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Abstract
Background: With the availability of the Affymetrix exon arrays a number of tools have been
developed to enable the analysis. These however can be expensive or have several pre-installation
requirements. This led us to develop an analysis workflow for analysing differential splicing using
freely available software packages that are already being widely used for gene expression analysis.
The workflow uses the packages in the standard installation of R and Bioconductor (BiocLite) to
identify differential splicing. We use the splice index method with the LIMMA framework. The main
drawback with this approach is that it relies on accurate estimates of gene expression from the
probe-level data. Methods such as RMA and PLIER may misestimate when a large proportion of
exons are spliced. We therefore present the novel concept of a gene correlation coefficient
calculated using only the probeset expression pattern within a gene. We show that genes with
lower correlation coefficients are likely to be differentially spliced.

Results: The LIMMA approach was used to identify several tissue-specific transcripts and splicing
events that are supported by previous experimental studies. Filtering the data is necessary,
particularly removing exons and genes that are not expressed in all samples and cross-hybridising
probesets, in order to reduce the false positive rate. The LIMMA approach ranked genes containing
single or few differentially spliced exons much higher than genes containing several differentially
spliced exons. On the other hand we found the gene correlation coefficient approach better for
identifying genes with a large number of differentially spliced exons.

Conclusion: We show that LIMMA can be used to identify differential exon splicing from
Affymetrix exon array data. Though further work would be necessary to develop the use of
correlation coefficients into a complete analysis approach, the preliminary results demonstrate
their usefulness for identifying differentially spliced genes. The two approaches work
complementary as they can potentially identify different subsets of genes (single/few spliced exons
vs. large transcript structure differences).

Background
The Affymetrix Exon 1.0ST arrays contain approximately
5.5 million probes which are grouped into 1.4 million

probesets, targeting over 1 million exons. The data gener-
ated from these probe signals can be summarised into
probeset signals to provide a measure of expression of
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individual exons. These probesets in turn can be assem-
bled into virtual transcript clusters based on annotations
of gene structure. By combining signals from probesets
mapping to the same transcript cluster, an expression
measure for that transcript cluster (gene) can be calcu-
lated. The arrays make it possible to observe differential
exon inclusion or skipping, therefore providing an extra
dimension of genomic information beyond the classical
gene expression results from microarrays [1].

Gene-level summary and analysis
The main challenge for gene-level analysis is estimating
reliable gene expression measures from the probe signals.
Probesets are associated only with exons and the grouping
of exon probesets into genes is a dynamic post-design
process [2] based on genome annotations obtained from
sources of varying quality (RefSeq genes, mRNAs and
ESTS from Genbank, and predictions by ab-initio methods
such as GENSCAN). The array design includes probesets
targeting predicted exons, which though have lower con-
fidence annotations, enable the detection of novel exons
and splicing events. However, including such probesets to
estimate gene expression can have a negative as exons
with low confidence annotation, such as computational
exon predictions, will have a lower probability of being
present in the cell compared with well-annotated exons.
Affymetrix have therefore classed probesets into 3 catego-
ries: core probesets (based on RefSeq transcripts and full-
length mRNAs), extended probesets (this includes the
core probesets plus probesets mapping to exons with
cDNA-based annotations) and full probesets (includes
the core and extended probesets as well as those mapping
to exons with ab initio predictions). Analysis of exon array
data by Xing et al. [3] suggests that extended and full
probes are usually poor indicators of overall gene expres-
sion. Estimating gene-level expression is further affected
by the degree of alternative splicing and the number of
cross-hybridising probes (probes that hybridise to
sequences other than the target sequence). If a gene con-
tains a large number of core probesets that target alterna-
tively spliced regions this may lead to under-estimation of
overall gene expression, while a large number of cross-
hybridising probesets may lead to over-estimation of
overall gene expression.

There are two commonly used algorithms for generating
gene-level summaries from the raw exon array data: RMA
(Robust Multichip Average) [4] and PLIER (Probe Loga-
rithmic Intensity Error) [5]. These are implemented in the
Affymetrix Power Tools (APT) software which is freely
available from the Affymetrix website. APT allows the
selection of either the core, extended or full Affymetrix
transcript cluster annotations for gene-level signal estima-
tion. The Affymetrix transcript cluster library files, which
are used by APT to determine which probesets should be

used for generating gene signals, only include unique
probesets. This reduces errant gene signal estimations due
to cross-hybridising probes. Robust methods such as RMA
and PLIER should be minimally affected by a limited
amount of alternative splicing at a particular locus [6], but
are still prone to misestimates when a large number of
exons are differentially spliced.

Once the gene-level summaries have been generated, the
data can be analysed to identify differentially expressed
genes between sample groups, using a statistical method
of choice. A very popular Bioconductor [7] package used
for differential expression analysis is the Linear Models for
Microarray Analysis (LIMMA) [8]. The package simplifies
the analysis of complex experiments by using linear mod-
els to analyse the data, making it possible to simultane-
ously carry out multiple comparisons between sample
groups. The analysis uses a moderated t-statistic which has
the same interpretation as an ordinary t-statistic except
that the standard errors are adjusted using an empirical
Bayes method, making the analyses stable even for exper-
iments with small array numbers [9]. A differential gene
analysis using LIMMA on RMA-summarised tissue data
from the Human Genome U133 Plus 2.0, Human Exon
1.0ST and Human Gene 1.0ST arrays showed that gene-
level reproducibility and differential expression detection
are quite similar across the three platforms [10].

Alternative splicing analysis
The simplest method to detect alternative splicing is the
Splice Index (SI) method [11]. This assumes that in the
absence of splicing the observed signal from each exon
will have a constant ratio with the observed signal from
the corresponding gene. The exon/gene (probeset/tran-
script cluster) ratios are referred to as gene-normalised
exon intensities. If this ratio differs between two groups it
is indicative of splicing. Several tools are available, includ-
ing APT, which apply an ANOVA model to the gene-nor-
malised exon intensities. In the case of two sample groups
the ANOVA model reduces to a t-test. For multiple sample
groups, the ANOVA model will provide only a single p-
value indicating the probability that a transcript has dif-
ferential alternative splicing. To determine in which sam-
ple groups the exon splicing is occurring either a post-hoc
Tukey analysis can be done or a contrast matrix including
all comparisons can be constructed. The LIMMA Package
in Bioconductor has the framework for the latter, and con-
veniently reports statistics for all comparisons as well as
handling the multiple testing problem. LIMMA also uses
an emperical Bayes approach for estimating sample vari-
ances. The moderated t-statistic calculated by LIMMA is
more robust than the ordinary t-statistic with small sam-
ple sizes [8]. For these reasons we chose to use LIMMA
instead of ANOVA. It is already a widely used package but
so far has only been used for differential gene expression
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analysis. In this paper we propose a workflow for detect-
ing differential exon splicing using LIMMA. The workflow
is designed to reduce false positives by including filtering
steps, which are discussed later. APT is used initially to
generate the gene and exon summaries, as the software
has been optimised for this memory-intensive step. All
subsequent steps in the workflow are carried out using R
and Bioconductor. The packages included in the standard
Bioconductor (BiocLite) installation are sufficient to carry
out the alternative splicing analysis and no additional
packages, software or database installations are required.

