BIVIC Bioinformatics

Software

O

BiolVled Central

The Genome Reverse Compiler: an explorative annotation tool
Andrew S Warren*12 and Joao Carlos Setubal *1.2

Address: Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA and 2Department of Computer Science, Virginia Tech, Blacksburg,

VA, USA

Email: Andrew S Warren* - anwarren@vt.edu; Joao Carlos Setubal* - setubal@vbi.vt.edu

* Corresponding authors

Published: 27 January 2009
BMC Bioinformatics 2009, 10:35  doi:10.1186/1471-2105-10-35

Received: 25 July 2008
Accepted: 27 January 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/35

© 2009 Warren and Setubal; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: As sequencing costs have decreased, whole genome sequencing has become a viable
and integral part of biological laboratory research. However, the tools with which genes can be
found and functionally characterized have not been readily adapted to be part of the everyday
biological sciences toolkit. Most annotation pipelines remain as a service provided by large
institutions or come as an unwieldy conglomerate of independent components, each requiring their
own setup and maintenance.

Results: To address this issue we have created the Genome Reverse Compiler, an easy-to-use,
open-source, automated annotation tool. The GRC is independent of third party software installs
and only requires a Linux operating system. This stands in contrast to most annotation packages,
which typically require installation of relational databases, sequence similarity software, and a
number of other programming language modules. We provide details on the methodology used by
GRC and evaluate its performance on several groups of prokaryotes using GRC's built in
comparison module.

Conclusion: Traditionally, to perform whole genome annotation a user would either set up a
pipeline or take advantage of an online service. With GRC the user need only provide the genome
he or she wants to annotate and the function resource files to use. The result is high usability and
a very minimal learning curve for the intended audience of life science researchers and
bioinformaticians. We believe that the GRC fills a valuable niche in allowing users to perform
explorative, whole-genome annotation.

Background

While there has been extensive work in both automated
gene finding [1-4] and functional assignment [5], there
are only a few automated whole-genome annotation sys-
tems available as open source projects [6-8] and none, of
which we are aware, that can be used without significant
setup or manual interaction. For annotation pipelines
that are commercially available [9,10] or provided as a
service [11-15], it is difficult to obtain and evaluate infor-

mation for the methods used. By formally addressing the
integration of each component in the annotation process
as part of a completely automated, open source project, it
may be possible to gain a further understanding of prob-
lems facing automated genome annotation as a whole.

The Genome Reverse Compiler is open source software
intended for explorative annotation of prokaryotic
genomic sequences. Its name and philosophy are based
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on analogy with a high-level programming language com-
piler. In this analogy, the genome is a program in a certain
low-level language that humans cannot understand.
Given the sequence of any prokaryotic genome, GRC pro-
duces its corresponding "high-level program" - its anno-
tation. GRC allows the user to annotate a target genome
by simply providing annotated protein sequences, in
widely accepted formats, from organisms related to the
target. GRC wuses a similarity search against these
sequences, and sequence information from the genome
itself, to find protein coding genes and determine putative
function of their products. We believe an integrated, open
source annotation tool such as GRC benefits the life sci-
ences community in several ways. It opens up the realm of
electronic annotation to researchers who wish to annotate
sequences in-house but who lack the resources to setup an
annotation pipeline. Also, submission to an online anno-
tation service may not be realistic for those wishing to
annotate a large number of sequences or for sequences
that do not meet with submission restrictions. GRC can
provide targeted whole genome annotation since it allows
users to provide the protein sequence database to be used
for annotation; such a mechanism can be especially help-
ful in situations where users have their own curated data-
base of sequences in addition to publicly available
sequences.

In whole genome annotation, before an organism's genes
can be annotated they must be found within the genomic
sequence. In its current form, the GRC focuses on finding
ORFs and evaluating whether they will likely be translated
into protein. In making this evaluation, one consideration
is sequence composition: whether the amino acid compo-
sition of the sequence is characteristic of typical coding
genes found in the target organism. Some other sources of
information to consider are: whether the sequence is con-
served across multiple organisms (an indicator it is subject
to selective pressure), whether two open reading frames
overlap with one another, and the sequence length of an
ORF.

Once an ORF is determined likely to be a real gene, an
annotation procedure may assign some additional infor-
mation. Typically this information includes the function
of the gene product. Currently there is no way to compu-
tationally determine function ab initio. That is, to deter-
mine the function of a gene solely based on its sequence
composition without reference to a similar sequence
whose function is already known.

Common practice is to assign the function of genes based
on sequence similarity comparisons to a database of genes
whose functions are known. In many annotation proce-
dures, the database sequence that has the top scoring, sta-
tistically significant alignment with a target gene has its
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function transferred to that target gene. Because func-
tional information is frequently electronically trans-
planted from one sequence to another, the degree of
separation between the original source of functional
information and where it is applied can be great. This may
cause an inappropriate functional assignment and can
lead to "error propagation", where erroneous information
is repeatedly applied to various sequences through multi-
ple electronic annotations [16]. To address this situation
the GRC provides several mechanisms for controlling how
functions are assigned and gives the evidence for each
assignment as part of the annotation.

Traditional biological nomenclature for describing genes
and their products have many subtleties, redundancies,
and inconsistencies. The distinctions and assumptions
necessary for interpreting this information do not pro-
mote interoperability among functional genomic data-
bases and are difficult to account for computationally.
This problem can be addressed by using a structured, pre-
cisely defined system for specifying information about a
gene. One such system is the Gene Ontology [17]. The
Gene Ontology, or GO as it is commonly called, is a con-
trolled vocabulary of terms that describe the molecular
function, biological process, and cellular component of a
gene. GO is structured as a directed acyclic graph that cre-
ates a subsumption hierarchy through its "is_a" and other
directed arcs. In this hierarchy, when one node/function is
assigned to a particular sequence, all parent/ancestor
nodes up to the root are implicitly assigned. Using the
Gene Ontology gives an added measure of precision to
assigning functions to genes. By making use of evidence
codes and the GO term ID numbers, we can adapt the
behavior of the annotation process to the information
available for a specific sequence.

