C1 (the growth hormone nuclear recep-
tor), and Nucleolin (NCL). Overall, this analysis suggests
that RN F 14 and PPP1CB are part of a regulatory network
modulating gene expression and involving BRCA1 and a
number of hormone nuclear receptors.

Pivot Genes

As has been seen, one very interesting scenario that often
arises in the application of TSP and especially in the appli-
cation of TST, is that one of the genes appears to play a
passive role, serving as a pivot point or benchmark expres-
sion level for the others. This situation is illustrated well
in Figure 2, where the key biological signal of cancer is
that at least one of the pathway-activator genes is
expressed above the level of the pivot gene. It is difficult to
assign roles to the genes in a triplet observed in experi-
mental data with any certainty, but expression patterns
consistent with the pivot gene theory have been observed
very frequently in a wide variety of experiments and we
think it important to consider the implications of this
when developing and evaluating methodology. In Finding
Triplets in Practice of the Methods section, we present prac-
tical methods for reducing the triplet search space by rec-
ognizing such a division of labor among the genes in a
triplet and pre-filtering for genes that, say, could serve as a
pivot. In this section we discuss additional biological and
technical consequences of the pivot gene theory.
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Expression patterns for the top-scoring BRCAI triplet. Top: Expression pattern of the top-scoring triplet (PPPICB,
TMEMS57, RNF14). The horizontal axis represents samples, with a vertical line separating the BRCA| negative from the BRCAI
positive samples. The vertical axis is the rank of each genes' expression level within each sample. Bottom: Scatter plot of rank
differences. The horizontal axis is the difference between the ranks of PPP1CB and TMEM57 within each sample, while the ver-
tical axis is the difference between the ranks of TMEM57 and RNF14 for each sample. The shaded area corresponds to the

ordering that is unique to the BRCAI| mutant cases.

There are technical issues associated with expression
microarrays that make it difficult to find a good pivot gene
in practice. The intensity level of a microarray probe
depends on a variety of technical variables in addition to
the biological variable of interest, transcript abundance,
and so the measured intensity for gene A may exceed that
of gene B even when B is present in greater quantity. In
single color microarrays, these probe effects can over-
whelm sample to sample differences in gene expression,
driving correlations in excess of 95% when expression
data obtained from very different samples, but measured
on the same array platform are compared. This works two
ways: the availability of a large number of probes with rel-

atively constant intensities at various levels should make
it quite easy to find efficient pivots when working on a sin-
gle platform, while on the other hand, the selected pivot
gene may not sit at the same level relative to its partners in
the triplet when measured by another technology.

Two color arrays offer additional technical challenges and
introduce study design issues as well. Classical house-
keeping genes, expressed at near constant levels in all
cells, should yield expression ratios of 1 for any two sam-
ples and so may not work well as benchmark expression
levels for other genes. The use of two different dyes for the
two samples on an array introduces a technical effect that
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Table 7: Phenotype information for the cross-study validation.

Data Set ER- ER+ Total
Sotiriou 30 65 95
Miller 34 213 247
expObreast 60 113 173

continues to slightly bias the estimated ratios of individ-
ual genes even though the broadest effects are well con-
trolled by standard pre-processing methods [32-34]. Thus,
as on single color arrays, pivot genes identified on a two-
color platform may be effective only within that technol-

ogy.

An additional concern arising in two-color studies is the
fact that both samples on an array contribute to the
expression ratio. The reference samples included in one
study may determine the level of a potential pivot gene or
in extreme cases, even drive apparent differential expres-
sion that is in fact not present in the population of interest
and which therefore will not be observed in another study
with a different design.

The successes of the RXA approach clearly demonstrate
that these technical challenges can be overcome, and we
believe that steps can be taken in implementation to min-
imize the threat to performance. Careful preprocessing to
minimize the influence of technical effects is a crucial
step. Principled pre-filtration of array features, as dis-
cussed in Finding Triplets in Practice of the Methods sec-
tion, could help by eliminating a large number of
apparently irrelevant and possibly misleading probes
from consideration. We also recommend that the RXA
classifiers be made as robust as possible by maximizing

Table 8: Comparison of methods in prediction of ER status.
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the diversity of samples and platforms included in the
training set.