The use of the SI method with LIMMA (this will be
referred to as SI/LIMMA), though successful at identifying
tissue-specific splicing events, was prone to false positives
resulting from inaccurate gene-level estimations. The SI/
LIMMA method is also sensitive to large differences in
gene expression level between sample groups which can
amplify the noise [12]. To tackle this issue we introduce
the concept of a gene correlation coefficient to identify
differential gene splicing. This approach was proposed
after observing that for many genes the probesets expres-
sion signals were found to be highly variable (likely due
to a combination of exon splicing, cross-hybridising
probes, non-responsive probes and presence of SNPs
within the targeting sequence), but the expression pattern
of the probesets across a gene was highly correlated in all
samples when differential splicing was absent i.e. if a
probeset had a lower intensity signal than the adjacent 5'
probeset but higher than the adjacent 3' probeset in one
sample, this pattern was seen in all other samples. In the
presence of differential splicing, the probeset expression
pattern for a gene will be disrupted in one group leading
to a decrease in correlation between the two groups. We
hypothesise that in the absence of differential splicing we
would expect a correlation coefficient close to 1. Differ-
ences in splicing and therefore differences in probeset sig-
nal pattern between the two groups will result in lower
correlation. The advantage of using a correlation coeffi-
cient approach is that it does not require gene-level
estimates.

We applied the SI/LIMMA and correlation methods to the
Affymetrix human tissue public dataset (available from
http://www.affymetrix.com) to identify tissue-specific
splice events. The data set consists of 33 samples (11 tis-
sue samples, 3 technical replicates per tissue). The LIMMA
analysis identified several tissue-specific splicing events
that were supported by previous experimental studies.
These tissue-specific splice events were also found to have
the lowest correlation coefficients in the respective tissue
comparisons. We also compare results from previous exon
array studies. Our results indicate that the SI/LIMMA
approach is better for identifying genes that have only sin-
gle or few exons differentially spliced while the correla-

tion approach is better for identifying larger differences in
transcript structures. The SI/LIMMA method also works
better when probeset expression within a gene has low
variability as this allows for more robust estimations of
gene signals while the correlation coefficient obviously
works well when probeset expression within a gene is
highly variable. The two methods can therefore work
complimentary to identify different subsets of differen-
tially spliced genes.

Results
Using LIMMA to Identify Splice Events
Gene and exon-level summaries were generated using the
RMA algorithm implemented in APT. We restricted our
analysis to identify differential splicing of well-annotated
exons and therefore used only core probesets and tran-
script clusters for generating gene- and exon-level summa-
ries. To find statistically significant tissue-specific splicing
events, LIMMA was applied to the gene-normalised exon
intensities, which were calculated in R. Eleven contrasts
were made simultaneously (e.g. breast vs. non-breast,
heart vs. non-heart etc.). For each probeset in each con-
trast LIMMA reported the log fold change (where a posi-
tive value indicates exon retention and a negative value
indicates exon splicing in one group relative to the other),
moderated t-statistic, the raw p-values and the adjusted p-
values (to account for multiple testing). Probesets with
Benjamini-Hochberg-adjusted p-values less than 0.0001
were considered statistically significant. 34208 probesets
mapping to 10122 transcript clusters passed the stringent
p-value threshold in at least one out of the eleven compar-
isons. Upon visual inspection of the exon expression lev-
els using expression plots, a large number of the
significant probesets were found to be false positives.
These probesets were misidentified (a) when a probeset is
non-responsive or an exon is not expressed in all samples
(spliced out in all sample) (Figure 1A and 1B) and when
a probeset is cross-hybridising (Figure 1C).

Filtering expression data to reduce false positives
To reduce false predictions of alternative splicing events
filtering steps were applied to the data prior to LIMMA
analysis:

1. Affymetrix has categorised probesets as either unique
(perfectly match only the target sequence), similar (per-
fectly match more than one sequence) or mixed (perfectly
or partially match more than one sequence). Probesets
that are not unique were removed from the exon-level
data.

2. To reduce false positives caused by unexpressed genes
and/or exons spliced out in all samples, a simple
approach was used where probesets and transcript clusters
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that were found in the lower quartile of the intensity dis-
tribution in all 33 samples were filtered out (Figure 2B).

3. Despite the fact that the Splicing Index approach is
designed to mitigate differences in gene expression level,
previous experience has shown that very large differences
in gene expression level can amplify the noise leading to
potential false positives [12]. Therefore, the analysis was
also done on a subset of low variance genes. Transcript
clusters found in the quartile containing the highest sam-
ple-to-sample variation were excluded.

The workflow incorporating these steps is shown in Figure
2. The LIMMA analysis was performed on unfiltered data,
data filtered for cross-hybridising probesets and low/
unexpressed probesets and transcript clusters (this will be
referred to as filtered dataset A) and data using a subset
of low-variant transcript clusters from the filtered dataset
A (this will be referred to as filtered dataset B).

The number of probesets with Benjamini-Hochberg-
adjusted p-values less than 0.0001, for each data set, is
shown in Table 1. More than half (57%) of the probesets
that had passed the p-value cut-off in the unfiltered data
were removed as they were either cross-hybridising or had
very low signal in all samples (likely to be unexpressed
genes and noise). We used the Affymetrix annotation files
to obtain probeset and gene annotation. Expression plots
and transcript structures from the X:MAP genome browser
[13] (based on the Ensembl database) were used to map
probesets to exons and to try and deduce which tran-
scripts were being expressed in the different tissues.

Several known tissue-specific splice events were identified
in all 3 datasets, with their significance ranking and p-val-
ues greatly improving when the data was filtered (Table
2). To validate some of the splicing events identified by
the analysis, we tried to map the expression data to known
transcript structures and searched for literature evidence
supporting the tissue-specific expression of the exons.

