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Abstract
Background: The rate of protein structures being deposited in the Protein Data Bank surpasses
the capacity to experimentally characterise them and therefore computational methods to analyse
these structures have become increasingly important. Identifying the region of the protein most
likely to be involved in function is useful in order to gain information about its potential role. There
are many available approaches to predict functional site, but many are not made available via a
publicly-accessible application.

Results: Here we present a functional site prediction tool (SitesIdentify), based on combining
sequence conservation information with geometry-based cleft identification, that is freely available
via a web-server. We have shown that SitesIdentify compares favourably to other functional site
prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with
annotated active sites.

Conclusion: SitesIdentify is able to produce comparable accuracy in predicting functional sites to
its closest available counterpart, but in addition achieves improved accuracy for proteins with few
characterised homologues. SitesIdentify is available via a webserver at http://
www.manchester.ac.uk/bioinformatics/sitesidentify/

Background
Efforts, primarily by structural genomics groups, have pro-
vided a rapidly growing number of protein structures with
little or no functional annotation. This has caused new
interest in the relationship between structure and function
and has increased focus on ways to elucidate a protein's
function from its structure rather than solely from
sequence. In order to investigate the role of a protein
using its structure, it is useful to be able to identify the por-
tion of the protein that is most closely involved with its

function. In the case of enzymes this is its active site,
whilst non-enzymes have functionally important regions
that are involved in ligand-binding or protein-protein
interactions.

There are currently several computational approaches that
predict functional sites which use either structural or
sequence information. The most widely used methods
rely on sequence information in order to predict function-
ally important residues, due to the greater availability of
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sequence data as opposed to structural data for uncharac-
terised proteins. Sequence based methods mainly centre
around the concept of functionally important residues
being more highly conserved through evolution and iden-
tify the most conserved residues by comparing positions
in a multiple sequence alignment with homologous pro-
teins. Some methods use only sequence conservation
information in making predictions [1,2], whilst others
also include additional computed sequence features [3],
or structural properties predicted from sequence such as
predicted secondary structure and solvent accessible sur-
face area [4,5], particularly in order to distinguish
between residues conserved for function and those con-
served for structure [6,7]. Many methods focus on predict-
ing catalytic residues in enzyme active sites, but measures
of sequence conservation have also been successfully used
to predict residues in contact with a ligand [1,5,8] or in
contact with other proteins, although sequence conserva-
tion has been shown to perform less well as a predictive
feature in the latter cases [1,9].

Whilst there are a large number of sequence-based meth-
ods available, there are also a growing number of methods
that predict functional sites based on structural informa-
tion. These methods fall into two main categories: those
that identify structural similarities and transfer annota-
tion from a protein with a known functional site and
those that predict functional sites by non-homology
related structural features such as geometrical or electro-
static properties [5,10,11].

There are many resources that store structural and
sequence information about proteins with known active
sites, such as PdbFun [12], CSA [13], PDBSite [14] and
ProSite [15]. A protein of unknown active site location
can be compared to these resources (CSS [16] scans the
CSA and PDBSiteScan [17] scans PDBSite), or to data-
bases derived specifically for the prediction method, to
identify any structural similarities with known active sites
[18-25]. While these methods often produce accurate
results, they assume the existence of a functionally anno-
tated homologue of similar active site structure in their
respective databases. As one of the aims of structural
genomics initiatives is to obtain structures for proteins
that occupy remote fold space, these methods may be of
limited use for such proteins.

In this situation, ab initio methods that do not rely on the
existence of a functionally characterised homologue may
be of more value. A wide range of structural properties
have been used, showing that the relationship between a
protein's structure and its function is affected by many
structural characteristics. A study of catalytic residues and
their properties [26] showed that they are likely to exist in
regions of the protein that are not in helix or sheet second-

ary structure, have a higher propensity to be a charged res-
idue and exhibit lower B-values than non-catalytic
residues. A number of methods have used these character-
istics to predict residues involved in catalysis [27,28]. Bar-
tlett et al. noted that catalytic residues tend to line the
surface of large surface clefts, yet remain relatively buried
within the protein geometry. It was also observed in a
study of 67 single-chain enzymes that 83% of enzyme
active sites are found in the largest surface cleft [29],
resulting in methods to predict active sites by finding sur-
face clefts [30,31].