The rapid accumulation and widespread availability of
genomic information for prokaryotes makes it possible to
use information from previous annotations of closely
related organisms to annotate a newly sequenced genome.
Sequencing costs are already low enough that hundreds of
new prokaryotic genomes are being sequenced every year.
Moreover, efforts are underway to fill the still existing
"phylogenetic gaps" in the databases of prokaryotic
sequences [18]. The GRC depends on this availability to
create its annotations. Using prior annotation informa-
tion raises several questions that can be addressed compu-
tationally. How should the assertions made in another
organism's annotation impact the assertions made for the
target organism? In what context are we to believe or dis-
believe indications made by previous annotations? When
multiple annotations are involved, how do we resolve
conflicting information? In creating an integrated annota-
tion tool we investigate possible answers to these ques-
tions and explore novel ways for determining, in silico, the
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location and function of protein coding genes as part of
an integrated process.

Implementation

Gene Finding

Many popular gene finding algorithms perform ab initio
by building a sequence model based on the target
genomic sequence. In creating or applying this model it is
possible to overly bias results against anomalous
sequences, such as viral genes or recently acquired conju-
gated genes. GRC incorporates a gene finding module
which uses information from closely related genomes. In
addition to sequence similarity information, this algo-
rithm evaluates the information content of sequences
using entropy-density profiles (EDPs) introduced by Zhu
etal. [4].

To evaluate whether sequences are likely to be protein
coding genes we consider sequence conservation, compo-
sition, and overlap in the genome. Conservation is deter-
mined by a sequence similarity search using FSA-BLAST
[19] against a user-provided sequence database (which we
call the GRC BLAST database). Composition is evaluated
using entropy-density profiles introduced by Zhu et al.
[4], and subsequently used in MED 2.0 [20] and
Glimmer3 [1]. EDPs are emphasized by the GRC to dis-
criminate between likely coding and non-coding
sequences when there is low scoring or no sequence simi-
larity information for an ORF. In their previous work Zhu
et al. show the efficacy of this value by testing it on several
well annotated bacterial genomes. An EDP is a feature vec-
tor, based on Shannon information theory [21], used to
describe the amino acid content of a sequence. In this
work, we use the EDP as an additional piece of evidence
to indicate the coding potential of a sequence. In the
method used by Zhu et al., each sequence is mapped to its
own EDP and then compared to both a representative
coding and non-coding EDP, which we will refer to as the
global EDPs. Each sequence is then classified as coding or
non-coding based on its distance from the global EDPs in
the 20-dimensional phase space. Let p; be the count for

each amino acid in a sequence where i = 1, ..., 20 repre-
sents the index of a specific amino acid. For a given
sequence of length I, let f; be the frequency of the ith

amino acid where f; = pT’ . The Shannon entropy for the

given sequence is then defined as:

20
H ==Y filog(f)
i=1
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The entropy-density for the ith amino acid of a sequence
is defined as:

s, = —Ji108(/i)
H

To compute the EDP feature vector for a given sequence
we compute S;fori=1, ..., 20.

Zhu et al. demonstrate that global EDPs representing cod-
ing and non-coding sequences for all prokaryotes can act
as good centers for their respective groups in the 20-
dimensional phase space and as a result can be used as ini-
tial discriminators to classify a sequence as coding or non-
coding [4,20]. To perform this classification, they calcu-
late what we will call the "entropy distance ratio" (EDR).
The EDR is the ratio of the relative distances to the global
EDPs. The distance for a particular sequence to the global
EDPs, D, or D, is defined as the Euclidean distance:

nc’

20 1/2
Da = Z(Sl _qu)z
i=1

where represents "¢" for coding or "nc" for non-coding.
The EDR is then defined to be:
EDR =D,/D,,

The gene finding procedure for GRC is as follows: All
ORFs are generated from a linear scan of the genome. Let
M represent this set of sequences. In order to minimize the
number of unnecessary overlap evaluations, we first deter-
mine the most likely start site for each ORF. The start sites
are adjusted from the original maximal coordinate to the
highest scoring start site. Each start site is scored according
to the average frequency at which its codon occurs and
how well they fit the gene model suggested by the highest
scoring compatible alignment (see below). All potential
start sites are placed in a priority queue based on score.

ORFs that occupy the same genomic space are said to
overlap. These overlaps are evaluated and resolved by
either adjusting the start coordinate of one of the offend-
ing ORFs or removing an ORF from set M. This process
creates a set of likely coding ORFs C as well as a set of
OREFs likely to be non-coding L. The likely coding and
non-coding sets C and L are used to retrain the respective
coding, non-coding global EDPs for the organism.
Entropy distance ratios are calculated for each sequence
using the new global EDPs. All ORFs with poor similarity
scores and EDR scores are removed from the original set
M creating a refined set M'. Using the new EDR values, a
second round of overlap evaluation is performed on M' to
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determine the final set of protein coding genes (see Figure

1).

GRC takes a heuristic approach in using information from
multiple pairwise alignments and start codon frequencies
to rank potential translation initiation sites. Each align-
ment, in the multiple pairwise alignments of the query
OREF, is taken to be evidence of the start sites that occur
between the aligned region and the beginning of the max-
imally long ORF (Figure 2). A score, , is calculated for
each putative start site, for each supporting alignment. As
it is possible for each start site to be supported by more
than one alignment, only the maximum across all sup-
porting alignments is used to represent a particular start
site. We give weight to start sites that occur in closer prox-
imity to the conserved region and that occur at a higher
frequency by scoring each site according to the function
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+ + , where is the average of the frequencies that a
start site codon is found in the experimentally verified
datasets of E. coli [22] and B. subtilis [23] as computed by
Makita et al. [24] (ATG 0.858, GTG 0.079, TTG 0.063).
These start codons and their corresponding values are
used by default but may be changed by the user to match
the target organism. The and components are alignment
bit
bitgelf
the alignment used to score the start and bit,is the bit

specific: y = . Here bit represents the bit score from

score that would result from an alignment of the entire
sequence to itself. This "bit fraction", , is also used in
overlap evaluation and ORF removal. The last compo-
nent, , is the bit score of the alignment divided by the
largest bit score of all the alignments for the given ORF.
This gives weight to those starts supported by longer con-
served sequences.