False PositivesFigure 1
False Positives. Examples of probesets falsely identified as 
differentially spliced. The expression plot shows the mean log 
2 intensities of the core probesets in each tissue with stand-
ard error bars. The probesets are sorted by genomic loca-
tion from 5' to 3'. Circled probesets had Benjamini-
Hochberg-corrected p-values less than 0.0001. A) and B) 
False positive due to non-responsive or unexpressed exon in 
all samples and C) cross-hybridising probeset.

Analysis WorkflowFigure 2
Analysis Workflow. A) LIMMA analysis workflow where 
the probeset and transcript-level summarisation and normali-
sation is carried out using the Affymetrix Power Tools. All 
subsequent steps are carried out using R and Bioconductor. 
B) The effect of filtering low-expressed probesets on the 
intensity distribution in one of the breast samples. When 
25% of the probesets found in the lower quartile in all sam-
ples are filtered out, the intensity distribution has a more 
normal distribution.
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Below are examples of 5 genes identified by SI/LIMMA to
have tissue-specific splicing in at least one tissue

WNK lysine deficient protein kinase 1 (WNK-1)
WNK-1 codes for a serine-threonine protein kinase which
controls sodium and chloride ion transport and it is
known to be expressed in a wide variety of tissues [14].
The kidney vs. non-kidney LIMMA analysis of filtered
dataset B identified 7 probesets with Benjamini-Hoch-
berg-corrected p-values less than 0.0001, all of which
mapped to exons 1–4 of the WNK-1 gene (Table 2). Three
of these ranked within the top 10 most significant
probesets in the kidney vs. non-kidney comparison of the
filtered dataset B. The expression plot for this gene (Addi-
tional file 1) suggests that the dominant transcript in kid-

ney lacks the first four exons. In human and mouse,
multiple WNK1 mRNA species are expressed that arise by
alternative promoter usage and splicing [15,16]. In the
kidney, in addition to the originally described "long"
WNK1 (L-WNK1) [15], the most prominently expressed
WNK1 is a shorter transcript [15,16]. This shorter kidney-
specific WNK1 (KS-WNK1) is initiated at an alternative
promoter and lacks the first four exons that include the
kinase domain of WNK1 [15].

Solute carrier family 25, member 3 (SLC25A3)
SLC25A3 codes for the mitochondrial phosphate-carrier
protein, PiC. Two probesets, 3427827 and 3427830
(ranked 2nd in the muscle vs. non-muscle comparison of
the filtered dataset B), mapping to the SLC25A3 gene had

Table 1: Number of significant probesets

Unfiltered data Filtered dataset A Filtered dataset B

Breast-specific 1725 669 273

Cerebellum-specific 12009 5890 3122

Heart-specific 2746 1492 476

Kidney-specific 3354 1382 377

Liver-specific 4956 2213 636

Muscle-specific 3153 1606 583

Pancreas-specific 4908 1984 817

Prostate-specific 2494 1292 531

Spleen-specific 1513 674 332

Testes-specific 10430 2819 1476

Thyroid-specific 897 387 112

Total no. of significant probesets 34208 14536 6895

Total no. of transcript clusters analysed 17881 14180 10414

Total no. of transcript clusters with at least one significant probeset 10122 6338 3564

The table shows the number of probesets with Benjamini-Hochberg-corrected p-values less than 0.0001 in each of the 11 comparisons for the 
unfiltered and filtered datasets. The table also shows the number of transcript clusters (genes) that were found to contain at least one significant 
probeset.
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Benjamini-Hochberg-adjusted p-values less than 0.0001
in the muscle vs. non-muscle comparison and the heart
vs. non-heart comparison (Table 2). Probeset 3427827
was also significant in the thyroid vs. non-thyroid analy-
sis. The two probesets map to exon 3A and exon 3B,
respectively (Figure 3). Without any prior knowledge
about transcript structures, our results would indicate that
exon 3A is expressed only in muscle, heart and thyroid tis-
sues and exon B is expressed in all tissues. However, it is
known that exon 3A and 3B are two mutually exclusive
exons that give rise to Ensembl transcripts
ENST00000228318 (contains exon 3A) and
ENST00000188376 (contains exon 3B). Exon 3A was
found to be highly expressed in heart, muscle and thyroid
tissues but had very low expression in all other tissues. All
exons had highest expression in heart and muscle tissue,
with the exception of exon 3B which had the lowest
expression in these two tissues (Figure 3). Taking into
account known transcript structures, the expression plots
and significant probesets suggest that transcript
ENST00000228318 (contains exon 3A but not 3B) is
expressed in heart, muscle and thyroid but not in the
other tissues, and ENST00000188376 (contains exon 3B
but not 3A) is ubiquitously expressed but is not the major
transcript in heart and muscle. In thyroid tissues both
transcripts may be expressed in roughly equal amounts.
Previous studies in mammals have shown that PiC has
two distinct isoforms, PiC-A and PiC-B [17], which origi-
nate from alternatively spliced transcripts that differ by
the mutually exclusive exons 3A and 3B. The two tran-
scripts have displayed different substrate affinities and
transport rates in vitro [18]. The exon array results are con-
cordant with Mayr et al. [19] who showed that PiC-A, the
transcript containing exon 3A, has tissue-specific expres-
sion in heart and muscle, while PiC-B is expressed
ubiquitously.

Intersectin 1 (ITSN1)
The ITSN protein functions in clathrin-mediated endocy-
tosis and in MAP kinase signalling. Nine probesets
mapping to the terminal 11 exons of ITSN1 had Ben-
jamini-Hochberg-corrected p-values less than 0.0001 in
the cerebellum vs. non-cerebellum analysis of filtered
dataset B (Table 2). The expression plot of ITSN1 (Addi-
tional file 2) clearly showed that the exons at the 3' end of
the gene are expressed only in cerebellum. There are two
major ITSN1 transcripts described in mammals: a ubiqui-
tously-expressed short transcript and a brain-specific long
transcript which arises due to brain-specific alternative
splicing in a stop codon [20]. The proteins coded by the
two transcripts both contain five Src homology 3 (SH3)
domains, two Eps15 homology (EH) domains and an
apha-helix-forming domain. The longer brain-specific
transcript encodes three additional domains (a guanine-

nucleotide exchange factors domain, a pleckstrin homol-
ogy domain and a C2 domain) [20].