Previous work by this group [32] attempted to identify
functional sites by locating peak electrostatic potentials
near to the surface of a protein resulting from the interac-
tion of charged residues that are under electrostatic strain.
The greatest functional site prediction accuracy, however,
was obtained by applying a uniform charge weighting
across the protein rather than using actual charges. This
uniform charge weighting essentially acts as a cleft-finding
algorithm and will predict the most buried surface cleft.
This gave a prediction accuracy of 77%, where a successful
prediction is when the peak potential was within 5% of
the protein surface from the real active site centre.

Other studies have successfully used electrostatics calcula-
tions to predict active site and ligand-binding site residues
[33-37]. Elcock identified residues that had destabilizing
effects on the stability of the protein using continuum
electrostatics methods and found that these correlated
with residues involved in protein functionality [33]. This
method, however, was not tested on a large experimen-
tally annotated dataset and so it is hard to interpret the
degree of accuracy it achieved. Another approach predicts
enzyme active sites by identifying residues with unusu-
ally-shaped titration curves [35,38] as well as predicting
enzyme function [39]. Other chemistry-based
approaches, such as identifying residues that are unusu-
ally hydrophobic for their position in a structure have also
been successful [40].

Other ab initio methods use the degree of connectivity of
residues to predict those involved in function. A number
of methods assess the closeness centrality of residues [41-
43], whilst one study found that catalytic residues are
more likely to exist in close proximity to the molecular
centroid [44].

Perhaps the best accuracies can be achieved by combining
structural approaches and sequence conservation. Resi-
dues may be evolutionarily conserved due to structural as
well as functional constraints and a number of studies
have attempted to distinguish these two factors by consid-
ering the degree of conservation and the residue's struc-
tural environment [6,45]. Mapping the degree of
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evolutionary conservation onto the structure is useful in
identifying clusters of conserved residues in the structure
that may indicate a functional site [46,47]. Combining
the types of structural information used in ab initio struc-
tural methods with sequence conservation can be effective
[10,11,34,48,49].

Despite the success of the large number of varied
approaches, only a relatively small subset of these meth-
ods are currently available either via a software package or
a web-server. Tools report various levels of accuracy that
are difficult for a user to compare due to their separate test
datasets, outputs and reporting methods. Here we present
a user-friendly functional site prediction tool, SitesIden-
tify, based on previously published work by this group
[10,32]. This is made publicly available via a web-server
[50], and is compared to other accessible tools in a com-
parison of performance on a common dataset.

Implementation
Functional Site Prediction Methods
SitesIdentify can predict functional site location by two
separate approaches, which have been described in more
detail in previous publications [10,32]. In brief, the first
method [32] places a 2Å grid over the protein structure
and applies a uniform charge to each non-hydrogen atom.
The electrostatic potential is calculated using Finite Differ-
ence Poisson-Boltzmann calculations with no dielectric
boundary. The peak potential is predicted as the centroid
of the functional site.

The second method [10] combines the electrostatics
method used above with sequence conservation informa-
tion. Close homologues are found by running the
sequence through PSI-BLAST with an E value cut-off of 1e-
20. A normalised conservation score is calculated for each
residue based on the amino acid and stereochemical
diversity and the gap occurrence at that position, C(x) =
(1-t(x))α(1-r(x))β(1-g(x))γ, where t is the normalised sym-
bol diversity, r is the normalised stereochemical diversity
(based on the BLOSUM-62 matrix) and g the gap cost.
Each of these terms are weighted by integral values rang-
ing between 0 and 5 (α, β and γ), the values for which are
defined as those giving the best predictive performance in
the original publication [10]. The peak potential is then
calculated in the same way as the first method, but now
with a single central atom in each amino acid weighted
with the conservation scores.