Generic EDPs

set: M . / . |
All ORFs Codlng/Nloncgdlng Codmg set: C
approximation Non-coding set: L

BLAST

User-provided BLAST database

Retrain EDPs

Organism
specific EDPs

set: M'
Gene Calls Overlap resolution
Discarded ORFs
Figure |

~

All ORFs evaluation

Discarded ORFs

Procedure for gene calls. Gene calling procedure for GRC. Starting with all ORFs (set M), BLAST information and the
generic EDPs are used to make an initial evaluation of coding and non-coding. ORFs determined to be coding go into set C and
those ORFs that overlap them go into set L. The EDPs are retrained to be organism specific and are used to remove the low-
scoring ORFs from M to create M'. Overlaps in M' are then resolved to create gene calls.
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AV

/ Stop

ORF of maximal

length
(s1) atg (s2) gtg (s3) ttg (s4) gtg
Alignment 1
Start Codons=
atg, gtg, ttg
D Aligned Region Alignment 2
I:‘ Unaligned Region
Alignment 3...

Figure 2

Start site determination. Support can come from different alignments for various start sites. Alignment | supports sl, s2,
and s3; Alignment 2: s| and s2; Alignment 3: s1, s2, s3, and s4. Higher start scores are given to start sites that: occur closer to
a supporting alignment, occur at a higher frequency, and are supported by a higher scoring alignment.

In the "All ORFs evaluation" procedure from Figure 1,
ORFs with poor similarity and EDR scores are removed
from consideration as coding genes. ORFs greater than
300 bp are kept if they have an alignment score greater
than 0.50 or an EDR value less than 1.0. ORFs less than
300 bp are considered small and occur at a higher fre-
quency than those with longer sequences. Because they
occur so often, small ORFs can represent a significant
source of predictions and still pose a challenge for gene
prediction [25]. Small ORFs are kept if they have a score
greater than 0.80 or an EDR value less than one positive
standard deviation from the mean EDR value of the cod-
ing set used to retrain the EDPs (Figure 1).

Genes can and do overlap in prokaryotic genomes
[26,27]. Some of these overlaps are speculated to be
important in regulation of gene expression [28], while
others are thought to stem from phage interaction [29].
For our purposes, when evaluating overlaps present in the

set of all ORFs, it is important to determine whether the
overlaps represent a biological phenomenon, an error in
gene coordinates, or an indication that one of the ORFs
involved is not a protein coding gene. To do this, we use
the BLAST hits and the EDR values for the ORFs involved
to specify the amount of overlap allowed. For any given
pair of overlapping OREFs it is possible for both to have
alignments with significant scores. Each alignment is
taken as evidence that an ORF exists as a protein coding
gene (this assumes the correctness of the subject sequence
and the biological significance of the alignment). If the
overlap is large and there can be no reconciliation by
adjusting the start site coordinate, then it is likely that one
of the ORFs is not a protein coding gene and should be
removed.

In a study of 198 microbial genomes Johnson et al. [30]
find that 70 percent of gene overlaps are less than 15 bp
and 85 percent are less than 30 bp. Extrapolating, we
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define a range of 1...45 bp for initial allowable overlap
between ORFs. Although empirical observation indicates
a maximum overlap of 45 bp, we allow up to twice that
(90 bp) if the evidence for both ORFs is strong. This
allows the overlap to be evaluated by the user so that he
or she can make a value judgment based on the evidence.
The amount of allowable overlap is defined to be:

Allowed = ( + (1 - EDR)) * 45

If the EDP for the sequence is closer to the non-coding
profile, then the EDR value will be greater than one lead-
ing to a decrease in the overlap allowed. Here we use the
EDRand values from the ORF that will be removed if the
overlap is not resolved.

To determine which ORF in an overlapping pair will be
removed we compare each ORF's alignment score, EDR,
and length according to the following heuristic:

If one ORF has an alignment and the other does not, then
the ORF with no alignment is removed. In all other cases
the property which is determined to be the stronger dis-
criminator is used. For two ORFs, ORF,; and ORF,, this is
decided by comparing the values of the percentage differ-
ence, Dy for each property where S = {, EDR, length}.

Dg= |Sl' Sz|/M IN (Sll Sz)

If both ORFs have alignments, then the Dg values for bit
fraction and EDR are compared. If neither do, then the Dy
values for EDR and ORF length are compared. In both of
these cases the property with the highest Dg value is used
to decide which ORF is removed.

As part of the overlap evaluation process, it may be found
that altering the start coordinate of one of the conflicting
ORFs will resolve an overlap. Because the highest scoring
start sites are determined before overlaps are evaluated,
only the alternative start sites for the low-scoring ORF of
an overlapping pair are considered in resolving an over-
lap. Obviously if the overlap does not occur on the 5' end
of an ORF, there is no point in exploring alternative start
sites. Alternative start sites are considered in order of their
score as given by the start site priority queue. Because the
GRC stores information about multiple pairwise align-
ments for each OREF, it is possible that certain alignments
are compatible with some start sites and not with others
(Figure 2). For each start site the alignment that best fits
the sequence (has the largest ) is used to represent the
ORF.

Functional Assignment
The functional assignments of GRC are based on associa-
tions, established through sequence similarity, between
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query ORFs found in the target genome and the subject
sequences in the GRC BLAST database. Each association
comes from an alignment that meets a user specified, e-
value significance threshold. By default, the functions
assigned to a query ORF are based on the annotation of
one subject sequence chosen from those that have a signif-
icant alignment to the query. The subject whose align-
ment gives the highest value (explained above), and is
compatible with the start coordinate (see Figure 2), is used
as the source of functional information to annotate a par-
ticular ORF (we will call this the "source subject"). If the
database does not contain a sequence similar to the query
sequence, then there can be no function assigned to it.