Biological Findings

In the present study we apply the TST algorithm to predict
BRCA1 mutant status using data from the public domain.
Within the training set, our approach enables a correct
classification of all BRCA1 mutants considered, while
only 12 sporadic breast cancers are misclassified. A
number of factors may account for the BRCA1-like behav-
ior of some of the wildtype tumors. For example, BRCA1
function may be altered by somatic mutation, methyla-
tion or other genetic alterations, or it may be impaired by
incorrect cellular localization. The "basal-like" subtype of
breast cancer is associated with lack of expression of the
estrogen receptor and poor prognosis. A strong connec-
tion between the "basal-like" subtype and BRCA1 loss of
function has been suggested in a number of molecular
and pathological studies [16,17]. Among the 12 sporadic
breast cancer that were misclassified by TST, 7 are "basal-
like". Since there are 14 "basal-like" samples in total, the
probability of seeing 7 of them in 12 randomly chosen
samples is indeed small (.0002). Therefore, the "basal-
like" types are over-represented in the 12 nonBRCAI-
mutant samples which are classified as BRCA1l-mutant
cancers by TST, arguing for the biological relevance of the
top-scoring triplet.

The analysis of the protein-protein interactions among the
top-scoring triplet genes and BRCA1 further suggests that
the classifier has a biological foundation. No interactors
were found for TMEM57, possibly reflecting its role in the
classifier as the pivot gene, while the other two genes
showed interactions with many other proteins involved
in breast cancer biology including the BRCA1 protein
itself.

Method Training Data (two data sets)
Sotiriou+Miller expObreast+Sotiriou expObreast+Miller
TSP .869 (.950, .788) .803 (.676, .930) .727 (.533, .920)
TST .867 (.950, .783) .876 (.882, .869) .769 (.600, .938)
Training Data (one data set)
Method Sotiriou Miller expObreast
TSP .883 (.926, .840) .847 (.789, .904) .786 (.641, .932)
TST 841 (.936, .745) .852 (.800, .904) .806 (.688, .924)

Top: classification results when training on the data set obtained by integrating two of the three microarray data sets and testing on the third one.
Bottom: classification results when training on one of the three microarray data sets and testing on the data set obtained by integrating the other
two. The numbers in the parentheses are the sensitivity and specificity levels respectively.
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fraining accuracy

Reproducibility of top-scoring pairs and triples. Panel A: Each point represents a candidate gene pair. For each pair, the
probabilities of the two orderings are estimated on the combined expObreast and Miller datasets and the classifier is tested on
Sotiriou. The x-coordinate of a point represents the training accuracy and the y-coordinate represents the testing accuracy.

Panel B: Same as left panel, but for all triples of genes.

PPP1CB is one of the three catalytic sub-units of the pro-
tein phosphatase PP1. A 2007 study shows that all three
isoforms of PP1 interact with BRCA1 [28]. In the same
study, RT-PCR expression analysis indicates that sporadic
breast cancers have lower expression levels of PPP1CB
than do normal tissues. The gene expression microarray
data that we use show a higher expression level of PPP1CB
in BRCA1-mutant cancers than in sporadic breast cancers.
Moreover, the literature also suggests that PPP1CB is a dis-
criminator gene between BRCAl-mutant and BRCA2-
mutant tumors for both breast and ovarian cancers [35].