SitesIdentify Workflow
Upon submission of a job, SitesIdentify starts a number of
programs depending on which method the user
requested. If the conservation approach is selected, the in-
house Conserved Residue Colouring program(CRC) is
run first, which identifies homologues by running the

sequence contained in the SEQRES records in the PDB file
through PSI-BLAST [51]. PSI-BLAST is run for one itera-
tion (in default settings) on the non-redundant database
with an E-value cut-off for inclusion of sequences of 1e-
20. A profile file containing the conservation scores for
each residue is produced. SitesIdentify uses the conserva-
tion scores as charge weightings on a single atom for each
amino acid (Cβ or Cα for glycine), and calculates the loca-
tion of the peak potential as described above [10]. If no
homologue can be identified for a protein using CRC then
the method automatically switches to only charge-based
calculations. If the conservation method is not selected
then the CRC program is omitted and the location of the
peak potential is calculated using the uniform charge-
weighting method [32]. A sphere of user-supplied radius
is drawn around the predicted centroid coordinates and
residues are selected that have at least one atom within
that sphere and also exhibit more than 5Å2 of solvent-
accessible surface area (SASA) as calculated using the Lee
and Richards method [52]. This list of residues represents
the predicted functional site, which is given in the results
as a text list and also highlighted on the PDB structure
using Jmol [53].

SitesIdentify Usage
SitesIdentify is available for use via a web browser and is
freely accessible without license or an account registra-
tion. The main web page allows a user to enter either a
pre-existing PDB structure ID (and whether to use the bio-
logical unit or the asymmetric unit) or upload a structure
file, the radius around the predicted site to use, the
method to use and an email address so that a user can be
notified and emailed the results link upon job comple-
tion.

If a user has submitted their own structure file then this is
validated to ensure that contains an acceptable PDB-for-
mat structure, the rules for which are given in the user
guide available from the website. The file must be less
than 2 MB in size and contain only text. It also must con-
tain at least SEQRES and ATOM records and be spaced
exactly as the standard PDB format. If the user-supplied
information is invalid (non-existent PDB ID or invalid
email address) then the job is not initialized and the user
informed of the incorrect information via the browser.
Upon successful completion of a job the web-server
directs the user to the results page and also sends an email
to the user at the address specified with a link to the results
page.

Results and Discussion
SitesIdentify Web-server
SitesIdentify is available to run for single protein entries at
http://www.manchester.ac.uk/bioinformatics/sitesiden
tify/ or can be downloaded to run offline for multiple pro-
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teins (Additional File 1). It requires some basic user-input
via a web-browser (see Figure 1). Once this information is
validated a new job is initiated. The average calculation
time per protein is approximately 6 minutes when using
the method including conservation information and
approximately 2 minutes if only using charge-based calcu-
lations. If the protein takes longer than 45 minutes to pro-
duce results, which may occur for very large proteins, the
job is terminated and the user is notified by email.

Upon completion of a job an email is sent to the user at
the address specified which provides a link to the results
page. The results page displays a Jmol applet illustrating
the protein structure with the predicted site residues high-
lighted, a text list of the predicted residues and a link to a
text file containing the predicted residue information (see
Figure 2 for an example).

The methods used in SitesIdentify can distinguish
between enzyme and non-enzyme with a high degree of
accuracy [32] and so an enzyme/non-enzyme prediction
is also given along with the functional site prediction.
Cleft size has also been used as a discriminator between

enzyme and non-enzyme with enzymes more likely to
exhibit large surface accessible clefts than non-enzymes
[54]. Since the charge-based method essentially identifies
buried clefts it is likely to perform better for enzymes than
non-enzymes, although it still may be able to detect small
ligand-binding pocket clefts in non-enzymes. In addition,
the second SitesIdentfiy method incorporates sequence
conservation information which has also been shown to
useful in predicting other biologically important regions
such as non-enzyme ligand binding sites [49], protein-
protein interaction sites [55-57] and DNA-binding sites
[58]. It is worth noting however, that a study of four non-
enzyme families by Magliery et al. found that rather than
binding sites being conserved, they showed a higher
degree of variation than the rest of the protein [8]. This
may explain why some conservation approaches report
better accuracies in predicting functional sites of enzymes
than non-enzymes [49,59].