The exact information assigned to an ORF depends on the
input provided to GRC. At its most basic level GRC takes
a collection of amino acid FASTA files and uses it to create
the BLAST database. In this case GRC simply parses the
contents of the FASTA header of a subject sequence to cre-
ate the annotations. If the user provides annotation tables
for the corresponding sequence files then the parsing and
annotation construction becomes more precise. With this
level of input the product description and gene name are
specified exactly and inappropriate information can be
excluded. Currently the GRC supports protein annotation
tables from NCBI and EMBL. The output of GRC also pro-
vides detailed information about functional assignment
decisions, including confidence scores for assigned GO
terms that are based on the score of the corresponding
alignment.

If GO annotations are provided as additional input,
GRC's functional assignment becomes more adaptable.
By default GRC assigns GO terms associated with the
source subject as it does in the regular annotation proce-
dure. However, when using the Gene Ontology with GRC
the user also has the option to filter the term assignments
based on GO evidence codes, term depth, and GO cate-
gory. Evidence codes are a three letter code associated with
a Gene Ontology annotation, which specifies a source of
support category for a particular annotation. Although
currently the vast majority of evidence codes for prokary-
otic annotations are '[EA', inferred by electronic annotation,
we expect this feature to be useful as the number of exper-
imentally derived annotations and the complexity of the
evidence code system increases. The user also has the
option to specify which GO categories to use in making
annotations (molecular function, cellular component, or
biological process).

A problem encountered in transferring function is decid-
ing which function to use when there are multiple high-
scoring alignments. GRC's default practice is to transfer
the function of the database sequence whose alignment
best fits the ORF sequence. However, just because a sub-
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ject sequence is most similar to the target gene does not
guarantee that it is well annotated and is the best candi-
date for functional transference, e.g. transferring a function
from a 98% identical sequence experimentally determined to be
glucokinase may be preferable to transferring the term "hypo-
thetical” from a 99% identical sequence. If the user specifies
a minimum GO term depth, terms associated with the
source subject, that pass the depth restriction, are
assigned. If none of the GO terms from the source subject
meet all the filtering criteria then GO terms are assigned
from another subject that has the highest a score and GO
terms that do meet the criteria.

GRC also has the option of generating GO "consensus
annotations." Multiple, significant alignments, and their
associated functions, can represent a net or distributed
knowledge about the query sequence. In these cases, if
only the top-scoring function is transferred, then the net
knowledge is lost. We provide in GRC a feature for captur-
ing this net knowledge by creating GO consensus annota-
tions. Consensus annotations are intended to leverage the
information distributed across the GO-DAG from multi-
ple alignments into term assignments which have a high
level of evidential support. The assumption behind con-
sensus annotations is that multiple alignments will indi-
cate terms that occur in relative proximity to one another
within the GO-DAG and that this proximity is indicative
of either a protein family with similar function or a varia-
tion in function specifics for homologous sequences in
the database. The goal is to capture the proximity, and
subsequent agreement, of a group of terms through these
GO term assignments. Similar algorithms have been
developed in GOMIT [31] and CLUGO [32] but to our
knowledge no publicly available implementation of these
algorithms exist.

Additionally, the user is able to specify a minimum per-
cent coverage that the alignment must satisfy, for both the
query and subject, in order to be used for function assign-
ment. These options give a measure of control such that
the annotation of an entire genome can be customized to
a user's particular interests. The ability to fine-tune GO
term assignment in terms of GO evidence codes, depth,
and category, the use of consensus annotations, and the
extensive information about functional assignment deci-
sions contained in the output, together constitute a pow-
erful functional assignment system not found to our
knowledge in other automated annotation systems.

Evaluation

Also implemented in GRC is a module that allows the user
to evaluate the performance of the tool with respect to a
reference annotation. One part of the module provides a
detailed analysis of precision and sensitivity with respect
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to gene finding. The details provided are meant to act as
the engine to drive open-source development of the GRC
and allow the user to easily evaluate the impact of his or
her changes with respect to real organisms. This module
also does automatic evaluation of function assignment.

Output from this module allows the review of current
annotations based on evidence found in the annotation
process.

Gene Finding

Evaluating the performance of gene finding requires both
a reference set of gene coordinates, R, and a defined sys-
tem of measurement. For the purposes of using metrics,
all the coordinates provided in the reference set are
assumed correct. We evaluate the correctness of gene calls
with respect to the starting set M composed of those ORFs
found through a linear scan of the genome. This allows us
to frame the gene finding problem for the GRC as one of
classification. Given the set M, label each ORF in M as
either coding (by placing it in the positive set P) or non-
coding (by placing it in the negative set N). This leads to
the following evaluation with respect to the reference set:
every gene coordinate pair in set P is either a true positive
(TP), a false positive (FP), or has no reference (NRP), and
every coordinate pair in N is either a true negative (TN) or
false negative (FN).

True positive (TP): an ORF in set P that is in the same
frame and has the same stop site as a gene in set R

False positive (FP): an ORF in set P that occupies the same
space as a gene in set R but does not meet the conditions
for a TP

No reference positive (NRP): an ORF in set P that does
not occupy the same space as any gene in set R

False negative (FN): an ORF in set N that is in the same
frame and has the same stop site as a gene in set R (see
note below)

True negative (IN): an ORF in set N that does not meet
the conditions for a FN

When using the GRC, the user must specify the minimum
gene length. This is the minimum nucleotide length for
gene finding, which means all putative genes returned by
the GRC will be greater than or equal to this number.
Genes in R that are shorter than the minimum gene length
specified are not counted as false negatives.

When measuring the performance of gene finding with
respect to a reference, we wish to answer the following:
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¢ How many of the genes in the reference set did we find
(assert as being protein coding)?

e Out of the ORFs we asserted as being protein coding,
how many were correct?

* And out of those correct, how many also had correct
start site coordinates?

We can answer each of these questions with the following
measurements:

TP

Sensitivity or Recall = ——
TP+FN

TP

Precision or Accuracy = ———————
TP+FP+NRP

TP,

Start Precision= ——2>———
TP+FP+NRP

where TP, = the number of true positives which have a cor-
rect start coordinate.

Functional Assignment

In testing function assignment, we wish to measure the
number of genes we assign a correct function to and,
because one gene can have multiple functions, the total
number of functions correctly assigned. Without a system
for formal functional classification, testing function
assignment can be difficult.