Kinesin family member 1B (KIF1)
The KIF1B protein belongs to the kinesin superfamily
which are microtubule-dependent molecular motors
involved in important intracellular functions such as
organelle transport and cell division. Five out of six
probesets mapping to an exon (ENSE00001472763) in
the KIF1B gene had Benjamini-Hochberg-corrected p-val-
ues less than 0.0001 in the heart vs. non-heart, cerebellum
vs. non-cerebellum (Table 2), muscle vs. non-muscle and
thyroid vs. non-thyroid comparisons (data not shown).
There are several known isoforms of KIF1B, which are
either the long or short forms [21]. The short isoforms
lack more than twenty exons from the 3'end and have a
terminal 3' exon (ENSE00001472763) that is absent from
the long isoforms. ENSE00001472763 was found to be
retained in muscle, heart and thyroid but spliced out in
cerebellum. Figure 4 shows that all the probesets had a
higher intensity signal in the cerebellum tissue compared
to non-cerebellum samples, with the exception of the
probesets mapping to the 5' UTR and those mapping to
ENSE00001472763. Figure 4 shows the exons common to
both the long and short isoforms have the same expres-
sion levels in cerebellum and muscle. However, exons
unique to the short isoforms have higher expression in
muscle while exons unique to the long isoform have
higher expression in cerebellum. The results indicate that
the short transcript is dominant in the heart, muscle and
thyroid while the long transcript is dominant in cerebel-
lum. Other tissues may have similar expression for both
the long and short transcripts. The KIF1 proteins share a
conserved motor domain at their amino-termini. The c-
terminal sequences differ widely and are thought to be
responsible for their cargo-selection specificity [22,23].
The two isoforms KIF1Balpha (short isoform) and
KIF1Bbeta2 (long isoform) differ by the C-terminal cargo-
binding domain. The analysis of the exon array data indi-
cates that the dominant transcript in cerebellum tissue has
an extended C-terminus (long transcript). Nakumara et al.
[22] showed that the longer KIF1Bbeta2 transcript was
detected in all rat tissues examined, including kidney,
liver, spleen, ovary and heart, but was significantly abun-
dant in brain.

Inner membrane protein, mitochondrial (IMMT)
IMMT codes for mitofilin (heart muscle protein) and is
thought to play a role in controlling mitochondrial cristae
morphology (23). Probeset 2562711 was the most signif-
icant splice event in the heart vs. non-heart in the LIMMA
analysis of the filtered dataset B (Table 2). It maps to exon
6 of the IMMT gene. All the probesets had the highest
intensity signal in the heart except for the one targeting
exon 6 which had the lowest expression in the heart sam-
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Table 2: Significant Splicing Events

Affymetrix Probeset 
ID

Gene and exon LIMMA Comparison Rank in analysis of 
unfiltered dataset 
(Benjamini-Hochberg-
corrected p-value)

Rank with analysis of 
filtered dataset A 
(Benjamini-Hochberg-
corrected p-value)

Rank with analysis of 
filtered dataset B 
(Benjamini-Hochberg-
corrected p-value)

3400083 WNK1 exon 3
ENSE00000437674

Kidney vs. non-
kidney

53
(1.7e-12)

11
(1.9e-12)

1
(7.0e-12)

3400090 WNK1 exon 4
ENSE00000711974

Kidney vs. non-
kidney

82
(1.1e-11)

21
(1.5e-11)

4
(5.5e-11)

3400056 WNK1 exon 1
ENSE00000152790
2

Kidney vs. non-
kidney

161
(1.3e-10)

44
(1.7e-10)

9
(5.5e-10)

3400080 WNK1 exon 2
ENSE00000711927

Kidney vs. non-
kidney

507
(2.2e-08)

169
(3.3e-08)

35
(1.1e-07)

3427830 SLC25A3 exon3B
ENSE00000753648

Muscle vs. non-
muscle

25
(5.9e-13)

3
(1.3e-12)

2
(1.2e-12)

3427830 SLC25A3 exon3B
ENSE00000753648

Heart vs. non-heart 106
(1.7e-11)

41
(1.1e-11)

8
(3.6e-11)

3427827 SLC25A3 exon 3A
ENSE00000753647

Heart vs. non-heart 236
(5.2e-10)

112
(5.8e-10)

26
(1,8e-09)

3427827 SLC25A3 exon 3A
ENSE00000753647

Muscle vs. non-
muscle

263
(1.6e-09)

126
(1.7e-09)

35
(4.6e-09)

3427827 SLC25A3 exon 3A
ENSE00000753647

Thyroid vs. non-
thyroid

308
(3.9e-07)

114
(1.2e-09)

22
(2.2e-06)

3918911 ITSN exon 40
ENSE00001488185

Cereb. vs. non-cereb 480
(1.6e-12)

225
(1.7e-12)

63
(4.4e-12)

3918909 ITSN exon 40
ENSE00001488185

Cereb. vs. non-cereb 1822
(1.7e-09)

873
(2.0e-09)

353
(3.6e-09)

3918908 ITSN exon 40
ENSE00001488185

Cereb. vs. non-cereb 1884
(2.1e-09)

885
(2.1e-09)

359
(3.8e-09)

3918903 ITSN exon 35
ENSE00001488224

Cereb. vs. non-cereb 2304
(6.6e-09)

1107
(7.2e-09)

466
(1.2e-08)

2562711 IMMT exon 6
ENSE00000768006

Heart vs. non-heart 37
(4.5e-13)

17
(3.7e-13)

1
(4.3e-12)

2319719 KIF1B exon 20
ENSE00001472763

Heart vs. non-heart 129
(3.6e-11)

55
(3.1e-11)

Not present in dataset 
B
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ples (Additional file 3). There are 3 known Ensembl tran-
scripts for this gene. Transcript 1 (ENST00000254636)
and transcript 2 (ENST00000377310) differ only by exon
6 (ENSE00000768006; transcript 2 lacks this exon) [24].
The third transcript (ENST00000398211) contains exon 6
but lacks several other exons. The exon array data suggest
that the dominant transcript in heart tissues lacks exon 6,
and is therefore likely to be ENST00000377310.

We chose the above genes as the expression pattern could
be mapped to know transcript structures. WNK1,
SLC25A3 and IMMT were chosen as examples as they con-
tained at least one probeset that ranked within the top 20
most significant probesets in the respective comparisons
(when using the filtered dataset A). However, KIF1B and
especially ITSN1, though they had significant p-values,
were ranked much lower. This illustrates that it is essential
to manually inspect all significant probesets, however
large the list, as real splice events will not always be ranked
highly by the LIMMA analysis. Both these genes have a
much larger number of differentially spliced exons than
WNK1, IMMT and SLC25A3. This undoubtedly affects the
estimation of accurate gene signal estimates, and in turn
the SI, under-estimating the extent of differential splicing.
This highlights one of the pitfalls of the SI approach.