Although no direct links exist between RNF14 and
BRCA1, our PPI analysis shows that indirect interactions
occur, and they involve important proteins in breast can-

cer biology, like the estrogen and androgen receptors. The
expression of the estrogen receptor is a fundamental prog-
nostic factor in breast cancer: hormonal therapy is used in
adjuvant settings based on whether cancer cells express it
or not. Androgen receptor signaling is also emerging as a
relevant pathway for breast cancer biology. Unlike pros-
tate cancer, where AR is sustaining growth of cancer cells,
androgen signaling in breast cancer represents a restraint
to cancer cell growth, and it has been shown that AR
expression correlates with a better prognosis [36]. Inter-
estingly, reduced or altered BRCA1 protein expression has
been shown to be associated with lack of progesterone
and ESR1, and expression of the AR [23]. From this per-
spective, it is important that AR activity is modulated by
numerous factors, including RNF14 and BRCA1 [36].
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PPP1R2
PPP1R7
PPP1R8
TMEMB33
SH2D4A
PPP1R11
ZFYVE9
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Protein-protein interaction adjacency matrix. Protein-protein interaction adjacency matrix for all the protein-protein
interactors of PPP | CB, RNFI4, TMEM57. Protein names appear as columns and row names, direct interaction are shown in

white.

While elucidation of the exact mechanisms by which loss
of BRCA1 function affects expression of PPP1CB and
RNF14 awaits additional laboratory work, the evidence
we presented strongly suggests that the TST classifier
described here has properties that go beyond classification
performance and that are capturing genuine biological
mechanisms underlying breast cancer pathogenesis.

Conclusion

We have developed and validated a general RXA approach
to building simple and interpretable classifiers using trios
of features. Other approaches have been advanced for
selecting informative gene triplets and three-gene interac-
tions from expression microarray data. Recently, methods
based on fuzzy logic [37], liquid association [38] and a
three-way interaction model [39] have been proposed. In
[37], activator-repressor-target triplets are identified using
logical relationships among the genes. Liquid association
is aimed at capturing the dynamic association between a
pair of genes; the correlation between the expression val-
ues of a gene pair depends on the expression level of a
third gene. The three-way interaction model is similar,

except the third gene plays the role of a qualitative switch
rather than a continuous measure as in liquid association.
However, none of these approaches involve inferring phe-
notype-specific models or classifiers, and none are rank-
based.

While statistical and machine learning techniques have
contributed significantly to the interpretation of the large
and complex data sets generated by high throughput
genomic techniques, the direct application of these tech-
niques in the clinical management of patients is slowed by
challenges in interpretability and cross-study reproduci-
bility. Algorithms based on the relative level of a small
number of genomic features provide a formidable simpli-
fication, yielding progress in both interpretability and
reproducibility, often at little or no cost in terms of accu-
racy. This article demonstrates a new incarnation of this
philosophy, based on three-gene classifiers, provides a
general framework for understanding the roles of the
genes involved, and illustrates its potential in the difficult
and dlinically relevant problem of identifying BRCA1
mutation carriers.
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Figure 10

Protein-protein interaction network. Protein-protein
interaction network involving PPPICB, RNFI4, TMEM57, and
BRCAI. TMEMS57 has no interactors, while RNFI14, TMEM57
are connected through BRCA| and AR, ESRI and BRCAI,
through SMARCIB and NCL, or through NR3CI and
SMARCBI. Genes from the top-scoring triplets are shown in
pink, BRCAI in yellow, the other connecting proteins in light
blue.

Methods

Let X = (X;, X,,.... X¢;) denote the expression values of G
genes (g,, .-~ §) on an expression microarray. We
regard X as a random variable. Our objective is to use X to
distinguish between two conditions or phenotypes,
denoted Y = 1 and Y = 2, for example "BRCA1 mutation"
vs "'no BRCA1 mutation", "ER+" vs "ER-" status, or
"tumor” vs "normal". The class label Y is another random
variable.

A classifier f associates a class label f(X) € {1, 2} with each
expression vector X. It is learned from a training set with
N independent and identically distributed samples of (X,
Y), among which there are N, samples of class 1 and N, =
N - N, samples of class 2. In order to evaluate the perform-
ance of f, we estimate the generalization error e(f) = P(f(X)
#Y) using either an independent test set (in the ER status
study) or cross-validation (in the BRCA1 study). The clas-
sification rate is 1 - ¢(f). In the absence of specific prior
information about class likelihoods, and in order to bal-
ance sensitivity and specificity, we assume P(Y = 1) = P(Y
= 2) = 0.5; this makes more sense than using the frequen-
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. N N . ..
cies Wl and T?- observed in the training samples as

these can be somewhat arbitrary and usually do not reflect
the population statistics. Equivalently, we measure per-
formance by the average of sensitivity, defined by P(f(X) =
1|Y = 1) and specificity, defined by P(f(X) = 2|Y = 2).