Comparing plain text functional descriptions will result in
measuring the number of common keywords and trying
to ensure that they do not convey a common biological
phenomena with little meaning, e.g. "protein." To address
this problem we use the Gene Ontology, which allows us
to devise a more precise system for measuring function
assignment performance. This system assumes that there
exists a reference annotation that specifies the most spe-
cific GO terms detailing the functional characteristics of
each gene in the test genome. GOA formatted files from
EMBL's Integr8 project [33] and the Gene Ontology web-
site [34] are freely available and provide this information.

Let ¢ be the target gene whose functional assignment cor-
rectness we wish to determine. Let r be the reference gene
whose function we wish to compare t to. There are three
conditions which must be met before we can evaluate
whether the function assigned to t is correct:

1. t must be a true positive in gene finding with respect to
the reference gene r.

http://www.biomedcentral.com/1471-2105/10/35

2. t must be assigned a GO term as a result of the BLAST
search.

3. r must also be assigned a GO term from the same GO
category as t.

Assuming these conditions are met, we then assign a label
to each GO term that has been assigned to each TP ORF in
the result set P (Figure 3). A term assignment is labelled
confirmed if it coincides with or is the ancestor of a refer-
ence GO term belonging to r. A term is labelled compati-
ble if it has as its ancestor one of the specific GO terms
assigned to 1. These represent potential refinements of the
current annotation of the gene. A term is labelled incom-
patible if it does not meet the requirements to be labelled
confirmed or compatible. These terms only share a com-
mon ancestor with the terms listed for r. Incompatible
term assignments are not necessarily incorrect. The rele-
vance of this evaluation depends on the correctness and
completeness of the reference GO term assignments. If an
evaluation of "incompatible" results from comparison to
a complete (all relevant GO terms have been assigned)
and correct reference annotation, then the incompatible
assignment is likely incorrect. If, on the other hand, there
is a relevant GO term missing in the reference annotation,
then there is a chance that the GRC assigned term might
be accounting for this missing information. For the pur-
poses of GRC evaluation (see below) incompatible assign-
ments are considered incorrect.

Architecture

GRC is comprised of multiple components, each of which
can be used independently from the annotation pipeline
(Figure 4). GRC_ORFs takes a genomic sequence and
finds all ORFs of maximal length. These sequences are
redirected to GRC_Translate which translates the nucleic
acid sequence into amino acid based on the translation
table specified. Using the translated sequences as queries,
FSA-BLAST performs a sequence similarity search against
a user-specified database in order to identify conserved
sequences and provide putative functions. GRC_Annotate
takes BLAST results, and adjusts starts, assigns function,
and gives putative protein coding genes as its output.

The algorithms comprising the GRC are implemented in
C++ and Perl. The source code is available to download
under the GNU license and comes packaged with precom-
piled binaries on an Intel x86 Linux machine. Running
the software requires only that the user have standard
installations of g++, Perl, and Make on a Linux operating
system.

We provide an additional component that can be used to
easily evaluate the performance and decisions made by
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Status GO term

@ Reference: intracellular part

@ Compatible: | DNA helicase complex
Incompatible: | membrane

. Confirmed: intracellular

Evaluate functional assignment using GO. Here the term "intracellular part" represents a reference function assigned to

the reference gene. The terms "intracellular”, "membrane", and "DNA helicase complex" represent possible GRC GO term
assignments and their evaluation with respect to the reference term.

the GRC. GRC_Compare takes as input the output from
GRC_Annotate and a reference annotation for the
genome annotated. It provides an evaluation of the gene
finding as well as functional assignment.

The GRC is run from the command prompt. Annotating a
genome is as simple as specifying the files that contain the
genomic sequence and the functionally characterized
sequences from one or a number (set) of closely related
organisms. We support several major formats from both
NCBI and EMBL.

Example for running the GRC:

GRCv1.0.pl -g Genome.fna -d DatabaseDirectory

Because the GRC can take advantage of multiple sequence
alignments in gene finding, determining start site posi-
tion, and making functional assignments, the user also
has the option to specify the number of top BLAST hits to
use.

The output provided by the GRC increases with the
amount of information provided by the user. At base level
GRC provides both a list of putative protein coding genes
and a list of ORFs, generated by GRC ORFs, hypothesized
not to be protein coding. These lists provide the following
for each ORF:

1. Highest scoring alignment values.

2. Entropy distance ratio for the sequence.
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Genome of
Interest

GRC ORFs Customized
Annotation
Database
All maximal GRC Translate FSA-BLAST
ORFs
Best
Annotated H GRC Annotate ﬁ/ BLAST
Genes i
Hits
Figure 4

GRC pipeline. Internal pipeline for GRC. Maximal ORFs
are found and translated. FSA-BLAST is run using the user
specified database and the resulting alignments are used to
call and annotate protein coding genes.

3. Assigned functions and associated confidence values.
4. Gene coordinate information.

This level of output requires only the genomic sequence
and FASTA-formatted amino acid sequences for the anno-
tation database. In this case, the functions assigned are
merely the plain text descriptions obtained from FASTA
headers. If the user provides additional functional infor-
mation in the form of GO annotations, these will be com-
bined with the sequence information to provide GO term
assignment.

Results and discussion

We test the performance of the GRC using leave-one-out
genome annotation. For a group of related organisms, all
with pre-existing annotations, each organism is annotated
by the GRC using the sequences and functional descrip-
tions from the rest of the group. Performance information
is then generated using GRC_Compare to compare the
GRC's annotation to that of the target organism.

In gene finding it is common practice to specify a mini-
mum gene length [1,2,35]. Any sequences under this min-
imum are ignored. As the minimum gene length decreases
more candidate sequences are generated from a linear
scan of the genome. This increased number of sequences
results in increased computation time and a higher degree
of difficulty in choosing which are actually protein coding
genes. Gene finding results were generated over a range of
minimum gene lengths (100-300 bp) at 50 bp incre-

http://www.biomedcentral.com/1471-2105/10/35

ments. All sequences and gene coordinate information
were obtained from NCBI's RefSeq repository [36].