A similar study was done on a tissue panel data set (GEO
dataset GSE5791) using the Affymetrix Research Exon
Arrays [12]. The design of this array differs to that of the
HuEx 1.0ST arrays as they consisted of a GeneChip array
set of 4 chips and each probeset had up to 4 perfect match
(PM) and mismatch (MM) probe pairs. The data set con-
sisted of 6 brain tissues (including cerebellum) and 9 non-
brain tissues (including heart, kidney, liver, muscle and
testis). Their analysis included all core, extended and full
category probesets. The data was normalised using
probesets from 71 empirically derived housekeeping
genes shown to be consistent across many tissues. To
identify significant probesets, multiple t-tests were
applied to the gene-normalised exon intensities and an
un-corrected p-value cut-off of 0.05 was used to identify
significant probesets. Gel profiles of the top-ranking

probesets as well as probesets with the highest SI in the
brain vs. non-brain comparison were validated by RT-
PCR. To check if any of the RT-PCR validated cerebellum-
specific splice events were significant in our cerebellum vs.
non-cerebellum analysis we had to first map the probeset
ids from the Affymetrix Research Exon Array to the corre-
sponding HuEx1.0 ST array probeset ids. We obtained the
sequence covered by the probeset (from the 5' most probe
to the 3' most probe) from the GEO Platform annotation
(GPL4253) and did a BLAT search against the Ensembl
database (NCBI Build 36) to obtain the genomic location
of the target regions. We then used the X:MAP genome
browser to identify HuEx 1.0ST probesets targeting these
regions. Our search was restricted to exons targeted by
HuEx 1.0ST core probesets as our analysis was done only
on core probesets. We were able to map HuEx 1.0ST core
probesets for 22 of the cerebellum-specific RT-PCR vali-
dated splice events. Though the array platform, tissue
panel, pre-processing and analysis methods used by Clark
et al. [12] were different to the dataset and analysis used
in this paper, 13 out of these 22 probesets had Benjamini-
Hochberg-corrected p-values less than 0.0001 and 19 had
Benjamini-Hochberg-corrected p-values less than 0.05 in
our SI/LIMMA analysis of the unfiltered data (Additional
File 4).

We also looked at results from a recently published anal-
ysis method by Purdom et al. [25] called FIRMA (Finding
Isoforms using Robust Multichip Analysis). FIRMA scores
each exon as to whether its probes systematically deviate
from the expected gene expression level. They specifically
looked at exons which were previously validated by Das et
al. [26] as being enriched in muscle and heart tissue as
well as reported other top scoring probesets. Out of the 11
core probesets presented by Purdom et al., FIRMA scored
highly for 9 in the heart and/or muscle tissue. All 9 of
these had Benajmini-corrected p-values less than 0.0001
in our muscle vs. non-muscle and/or heart vs. non-heart
SI/LIMMA comparison (Additional file 5).

2319721 KIF1B exon 20
ENSE00001472763

Heart vs. non-heart 134
(4.4e-11)

61
(4.2e-11)

Not present in dataset 
B

2319722 KIF1B exon 20
ENSE00001472763

Cereb. vs. non-cereb 486
(1.8e-12)

218
(1.7e-12)

Not present in dataset 
B

2319721 KIF1B exon 20
ENSE00001472763

Cereb. vs. non-cereb 1784
(1.4e-09)

830
(1.4e-09)

Not present in dataset 
B

Table showing the effect of filtering on the ranking of real splice events. All the probesets in the table had a Benjamini-Hochberg-corrected p-value 
less than 0.0001 and for each there is literature evidence of the identified splicing events.

Table 2: Significant Splicing Events (Continued)
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Using Pearson's correlation to identify differentially 
spliced genes
Plotting signal intensities of probesets across a gene pro-
vided a better understanding of the nature of the data. We
found that for large proportion of genes the probeset sig-
nals were quite variable, but the pattern of expression was
highly correlated in the different sample groups. We
hypothesise that in the absence of splicing the probeset
expression pattern between two groups should be highly
correlated, with a Pearson correlation coefficient close to
1. Differences in splicing and therefore differences in

probeset signal pattern between the two groups will result
in a decrease in the gene's correlation.

To test this hypothesis, for each tissue comparison (i.e.
breast vs. non-breast, liver vs. non-liver etc.) we calculated
the Pearson correlation coefficient for each transcript clus-
ter (gene) in the filtered dataset A (14180 transcript clus-
ters) using the mean probeset log2 intensities (signals
from replicates were averaged). Transcript clusters that
contained only one core probeset were removed as no cor-
relation coefficient could be calculated and transcript
clusters that contained only two probesets were also
excluded, as these had a correlation coefficient of 1 or -1.

Tissue-specific SLC25A3 transcriptsFigure 3
Tissue-specific SLC25A3 transcripts. The expression 
plot shows the mean log 2 intensity signals (with standard 
error bars) of core probesets targeting SLC25A3 exons in the 
muscle and non-muscle tissue (top figure) and thyroid com-
pared to non-thyroid tissue (bottom figure). The probesets 
are plotted from left to right by genomic location (5' to 3'). 
The horizontal dashed line shows the mean log2 intensity of 
the negative control probesets. Probesets with intensities 
below this line are most likely unexpressed. In this case these 
probesets are targeting either intronic regions or UTRs (col-
oured in orange). Ensembl transcripts for SLC25A3 are 
shown below the plot. Probesets with Benjamini-Hochberg-
corrected p-values less than 0.0001 are indicated by black 
arrows. Exon 3A appears to be retained in muscle and thy-
roid tissues while exon 3B appears to have lower expression 
in the muscle.