It is unsurprising therefore that SitesIdentify performs bet-
ter for enzymes than non-enzymes although it is still able
to identify non-enzyme ligand-binding sites with compa-
rable accuracies to other non-enzyme specific functional

Screenshot showing the required user input fieldsFigure 1
Screenshot showing the required user input fields. A user can either input a pre-existing PDB code and whether to use 
the asymmetric or biological unit structure or upload their own PDB-style structure file. All fields are compulsory.
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site tools (see Additional File 2). This tool may extend to
identifying other non-enzyme functional sites such as
protein-protein interactions and DNA interactions but
this is, as yet, untested. It is therefore useful to the user if
analysing a protein of unknown function to predict
whether the structure is an enzyme or non-enzyme when
choosing the method of SitesIdentify to use and interpret-
ing its results.

SitesIdentify only gives a prediction for a single functional
site as it makes predictions based on the single highest

peak potential. In oligomeric structures, however, the
same site may be present in multiple subunits and so
where there is a similar site in other chains SitesIdentify
identifies it as another possible site. These residues are
highlighted in purple on the protein structure (see Figure
3).

Where a user inputs a pre-existing PDB ID to SitesIdentify,
the option to use either the asymmetric unit or the biolog-
ical unit structure is given. Where the real functional site
is formed in or near subunit boundaries in the biological

Screenshot of an example results output for SitesIdentifyFigure 2
Screenshot of an example results output for SitesIdentify. The output for 1j2c (rat heme oxygenase-1) when submit-
ted using the charge-based method and a 10 radius. The list of active site residues is truncated for display purposes.
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unit, running SitesIdentify on the asymmetric unit may
fail to give the correct prediction.

Some biological units, however, may give a false predic-
tion particularly where there is an internal void formed by
a cyclical arrangement of subunits. Such voids tend to be
well-buried, more so than the real surface clefts, and the
residues on the edges of these voids may be evolutionarily
conserved in order to retain the quaternary structure.
These voids are therefore sometimes incorrectly selected
as predicted functional sites, and so where a biological
unit has an internal void it would be useful to also run
SitesIdentify on the asymmetric unit. For example, run-
ning the asymmetric unit for 1B6T through the SitesIden-
tify server locates the functional site in the correct
location, however the site is predicted incorrectly for the
biological unit as the void formed in the centre of the mol-
ecule (see Figure 4).

Comparison to Other Applications
It is difficult to objectively compare the accuracy levels
reported by the authors of the various existing functional
site prediction tools as they use different datasets and
report predictions differently. Some tools predict only the
residues specifically involved in the protein function (e.g.
catalysis) whilst others predict all residues in and around
the functional site. Here, we have attempted to compare
suitable methods on a common dataset of non-redundant
proteins with known functional sites.

Some methods only predict enzyme active sites whilst
others can identify functional residues in other types of
proteins (for example PDBSiteScan and Q-SiteFinder).

An example of highlighted residues in an alternative predicted siteFigure 3
An example of highlighted residues in an alternative 
predicted site. The biological unit structure for 2af4 (phos-
photransacetylase) is a homodimer and identical active sites 
are present on both chains. SitesIdentify identifies only one 
site (in red), but the annotation is transformed onto the 
other chain in order to identify the other active site (shown 
in purple).

 

An example of differential site prediction between asymmetric and biological unit structuresFigure 4
An example of differential site prediction between asymmetric and biological unit structures. The active site pre-
dicted for the asymmetric unit of 1b6t (phosphopantetheine adenylyltransferase) is reasonably close to the bound ligand shown 
in part A. The biological unit is formed by a cyclical arrangement of the asymmetric unit and when SitesIdentify is run on this 
structure it incorrectly identifies the central void as the enzyme active site (part B).
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Enzyme active sites are the most easily defined functional
sites in proteins and are the most common prediction tar-
gets for these tools; therefore the dataset we have used
here contains enzymes with known catalytic residues
(results for an analysis on a small set of non-enzymes is
available in Additional File 2). The Catalytic Sites Atlas
(CSA) [26] is a valuable resource for storing information
about catalytic residues that are annotated from literature
and at the time of creation of this dataset (November
2008) it contained 880 enzymes with literature-annotated
catalytic residues (version 2.2.1). These were then culled
for redundancy to ensure that no two structures contained
an active-site domain from the same SCOP [60] super-
family (detail of this culling procedure has been reported
[61]). This produced a non-redundant set of 237 enzymes
for which there are annotated catalytic residues (see Addi-
tional File 3 for the list of PDB codes).