Given any set of n genes {g; g;...}, there are n! possible
orderings among the corresponding expression values {X;,
Xj,...}. Our decision rules are based only on the ordering
or ranks of the expression values within a sample. For n =
2, there are clearly two possible orderings: X; <X;and X; >
X;. For n = 3 there are six possible orderings among {X;, X
X;}. (Ties are very rare, but there is a simple mechanism
for handling them that we explain below.)

Brief Review of TSP

In [3] and subsequent papers about TSP, the discriminat-
ing power of each pair of genes (g; g;) was measured by
the "score" [P(X; <Xj|Y = 1) - P(X; <Xj|Y = 2)|, where the
two probabilities are estimated from the training samples.
Moreover, in [5] a "secondary score" was introduced
which allows for a unique top-scoring pair to be selected in
case several pairs of genes obtained the same primary
score.

Suppose (g; &) is the top-scoring pair of genes and assume
these genes are ordered so that P(X; <X;|Y = 1) > P(X; <X;|Y
= 2). The TSP classifier f(X) depends only on the observed
ordering between X; and X, and chooses the class for
which this ordering is the most likely:

X 1 ifX,-<Xj,
fiX)=1, ifX; > X;.

Notice that the average of sensitivity and specificity of f is

(i, j) %(P(Xi<Xj|Y:1)+P(Xi>Xj|Y:2))

= %(P(Xi<Xj|Y=1)+1—P(Xi<Xj|Y=2))

11
= E+E|P(X1—<X]—|Y=1)—P(X,-<X]-|Y=2)|

Hence, maximizing the difference of probabilities over all
pairs (i, j) is the same as maximizing the average of sensi-
tivity and specificity, and hence consistent with our meas-
urement of performance.

TST: Gene Triplets

Now consider any gene triplet {g; g; g,}; the six possible
orderings will be denoted by ,..., 4 see the lefthand
panel of Table 3. Again, for simplicity, we've assumed no
ties.
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For each possible ordering ,,, m=1,..., 6, letp,..., p, (resp.,
G1--+ 4¢) be the probabilities of the corresponding events
under Y = 1 (resp., Y = 2). For instance, p, = P(X; <X, <X;|Y
= 1) and g5 = P(X; <X; <X,|Y = 2). These probabilities are
estimated from the relative frequencies in the training set.
(Ties are handled in a natural way: instead of increment-
ing the count of a single permutation by one, the count of
every possible one of the tie-breaking permutations is
incremented by the reciprocal of the number of such per-
mutations. For example, if X; = X; <X for some sample, the
counts of permutations (i, j, k) and (j, i, k) are each incre-
mented by 1/2.) These relative frequencies are displayed
in Table 3 for six different studies. For example, for the
Colon study, 40% of the samples exhibit the ordering x;
<X, <X; for the top-scoring triple.

Given any gene triple, the associated classifier fj;,(x)
depends only on the ordering among x;, x;, x; and chooses
the class for which the ordering is most likely. That is, if
the ordering , is observed among x;, x; x,, then

1, ifp, >q,
2, ifp, <qp-
(If p,, = q,,, the decision is split between the two classes.)

Again, the score of the triple is just the average sensitivity
and specificity of fi;, which can be expressed in terms of

{pn} and {g,,}:

fijk(X) = {

S(i, j k) = %(P(fijk(x) =1Y =1)+P(f.(X) = 2]Y = 2))

6
1
= mz_fmax{pm,qm} .

For example, in the Leukemia study, the triple in Table 3
has a perfect score: S = 1.