Tissue-specific KIF1B transcriptsFigure 4
Tissue-specific KIF1B transcripts. The expression plot 
shows the mean log 2 intensity signals (with standard error 
bars) of core probesets targeting KIF1B exons in the cerebel-
lum and non-cerebellum tissues (top) and cerebellum com-
pared to muscle tissue (bottom). The horizontal dashed line 
shows the mean intensity of the negative control probesets. 
Exons with signal below this are likely to be unexpressed. 
Most exons have higher probeset signals in the cerebellum 
except for the 5' UTR (coloured in orange) and the terminal 
exon of the short transcript (marked by vertical dashed lines) 
which suggests that this exon has much lower expression in 
cerebellum. All exons common to the long and short tran-
scripts have the same expression levels in muscle and cere-
bellum. But exons unique to the long transcript have higher 
expression in the cerebellum tissue while exons unique to 
the short transcript have higher expression in muscle.
Page 9 of 16
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Over 80% of transcript clusters that showed no cerebel-
lum-specific splicing (did not contain any probesets with
Benjamini-Hochberg-corrected p-values less than 0.0001
in the cerebellum vs. non-cerebellum comparison) had a
correlation coefficient of 0.90 or higher (94% had a corre-
lation coefficient greater than 0.8), while only around
30% of the transcript clusters that had cerebellum-specific
splicing (contained at least one significant probesets in
the cerebellum vs. non-cerebellum LIMMA analysis) had
a correlation coefficient of 0.90 or higher (Figure 5). Sim-
ilar distributions were observed for the other tissue com-
parisons (data not shown). Though the correlation
coefficient can be calculated from 3 or more probesets, it
is important to note that low correlation coefficients for
genes with a large number of exons are more reliable than
those for genes with only a small number of exons.

We looked at the correlation coefficients across all 11
comparisons for the 5 genes mentioned above. In all 5
genes the lowest correlation coefficients coincided with
the comparisons that contained the most significant
probesets (Table 3). For example, ITSN is known to have
a cerebellum-specific transcript which is much longer
than the dominant short isoform expressed in other tis-
sues. All of the tissue comparisons for ITSN had a Pearson
correlation coefficient above 0.90 except for the cerebel-
lum vs. non-cerebellum comparison, where the correla-
tion coefficient was 0.56. As expected, genes with large
number of exons being differentially spliced (KIF1B and
ITSN1) had much lower correlation coefficients than
genes with single or few exons being differentially spliced
(IMMT and SLC25A3). With SLC25A3 the correlation
coefficients in the heart and muscle tissue comparisons
are 0.9302 and 0.9412 respectively, while all other tissues
had coefficients higher than 0.96. Though this is a small
difference it is a significant one. We compared all the cor-
relation coefficients for SLC25A3 to its highest correlation
coefficient (0.98753 in the liver vs. non-liver comparison)
using a statistical test for the significance of the difference
between two coefficients using a Fisher r-to-z transforma-
tion [27]. The heart and muscle correlation coefficients
had z-scores greater than 2 (2.76 in heart and 2.48 in mus-
cle) while all other tissue comparisons had z-scores less
than 1.4. The SI/LIMMA correctly identified thyroid-spe-
cific splicing of SLC25A3 but the correlation coefficient
for the thyroid vs. non-thyroid comparison was not signif-
icantly different. This may be due to a combination of
only a single exon being differentially spliced between
thyroid and non-thyroid and the fact that the muscle and
heart tissues show the same splicing but are included in
the non-thyroid group, giving a mixture of signals for the
non-thyroid group. This is also an issue with the SI/
LIMMA approach, but can be overcome by carrying out an
all-versus-all comparison instead of grouping tissues

together and then looking for significant probesets com-
mon in all comparisons.

The correlation approach is based on the assumption that
the probeset expression varies within a gene but the pat-
tern is maintained in the absence of splicing. However, we
have seen a small number of genes where there is little var-
iation in the probeset expression level. These genes tend to
have low very correlation coefficients when very slight
changes in intensity, likely due to noise, occur. However,
these cases are few and can be easily identified and
removed by looking at the probeset expression variance
for each gene.

Discussion
The aim of this paper was to propose an analysis workflow
for analysing differential splicing using freely available
software packages that have already been developed and
widely used for gene expression analysis. The LIMMA
package provides a framework for analysing experiments
with multiple sample groups and provides robust statis-
tics, but as yet has not been applied to exon array data to
identify alternative exon splicing analysis. We applied
LIMMA to an Affymetrix exon array tissue panel dataset to
identify tissue-specific splicing. The main issue with the SI
approach is obtaining accurate estimates of gene expres-
sion. During this process we explored the data extensively
using expression plots and came to the realisation that
probeset signals within a gene, though variable main-
tained the same pattern in all biological groups. Differen-
tial exon splicing between two groups introduced
differences in the signal patterns of probesets within a
gene, with the patterns reducing in similarity when exons
were differentially spliced. This led to the concept of using
a Pearson correlation coefficient to identify genes with dif-
ferential splicing between two biological groups, where
genes with lower correlation coefficients are more likely to
be differentially spliced between two biological groups.
This approach avoids the issue of inaccurate gene
estimates.

Our initial LIMMA analysis of the data was done on unfil-
tered data and it became obvious from looking at expres-
sion plots that a large number of highly ranked probesets
were false positives. It was therefore necessary to intro-
duce filtering steps prior to the LIMMA analysis of the
gene-normalised exon intensities which greatly improved
the rankings of true positives. The filtering steps taken
here are specific for this data set and our objective. We rec-
ommend removing low/unexpressed probesets and genes.
Unfortunately, there is no direct way of determining
whether a gene is expressed or not. We observed that the
RMA intensity distribution consisted of two peaks. The
first peak generally contains negative controls and noise,
while the second peak contains most of the signal. Our
Page 10 of 16
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lower quartile filtering steps were aimed at reducing the
noise, by removing genes falling in the first peak (shown
in figure 2). Removing 25% of the data is very stringent,
but our objective was to reduce the false positive rate and
this will inevitably mean a trade-off with the loss of true
positives. The proportion of the data filtered will be
dependent on the dataset, as the intensity distributions
are likely to vary. We do not recommend only analysing
low variant genes. However, analysing this subset sepa-
rately can help identify unambiguous splicing events.

The significance ranking of probesets was found to be
lower when an exon was retained or spliced out in several
tissues. For example, in SLC25A3 exon 3A is retained in
heart, muscle and thyroid but spliced out in the rest of the
tissues (Figure 4). The probeset mapping to this exon is
ranked much lower than the probeset mapping to exon 3B
even though the expression plot shows a much larger
change in intensity for exon 3A between muscle and non-

muscle (Figure 4). This is because the heart and thyroid
tissues were grouped with the rest of the non-muscle tis-
sues, resulting in a higher mean intensity and higher
within-group variance for exon 3A in the non-muscle
group, leading to a less significant p-value. This is also the
case for KIF1B where some tissues are expressing the short
transcript while others the long isoform. For KIF1B this is
also evident in the correlation coefficients which range
widely between the different comparisons. To overcome
this, an all-vs-all comparison may be more appropriate,
where one tissue is compared to another tissue individu-
ally. Despite these issues, such differential splice events do
pass the strict p-value threshold and this indicates that the
probesets ranked lower down are as important as the ones
ranked highly with the most significant p-values.