In order to be included in this analysis, a method had to
adhere to the following criteria:

• The method must require no prior knowledge about
the active site.

• It produces output that identifies the active site
either by a coordinate location, the identities of cata-
lytic residues or identities of residues found in the
binding site.

• It produces results within a reasonable time scale.
The method should return results for a test protein
with 330 residues in 10 minutes or less.

• It does not simply access known annotation about
the test protein.

The applications that met these criteria are listed in Table
1. Other applications that were considered but were not
included in this study, along with the reason for not
including them, are listed in Additional File 4. Where a
method only accepts one chain from a PDB structure, the
first chain is used. All predictions are run on the asymmet-
ric unit structure.

In order to put predictions into the same context as those
given by SitesIdentify, a central PDB coordinate point is
calculated for each prediction given by each method. For
example, if a method only predicts catalytic residues, the
central coordinate point (centroid) is defined as the geo-
metric average of the Cβ atom (Cα for glycine) coordinates
of the catalytic residues. Similarly to the SitesIdentify out-
put, a sphere with a 10Å radius is drawn around this cen-
troid and residues are selected if they have at least one
atom within this radius and also have a SASA of 5Å2 or

more. These residues are termed the standardised pre-
dicted residues.

There are three measures of accuracy used in this analysis.
The first is the average percentage of annotated catalytic
residues for each protein that are included in the standard-
ised predicted residues (average absolute recall rate). Sec-
ond is the average absolute recall rate for the method
divided by the absolute recall rate of catalytic residues
returned by the real centroid (the average relative recall
rate). Third is simply the Cartesian distance from the real
centroid and the predicted centroid.

It is more representative to consider the relative recall rate
for each method as opposed to the absolute recall rate as
for some proteins less than 100% of the annotated cata-
lytic residues are recalled by selecting residues that have at
least 5Å2 SASA within a 10Å radius. It is therefore unlikely
for these proteins that even a very accurate prediction
would give an absolute recall rate of 100%.

The prediction accuracies achieved for each method are
shown in Table 2 and comparison of the distances
between the predicted centroid and real centroid for each
method are shown in Figure 5.

The conservation-based method of SitesIdentify achieved
an average relative recall rate of 74.7%, which is compara-
ble to that of the method with the highest accuracy, Con-
surf (78.1%). In order to extract site predictions for
Consurf, all residues with a conservation score of 9 were
assumed to be functional residues. For structures with
more than one chain residue predictions were taken from
the first chain only in order to avoid calculating the incor-
rect active site centroid from separate sites on multiple
chains. Consurf was therefore effectively run on monomer
structures rather than the true asymmetric unit. It is worth
noting that when SitesIdentify is also run on monomer
structures formed from only the first chain in the file it
achieves a very similar performance to Consurf (see Figure
6).

Both Consurf and SitesIdentify are based around predict-
ing conserved residues as functional site residues but
whilst Consurf appears to perform slightly better overall,
it could not produce predictions for three of the proteins
in the set (1C3J, 1DMU and 1PGS) as it was unable to
identify enough homologues. SitesIdentify uses both a
combination of residue conservation information with an
electrostatics-based cleft-finding algorithm and so it still
gives predictions where there is little or no conservation
information available. SitesIdentify was able to recall
100% of the annotated catalytic residues for the three pro-
teins in this set for which Consurf did not make any pre-
diction. SitesIdentify, therefore, is likely to give better
Page 7 of 12
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1C3J
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DMU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1PGS


BMC Bioinformatics 2009, 10:379 http://www.biomedcentral.com/1471-2105/10/379
predictions for structures from uncharacterised families,
such as those being generated by structural genomics ini-
tiatives.