For each annotation the GRC was set using the following
parameters:

e Number of BLAST hits to use per query = 10

e BLAST e-value threshold = .001

o Effective BLAST database size = 2879860 (char.)
® BLAST scoring matrix = BLOSUMG62

To provide a frame of reference, we compare the GRC's
performance to the popular gene finding program Glim-
mer v3.02 [1]. Glimmer was tested using the same proce-
dure and reference files as the GRC. It should be noted for
this comparison that many of the prokaryotic annotations
in the Refseq repository may have been generated using
Glimmer. Indeed RefSeq even provides Glimmer output
files for various organisms. Glimmer was run using its iter-
ated procedure in which it uses the sequences from the
first run to create a training set for the second run. This
also allows the Glimmer method to build a position
weight matrix for the ribosomal binding sites and for the
estimation of start-codon usage in the genome. For each
run of Glimmer the default parameters were used. Only
the minimum gene finding length was changed.

Glimmer parameters:
e Maximum overlap = 50
e Score threshold > 30

In order to test functional assignment, we use Gene
Ontology terms. The GO annotations are used as both
database functions to be assigned and as reference func-
tions. Currently, there are relatively few well curated GO
annotations for multiple closely related organisms. We
obtain each organism's GO annotation from EMBL's
Intergr8 project [33]. These GO annotations are created
through "a mixture of manual curation, and automatic
inference from other annotations such as InterPro hits,
UniProt keywords, and Enzyme Commission classifica-
tion [33]." In testing functional assignment, we per-
formed annotations using a minimum gene length of 300
bp.

Test cases

We test the GRC on three groups of bacteria with varying
levels of relatedness. Group 1 is composed of different
strains of the species E. coli, Group 2 from members of the
genus Pseudomonas, and Group 3 from members from the
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class Gammaproteobacteria (Table 1). In terms of the tree of
life, both groups 1 and 2 are fairly specific and represent
an availability of closely related sequences which may be
lacking in some newly sequenced genomes. In all three
groups we use only the primary replicon for testing the
annotation capability of GRC.

Performance

Using leave-one-out annotation, we test gene finding at
minimum gene lengths of 100, 150, 200, 250, and 300
bases. For both the E. coli and Pseudomonas groups GRC
performs well with respect to the reference files, having
average values in the 0.95 - 0.99 range for both sensitivity
and precision (Figure 5). Relative to Glimmer, GRC typi-
cally performs within a 2 percent margin for the sensitivity
and precision measurements in the first two target groups.
As seen in Figure 5, GRC tends to be more precise than
Glimmer at shorter minimum lengths, but with slightly
lower sensitivity. GRC is also able to consistently perform
well with respect to determining the correct start site (Fig-
ure 6). GRC places heavy emphasis on sequence similarity
information. As expected the precision and sensitivity
with which genes are predicted, and start sites are deter-
mined, decreases as the phylogenetic distance between
each member of the group increases. Although the Gamma
group was distantly inter-related, GRC was able to achieve

Table I: Test groups.

http://www.biomedcentral.com/1471-2105/10/35

precision and sensitivity in the ninetieth percentile for the
majority of the annotations. It is assumed that perform-
ance will continue to decrease, similar to many similarity
based methods, as the relationships between the target
sequences and those in the annotation database grow
more distant. Great care should be taken when choosing
the organisms and annotations that will make up the
annotation database. Any comparison of GRC to an ab ini-
tio gene finder can be deemed inappropriate since GRC
takes advantage of prior knowledge in making its predic-
tions. In this case we simply wish to demonstrate the via-
bility of a similarity based genome annotation and that
GRC, despite being an explorative annotation tool, has
the ability to perform satisfactory gene finding for a vari-
ety of organisms.

Regarding the results presented in Figure 5 it is important
to note the following. As stated above, for the purposes of
this evaluation (sensitivity measurement) we have not
counted as false negatives the reference genes that are
shorter than the minimum gene length. Note that the low-
est threshold (100 bp) means protein sequences as short
as 33 aa. Very few bona fide bacterial genes are shorter
than that. In our tests, we verified that the E. coli group has
on average 14.2 genes shorter than 100 bp, the Pseu-
domonas group has 8.2, and the Gamma group has 15.2.

Organism Organism AC ID Replicon Size (Mbp)
Group | (E. coli)

Escherichia coli CFT073 NC_004431.1 CFT073 5.23
Escherichia coli O 157 H7 EDL933 NC_009801.1 H7EDL933 5.62
Escherichia coli O 157 H7 str. Sakai NC_002695.1 H7Sakai 5.56
Escherichia coli str. K12 substr. W3110 AC_000091.1 W3l110 471
Escherichia coli UTI89 NC_007946.1 UTI89 5.14
Escherichia coli APEC O NC_008563.1 APECOI 5.15
Group 2 (Pseudo.)

Pseudomonas aeruginosa PAO| NC_002516.2 aerPAOI 6.35
Pseudomonas entomophila L48 NC_008027.1 entL48 5.97
Pseudomonas fluorescens Pf5 NC_004129.6 fluPf5 7.17
Pseudomonas fluorescens PfO | NC_007492.1 fluPfOI 6.53
Pseudomonas syringae pv. phaseolicola 1448A NC_005773.3 phal448a 6.01
Pseudomonas putida KT2440 NC_002947.3 puKT2440 6.27
Pseudomonas syringae pv. syringae B728a NC_007005.1 syrB728a 6.18
Pseudomonas syringae pv. tomato str. DC3000 NC_004578.1 syrDC3000 6.49
Group 3 (Gamma.)

Escherichia colii str. K12 substr. W3110 AC_000091.1 W3l10 4.65
Haemophilus influenzae Rd KW20 NC_000907.1 Kw20 1.86
Vibrio cholerae O| biovar eltor str. N16961 NC_002505.1 NI16961 3
Pseudomonas aeruginosa PAO | NC_002516.2 aerPAOI 6.35
Coxiella burnetii RSA 493 NC_0I10117.1 RSA493 2.03
Yersinia pestis CO92 NC_003143.1 C0O92 472

Test groups for leave-one-out genome annotation. There is a gradation in phylogenetic distance, from closest in the E. coli group to the most

distant in the Gamma group.
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parts.