The LIMMA approach also appeared to work better when
a gene had only a single or very few exons differentially
spliced. Genes that had a large number of differentially

Pearson Correlation CoefficientsFigure 5
Pearson Correlation Coefficients. Transcripts were considered to have cerebellum-specific splicing if they contained at 
least one probeset with a Benjamini-Hochberg-corrected p-value less than 0.0001 in the cerebellum vs. non-cerebellum SI/
LIMMA comparison. Over 80% of transcripts clusters that were considered to have no cerebellum-specific splicing (purple) had 
correlation coefficients more than 0.9 (more than 60% had coefficients more than 0.95), whereas only 30% of transcript clus-
ters with cerebellum-specific splicing (blue) had correlation coefficients more than 0.9.
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spliced exons (e.g. ITSN and KIF1B) were ranked much
lower. This is likely due to the effect of splicing on the
gene signal estimation. If a gene has equal expression in
two samples, its gene signal estimation by the summarisa-
tion algorithms in the absence of splicing will be the same
for both samples. However, if there are many exons differ-
entially spliced between the two groups, some probesets
will have high signals in one group (where the exons are
retained) but low expression in the other group (where
the exons are spliced out). The algorithms may misesti-
mate the gene signal to be lower in the group where there
are many exons spliced which in turn will affect the gene-
normalised exon values and may result in less significant
p-values. An advantage of the correlation coefficient over
methods such as SI is that it does not require gene level
estimates, which can be inaccurate, especially when there
are a large number of exons differentially spliced within a
gene. The correlation coefficients for genes with many dif-
ferentially spliced exons were much lower and these genes
would therefore rank better than genes with single exon

splicing. For the 5 example genes, the lower correlation
coefficients coincided with the splice events identified by
SI/LIMMA. The coefficients were much lower for ITSN
and KIF1B, where multiple exons were differentially
spliced.

Though the use of correlation coefficients has not been
studied extensively, the preliminary results suggest that it
could be used as an informative measure to identify differ-
entially spliced genes. We found that 94% of genes not
detected to have differential splicing by the LIMMA anal-
ysis had a correlation coefficient greater than 0.8. There-
fore, genes with correlation coefficients less than 0.8 are
most likely to undergo differential splicing. Correlation
coefficients higher than 0.8 could either indicate no splic-
ing or few splicing events. It would be difficult to differen-
tiate between these two using just correlation. The p-
values from LIMMA and the gene correlation coefficients
therefore should be used together as an indication of

Table 3: Correlation Coefficients

ITSN IMMT KIF1B SLC25A WNK1

breast vs. non-breast 0.9889 0.9734 0.9473 0.9770 0.9709

cereb. vs. non-cereb. 0.5605 0.9823 0.7727 0.9661 0.9764

heart vs. non-heart 0.9711 0.8616 0.6756 0.9302 0.9410

kidney vs. non-kidney 0.9656 0.9901 0.9215 0.9799 0.8768

liver vs. non-liver 0.9766 0.9452 0.9197 0.9875 0.9793

muscle vs. non-muscle 0.9799 0.9834 0.8285 0.9412 0.9771

panc. vs. non-panc. 0.9158 0.9772 0.9333 0.9747 0.9427

prost. vs. non-prost 0.9807 0.9940 0.9655 0.9786 0.9431

spleen vs. non-spleen 0.9852 0.9790 0.8928 0.9739 0.9769

testes vs. non-testes 0.9864 0.9960 0.8198 0.9717 0.9827

thyroid vs. non-thyroid 0.9889 0.9734 0.9473 0.9770 0.9709

z-score between highest and lowest coefficients 9.71 4.42 6.68 2.76 5.05

Pearson correlation coefficients of the 5 genes (rounded to 4 significant digits) calculated for all eleven tissue comparisons using the unfiltered 
dataset. Values in bold indicate that the gene had a significant p-value (corrected p-value < 0.0001) in that SI/LIMMA group comparison. The highest 
and lowest correlation coefficients for each gene were found to be significantly different (all had z-scores greater than 2).
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whether a gene is likely to be differentially spliced and
what the extent of splicing is likely to be.

It is important to emphasize that regardless of the method
used to identify differential splicing, the splice events
must be manually inspected with the help of expression
plots and the use of genome browsers such as X:MAP,
where array probesets can be mapped to transcript infor-
mation. We presented our results as an HTML table with
links to all the required information (Additional file 5),
making it is easier to inspect the results and separate false
positives and ambiguous splice events from obvious tis-
sue-splice events. Analysing such plots highlighted the dif-
ficulty in mapping exon expression data to know
transcript structures. It is also not always clear whether the
expression pattern observed is as a result of novel tran-
scripts or a mixture of transcript structures being expressed
simultaneously, unless prior knowledge of exon expres-
sion is known. The results suggest that there are a large
number of transcript variants yet to be discovered, even
when using only core annotated exons.

It may be desirable to analyse the full annotation
probesets in order to identify novel splice events and con-
firm expression of predicted exons. However, including
these probesets increases noise as a large number of pre-
dicted exons will not be real and will not be expressed in
all samples. The false positive rate when using the full
annotation is expected to be much higher and stringent
filtering becomes crucial when including these probesets.
This is evident in intensity distributions for full datasets
(not shown), where the peak at low intensities is much
larger than in the core dataset. In this case a larger propor-
tion of the data would need to be filtered to remove unex-
pressed/noisy probesets and genes. As for the correlation
coefficient, using extended and full data will increase the
number of data points from which to calculate correla-
tion. There are many genes which have only a few core
probesets but several extended and full probesets. If all of
these are used it may avoid artificially low correlation
coefficients. However, the degree of splicing may also be
underestimated if the majority of these probesets are not
measuring expressed exons. One way of avoiding this is to
use the full dataset but to filter the data to remove unex-
pressed probesets. This way predicted exons that are
expressed will still be retained.

There are several exons that are represented by more than
one probeset. We have seen several cases from the SI/
LIMMA analysis, especially in the terminal exons, where
some probesets mapping to the same exon are significant
but others are not. These could be as a result of alternative
exon splice sites or alternative UTRs. The correlation
approach could potentially be used for identifying alter-
native acceptor and donor sites by calculating a correla-

tion coefficient for each exon rather than a gene. For this
application you would need to use the probe-level data. If
an exon has a low correlation coefficient this may be
indicative of an alternative splice site. However, it is
important to bear in mind that analysis with probe-level
data is much more computationally intensive and may
not be feasible for current standard desktop computers.