If multiple gene triplets achieve the same top score, a sec-
ondary score is used to break the tie and select a unique
top-scoring triplet. For any triplet (g; g; 8;), the secondary
score is the sum of the three pair scores I'(i, j, k) = S(i,
7)+S(i, k)+S(k, j).

Finding Triplets in Practice

As the examples in Table 1 and Figure 2 show, adding a
third gene to a gene pair may improve performance. But it
also raises computational and estimation issues. While
the complexity of an unrestricted search is evidently order
G2 for TSP, it is order G3 for TST. With thousands of tran-
scripts, it is not feasible to score all possible triplets. A
more serious concern, given the sample sizes, is over-fit-
ting.
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To address both of these issues, we consider three meth-
ods for accelerating the search and preventing over-fitting,
all based on filtering the full set of G genes. Two are based
on standard gene filtering with statistical tests of signifi-
cance and the third is based on utilizing prior biological
information. Undoubtedly some information can be lost;
in fact, there are examples of studies in which the (cross-
validated) performance of unrestricted TSP exceeds that of
a search confined to differentially expressed genes. How-
ever, the results reported here show that, for TST, the
amount of remaining information is sufficient for high-
accuracy classification.

There are several different ways to measure differential
expression; we use the Wilcoxon rank sum test. In keeping
with the overall rank-based nature of RXA, we do not calcu-
late test statistics based on raw expression values. Instead,
we first replace the expression value of each gene by its rank
within the sample. The gene with the smallest expression
value has rank 1, the next smallest rank 2, and so forth up
to rank G. The expression data from the n-th sample
becomes (R,,, R,,.... R¢,) where R;, is the rank of gene g;
within the sample. We then assign a p-value to each gene g;
based on the Wilcoxon rank sum test for the two samples

(Rju Rjgeee Rin,) and (Rjn 1 Rjn s2re o Rin on,) -

e Three Differentially Expressed Genes: The TST(10,
10, 10) algorithm restricts the search for triplets to the
ten most differentially expressed genes in the dataset.
For G ~ 104, this reduces the search space from order

10
1012 to [ 3 J = 120, in which case finding the top-

scoring triple, even estimating error rates with cross-
validation, is very fast. Equally importantly, the prob-
lem of over-fitting - find spurious triples - is virtually
eliminated, as permutation tests demonstrate; see Gen-
eral Validation in the Results section. Of course the dis-
advantage is that pivots are excluded.

e Two Differentially Expressed Genes: The TST(10,
10) algorithm restricts two of the three elements of the
triplet to the ten most differentially expressed genes;
the third gene may be chosen from among all genes in
the study. This allows for pivots but is still manageable
computationally.

¢ Restrictions to Appropriate Pathways: The last
option, denoted TST(path), restricts all three genes to
lie in certain pathways related to the phenotypes. This
is based on the assumption that genes on related path-

Page 16 of 18

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:256

ways behave differently from one phenotype to the
other, and thus their ordering relationship may
change accordingly. Using appropriate prior informa-
tion, we then reduce the search space and concentrate
on biological meaningful gene sets.

In view of the "reversal" nature of the TSP and TST deci-
sion rules, another possibility, not pursued here, would
be to initially search for pairs of genes which are negatively
correlated.

Estimating Classification Rates

Once a gene pair (TSP) or gene triplet (TST) is chosen,
classification is based on maximum likelihood for the
observed ordering. If an independent test study is availa-
ble, we use these samples to estimate prediction accuracy.
Otherwise, leave-one-out cross validation
(LOOCV): one sample is left out from the training data,
the top-scoring gene triplet is selected form the remaining
data and the corresponding classifier is applied to the left-
out sample. The estimated prediction rate is then

we use

(a2 _
1-3 ( Ny TN, ) , where ¢;and e, are the total numbers of

misclassified samples for classes 1 and 2 respectively. Nat-
urally, filtering is performed within each loop and the top-
scoring triples may vary from loop to loop. The genes
reported are those which are found on the whole training
set.
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