The precision results in turn are affected by our concept of
No Reference Positives (NRPs). If the NRPs were not taken
as False Positives our precision results would be better
than those shown in Figure 5. As examples, using 100 bp
as minimum gene length, and for the genome E. coli

W3110 the count of NRPs is 240; for the genome P. syrin-
gae pv. tomato strain DC3000 the count of NRPs is 432 (a
full account of these numbers can be found in the supple-
mentary material: see Additional file 1).
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Given the functional assignment performance evaluation
method we have established using GO terms, there are
two ways to measure the quality of a GRC annotation.
One is to compare the fraction of ORFs that have func-
tions correctly assigned (confirmed) versus the fraction

that have functions that could be incorrect (incompati-
ble). The other is to look at the total number of terms cor-
rectly assigned. Figure 7 shows that the average fraction of
OREFs with correctly assigned functions is far greater than
the fraction that may have incorrect assignments. Because
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a single ORF can have multiple GO terms, there may be TP
OREFs that are counted as having confirmed, compatible,
and incompatible term assignments.

Table 2 shows the total number of confirmed, compatible,
and incompatible terms for each organism for the TPs that
are verifiable. Again a TP is labelled verifiable if both the
GRC-ORF and its corresponding reference ORF have GO
terms from the same category. This table also shows the
average depth and distance for confirmed and compatible
terms. The depth of a term is calculated as the minimum
number of edges, over all paths, required to traverse from
the root to the target term. We count the molecular func-
tion, biological process, and cellular component nodes as
having depth zero. The distance is calculated as the mini-
mum number of edges, over all paths, required to traverse
from the most specific GO term in the reference to the tar-
get term.

It is possible for a confirmed or compatible annotation to
be trivial in that the term assigned has no functional spe-
cificity e.g. assign the molecular function term. The depth and
distance information in Table 2 shows that for the major-
ity of term assignments this is not the case. As the phylo-
genetic relationships of an annotation group grow more
distant the number of verifiable terms and confirmed
terms decreases. Full tables of all GO analysis statistics can
be found in the supplementary material (see Additional
file 1).

Fraction of TP ORFs with GO classifier

1
0.9
0.8

0.7
S 06 M Confirmed
o .
B os B Compat.
E ' O Incompat.
0.4

0.3
0.2

0.1 I

0 i

E. coli Pseudo. Gamma.

Figure 7

Performance on functional assignment. Columns show
the average fraction of true positive ORFs with confirmed,
compatible, and incompatible term assignments. These frac-
tions are not additive since a TP can have a confirmed, com-
patible, and incompatible term assignment.
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Term assignments labelled incompatible do not necessar-
ily mean the assignment is incorrect. For instance, in the
annotation of Pseudomonas phal448a, a protein known to
be part of tryptophan synthesis (EMBL Accession =
Q48QG6) was assigned the term GO:0008652 by GRC.
This is a biological process term defined as "amino acid
biosynthetic process." Because protein Q48QG6 was
already assigned a biological process term for tryptophan
metabolic process (GO:0006568) in the reference annota-
tion, and that term was neither an ancestor nor child of
the one assigned by GRC, the assignment was labelled
incompatible. Also interesting to note, is that the number
of compatible annotations increases as the groups
become more distantly related. These annotations could
be improvements on the current annotation but are also
likely to include some incorrect functional assignments.

With a carefully selected annotation database the user can
annotate a genome of interest in a few hours. The main
bottleneck in the annotation procedure of GRC is the
sequence similarity comparison. BLAST is known to scale
in proportion to the product of the lengths of the query
sequence and the database searched [37]. In Figure 8 we
show the total run time of the GRC in relation to the prod-
uct of the total query and database sequence lengths for
each organism across all test groups and minimum
lengths. The average total running time for all non-BLAST
components of the GRC is 50 seconds with a standard
deviation of 15 seconds. The total run time for non-BLAST
components scales according to the amount of informa-
tion available for each organism, e.g., the number of ORFs
and the number of alignments. All times were obtained
on a desktop computer with a 2.8 GHz processor and 1
GB of RAM.

As noted in the introduction, there exist genome annota-
tion services available, most notably RAST [11]. Although
the goals of these services and those of GRC are essentially
the same (generate an automated genome annotation)
the approaches adopted are quite different. Annotation
services are centralized whereas GRC is a tool to be used
locally and even tuned in different ways by different users.
In spite of these differences we provide a comparison of
the annotation results of GRC to those of RAST for
Escherichia coli str. K12 substr. W3110 and Pseudomonas
syringae pv. tomato str. DC3000. In Table 3 we show the
performance of RAST compared to GRC for making gene
calls. We also provide a comparison of the GO terms given
in the RAST annotation to that of GRC (Table 4). The per-
formance of RAST is determined by using files from
EMBL's Integr8 project [33]. Although the primary form of
annotation for RAST is not Gene Ontology terms, we
demonstrate that the system we have established can be
used to characterize the state of functional annotations on
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Table 2: Functional prediction performance (per gene).
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Group ID Conf. Comp. Incomp. Conf. Depth Conf. Dist. Comp. Depth Comp. Dist.
E. coli APECOI 13278 660 485 3.77 0.09 49 2.49
CFT073 13580 145 208 3.8 0.02 453 2.32
H7EDL933 14731 52 66 3.83 0.01 4.65 2.29
H7Sakai 14694 80 84 3.83 0.01 4.6l 2.09
UTI89Min 13158 118 146 3.8 0.02 4.74 2.31
W31 10Min 13855 60 67 3.84 0.01 4.58 2.6
Pseudo. aerPAOI 12704 303 420 38 0.06 4.15 2.21
entL48 10616 482 1092 3.77 0.16 4.78 2.39
fluPf5 14101 201 371 38 0.02 4.02 2.03
fluPfO 13210 275 441 3.78 0.05 4.44 2.34
phal448A 11714 167 312 3.83 0.02 4.65 2.41
puKT2440 10838 341 330 3.8l 0.08 4.65 2.37
syrB728a 12167 259 254 3.79 0.04 451 2.46
syrDC3000 12002 254 253 38 0.05 4.59 243
Gamma. aerPAOI 12631 1344 1913 3.75 0.22 4.52 2.26
CO92 11742 770 1185 3.85 0.09 4.66 2.25
KW20 6732 132 321 3.95 0.03 4.66 2.47
N16961 8165 374 616 39 0.08 4.82 24
RSA493 4036 282 335 39 0.1 4.77 2.58
W3110 12913 271 302 3.84 0.03 4.8l 2.54