Further Work
One aspect that needs to be explored is the data filtering.
The filtering approach used is not very sophisticated and
it is likely that viable splice candidates may be filtered out
using a quartile filter. The use of the Affymetrix detection
above background (DABG) algorithm to filter absent
probesets and genes may be a more suitable option which
will be explored in the future. Most of our effort will, how-
ever, be put into exploring the use of correlation coeffi-
cients for identifying differential splicing, particularly
looking at the genes in the overlapping region of the cor-
relation coefficient distributions, which may be false pos-
itives or false negatives. Another factor to consider when
calculating correlation coefficients is the number of
exons/probesets in the gene. If a gene has only 7 exons
and one exon is differentially spliced the correlation
coefficient will be lower than a gene with 14 exons and
only a single exon differentially spliced. The number of
exons can be taken into account by using z-scores to deter-
mine if two correlation coefficients are significantly differ-
ent or is the difference simply due to the difference in the
number of exons. Z-scores can be used in the case where
there are multiple biological groups and comparisons and
may be a better alternative for selecting genes instead of
correlation coefficient cut-off. But in the case of a single
comparison between two groups a correlation coefficient
threshold would have to be used for selecting differen-
tially spliced genes. In the mean time using a combination
of p-value and correlation coefficients would appear to be
an efficient way to select genes that are most likely to be
differentially spliced.

Conclusion
We can confidently say our approach using SI/LIMMA can
successfully identify differential exon splicing, but lack of
any gold standard data set makes it difficult to benchmark
this method and any other method without wet-lab vali-
dation. However, we were able to use previous experimen-
tal studies to support our results. It is also difficult to
directly compare the correlation results as it gives a meas-
ure for each transcript cluster (gene) while all other meth-
ods, including SI/LIMMA, give p-values for a probeset
(exon). But we have shown that the distribution of corre-
lation coefficients in transcripts without splicing is signif-
icantly different to the distribution in transcripts with
splicing as identified by the SI/LIMMA analysis. Thus low
correlations are indicative of differentially spliced genes.
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Though further work would be necessary to develop the
use of correlation coefficients into a complete analysis
approach, the preliminary results demonstrate their use-
fulness for identifying differentially spliced genes.

Availability and requirements
The R scripts are available upon request from the authors.

Methods
Dataset
The dataset consists of 33 arrays: 11 human tissues
(breast, cerebellum, heart, kidney, liver, muscle, pancreas,
prostate, spleen, testes and thyroid) with three assay rep-
licates per tissue. Samples are from a commercial source.
The dataset is available for download from the Affymetrix
website: http://www.affymetrix.com/support/technical/
sample_data/exon_array_data.affx

Data Summarisation and Normalisation
The exon-level and gene-level data was generated from the
CEL files using the Affymetrix Power Tools (APT). The
library files used were: HuEx-1_0-
st.v2.r2.dt1.hg18.core.ps, HuEx-1_0-
st.v2.r2.dt1.hg18.core.mps, HuEx-1_0-st-v2.r2.pgf, HuEx-
1_0-st-v2.r2.clf and HuEx-1_0-st-v2.r2.antigenomic.bgp.
RMA background correction, quantile normalisation and
RMA summarisation was used to generate the exon and
gene-level data.

Filtering Steps
In the Affymetrix transcript annotation file HuEx-1_0-st-
v2.na24.hg18.probeset.csv the 'crosshyb_type' column
labels probesets as either 1 (unique – perfectly match only
the target sequence), 2 (similar – perfectly match more
than one sequence) or 3 (mixed – perfectly or partially
match more than one sequence). Probesets classified as 2
(similar) or 3 (mixed) were filtered out in the exon-level
data.

After filtering cross-hybridising probesets, low expression
probesets were filtered. The probesets in each sample were
ranked by log intensity (lowest expression is ranked 1).
The rank product for each probeset was then calculated
using the following formula:

where k is the number of samples and rg, i the rank of
probeset g in the ith sample.

The probesets in the quartile with the lowest rank prod-
ucts were removed. The same method was applied to the
gene level data to filter out transcript clusters with the low-
est expression across all samples. In this case g would be

the transcript cluster. This dataset is known as filtered
dataset A.

A subset of the filtered dataset A was generated by select-
ing the transcript clusters with the least sample-to-sample
variation. The transcript clusters that fell in the quartile
with the highest variation were excluded from this subset.
This is known as filtered dataset B. This effectively
removed genes with large expression differences between
groups as these had a tendency to produce false positives.

Alternative Splicing Analysis
Probesets were mapped to their corresponding transcript
clusters using the HuEx-1_0-st-
v2.r2.na24.hg18.probeset.csv annotation file. For each
probeset in each sample, the 'gene-normalised exon val-
ues' were calculated, which are simply the log2 probeset
over transcript cluster intensity ratios:

where GNE is the gene-normalised exon value for
probeset p, ep is the exon-level summary for p and gp is the
gene-level summary for the transcript cluster (gene) to
which p maps. Any probesets ids with no corresponding
transcript cluster ids or vice versa will be removed from
further analysis.

LIMMA was applied to the gene-normalised exon values
from the unfiltered, filtered datasets A and B. Eleven com-
parisons were made simultaneously (breast vs. non-
breast, heart vs. non-heart, kidney vs. non-kidney etc.) in
order to identify tissue-specific exon splicing. The Ben-
jamini-Hochberg method was used to correct the raw p-
values for multiple-testing. Probesets with corrected p-val-
ues less than 0.0001 were considered significant. The R
script is available from http://bioinf.cs.ucl.ac.uk/bcb/
Sonia/exon_paper.

Pearson Correlation Coefficient
For each group in each comparison the Pearson correla-
tion coefficient for every transcript cluster was calculated
in R using the mean probeset intensities for each group.
The R code for the correlation coefficient analysis is avail-
able at: http://bioinf.cs.ucl.ac.uk/bcb/Sonia/exon_paper.

To test the significance of the difference between two cor-
relation coefficients we used the web based tool at http://
faculty.vassar.edu/lowry/rdiff.html.

Visualisation & Annotation
Annotation of significant probesets was obtained using
the Affymetrix annotation files (HuEx-1_0-st-
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v2.na24.hg18.probeset.csv) available from the Affymetrix
website. HTML results files with links to expression plots,
X:MAP, Netaffx and NCBI were created in R.
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