Number of terms for each GO evaluation classifier. Only TP ORFs that have "verifiable" terms can be evaluated. Depth and distance are averaged

over all term assignments for each organism.

a genomic scale beyond simply listing the differences that
exist. We also take the opportunity to note that the results
presented above show that GRC can run in a matter of a
few hours on a standard desktop computer, whereas RAST
takes anywhere from one day to three days.

Conclusion

In GRC we have created a reliable, open-source, annota-
tion tool which can be used for explorative annotation to

Run time with respect to search space
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Figure 8

Running time. Total running time of GRC versus the total
search space (product of total query and DB length). The
main bottleneck for GRC is BLAST.

investigate a genome based on the users interests. By sup-
porting commonly available sequence and annotation
formats, we provide a tool that puts very little demand on
any user wishing to annotate a prokaryotic genome. GRC
synthesizes information from both sequence composition
and sequence similarity to minimize the deficiencies
inherent in using just one. Using standards from NCBI
RefSeq [36] GRC has demonstrated high precision and
sensitivity in gene finding for groups of closely related
prokaryotes. GRC's modular design and generic use of
sequence similarity information for functional assign-
ment and annotation means that it can be easily adapted
to fit within other annotation pipelines. GRC was the
automated annotation tool used in the Pseudomonas syrin-
gae pathovar tomato strain T1 genome project [38]. For
this project researchers relied on the fact that GRC can use

Table 3: Comparison of gene calls for RAST and GRC.

RAST Gene Finding Comparison

ID Precision  Sensitivity  Start Fraction
RAST W3l 10 0.98 0.98 0.80
RAST syrDC3000 0.97 0.97 0.92
GRC W3110 0.98 0.98 0.83
GRC syrDC3000 0.94 0.98 0.79

The performance of gene finding for RAST and GRC. The precision,
sensitivity, and fraction of gene calls that have correct start sites for
Escherichia coli str. K12 substr. W31 10 and Pseudomonas syringae pv.
tomato str. DC3000 (for genes > 300 bp).

Page 15 of 17

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:35

Table 4: Comparison of GO annotations for RAST and GRC.
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RAST GO-Based Comparison

ID TP-Verifiable Term Confirm. Term Compat. Term Incompat. Avg.Con.Depth Avg.Com.Depth
RAST W3110 1354 1995 136 123 4.3 5.21
RAST syrDC3000 1225 1701 258 141 4.18 537
GRC W3I10 2620 12913 271 302 3.84 4.8l
GRC syrDC3000 2791 12002 254 253 38 4.59

The performance in making GO annotations for RAST and GRC. The number of true positives that have GO terms for the reference and the called
gene are TP-verifiable. The number of GO terms found to be confirmed, compatible, and incompatible and the average depth for those terms.

any user-provided protein sequence database; a custom
database of effector protein sequences was used, and this
was essential for the project's goals.

When predicted computationally, gene calls, start coor-
dinates, and assigned functions should be taken as
highly tentative until they have been curated and
approved by an expert human curator. Predictions made
by GRC are no different. Although GRC achieves high
performance values with respect to two test groups, these
groups are close phylogenetically. As the relationships
between the organisms in the database and the target
genome become more distant so will the applicability of
annotations made by GRC. It should also be re-empha-
sized that the functional performance metrics were gen-
erated using reference functions (from GOA files) that
were themselves electronically created. Ideally all refer-
ence information used to measure the performance of
GRC should be experimentally derived. Because the GRC
effectively transfers information from one organism to
another, mistakes in database annotations can be propa-
gated into a new annotation created by GRC. The confi-
dence values, alignment information, and many of the
other values output by GRC are provided so that the user
can evaluate whether a gene call or functional assign-
ment merits further investigation. These values do not
provide any kind of guarantee that an in silico prediction
will be a biological reality.

Work on GRC is ongoing. We are currently working on the
following aspects. RNA annotation. RNA genes and fea-
tures are important pieces of information in any prokary-
otic genome. The fact that RNAs are usually well
conserved in closely related species should make it rela-
tively easy to include them in GRC annotations, although
locating precise boundaries may be difficult. Better use of
user-provided data. There are two main issues here. The first
is the presence of experimentally derived functional
assignments; those should be given preference in func-
tional transfer, and are easily detectable in GO annotated
genomes by the evidence code. The second is a user-
defined special reference genome. It is often the case that

among several closely related genomes there is one that is
especially well annotated. For example, among Pseu-
domonas syringae, strain DC3000 is by far the best anno-
tated. If users provide such information, GRC can be
modified to make use of it and thus produce better anno-
tations. Metagenomics annotations. An explorative annota-
tion tool is in theory ideally suited for annotation of
metagenomics sequences. In order for GRC to be useful in
such a context a user would have to provide a BLAST data-
base that would cover a wide range of prokaryotic species.
This is not a simple task, and therefore we are planning to
develop techniques that will allow the generation of a rea-
sonably small approximation of a nonredundant and yet
comprehensive set of well-annotated prokaryotic pro-
teins.

Availability and requirements

Project home page: http://staff.vbi.vt.edu/jcslab/
Operating systems: Linux

Programming Languages: C++ and Perl Requirements:
linux, g++, perl, Make

License: GNU General Public License. This license allows
the source code to be redistributed and/or modified under
the terms of the GNU General Public License as published
by the Free Software Foundation. The source code for the
application is available at no charge.

Any restrictions to use by non-academics: None
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