As discussed previously, residue conservation is known to
be less indicative of functionality for non-enzymes than
for enzymes[8,49,59], and here purely conservation-

based approaches, such as Consurf and Crescendo,
achieved a lower average recall rate compared to both
SitesIdentify methods on a small set of non-enzymes (see
Additional File 2).

PDBSiteScan achieved the lowest absolute and relative
recall rates (28.1% and 38.4%, respectively) and also the

Table 1: Functional site prediction tools included in the comparison analysis.

Application Method Category Description Reference

SitesIdentify
Uniform charge method CF A uniform charge weighting is applied to each Cα atom on the 

protein and the electrostatic potential (Finite Difference-
Poisson-Boltzmann calculation with no dielectric boundary) is 
sampled at points on a 2 grid across the protein volume. The 
peak potential indicates the position of the predicted active site.

Bate and Warwicker, (2004)

Conservation method SC, CF As for the above method, except that the charge weightings 
applied across the protein are replaced with conservation 
weights derived from normalised sequence profile scores 
reflecting the amino acid diversity, the stereochemical diversity 
and the gap occurrence.

Greaves and Warwicker, (2005)

Consurf SC Consurf calculates the degree of evolutionary conservation for 
each residue in a structure and gives them an integer score from 
1 to 9, with 9 being the most conserved residues. A graphical 
representation of the structure is then coloured according to 
these residue conservation scores, which allows visual 
identification of highly conserved patches that are predicted to 
be functional sites.

Landau et al. (2005)

Crescendo SC Predicts active sites by identifying clusters of residues that have 
higher than usual evolutionary restraint. Evolutionary constraint 
was identified by three measures: 1) whether there was a higher 
degree of evolutionary conservation than expected at a 
position, 2) whether environment specific substitution tables 
made weak predictions of the amino acid substitution patterns, 
and 3) residues that have spatially conserved positions when 
structures of proteins within the same family are superimposed.

Chelliah et al. (2004)

FOD HP The active site residues are predicted to be those with the 
highest hydrophobic deficiency score. This is the difference 
between the expected hydrophobicity and the observed 
hydrophobicity value for each residue. The expected 
hydrophobicity of a residue is determined by a residues relative 
position to the theoretically most hydrophobic point in the 
protein. The observed hydrophobicity is a combination of the 
hydrophobicity value of that residue and the effect on the 
residues position of other sidechains around it.

Brylinksi et al. (2007)

Q-SiteFinder CF Non-bonded interaction energies are calculated by placing a 3D 
grid over the whole protein and then evaluating the interaction 
energy between the protein and a methyl group at each point 
on the grid. The positions of the probes on the grid that gave 
the best interaction energies were then spatially clustered to 
identify groups of close probes. These clusters are then assigned 
a single interaction energy based on the energies of their 
member probes. The clusters are then ranked by their 
representative interaction energy and the highest ranked cluster 
is predicted as the active site.

Laurie and Jackson (2005)

PDBSiteScan TM PDBSiteScan takes 3D fragments of a protein structure and 
compares them to 3D structure fragments of known active 
sites. The known active sites structures are held in a collection 
called PDBSite that is formed from annotation in the PDB SITE 
field and also REMARK 800 fields. Results were discounted if 
they compared to annotation held for the test protein.

Ivanisenko et al. (2004)

PASS CF PASS (Putative Active Site Spheres) is essentially a geometric 
cleft-finding method. The shape, volume and depth of the cleft 
determine which clefts are predicted as active site clefts.

Brady and Stouten (2000)

Thematics CP Thematics identifies ionisable residues with unusually perturbed 
titrations curves. Active sites are predicted where two or more 
of these ionisable residues form a cluster in 3D space.

Wei et al. (2007)

A description of the seven tools used in this analysis along with a brief description of each method. Method categories are as follows: CF = cleft-finding, SC = 
sequence conservation, HP = hydrophobicity, TM = structural template matching, CP = chemical properties.
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largest average distance between predicted and real active-
site centroids (15.5Å). PDBSiteScan scans the query pro-
tein against proteins of known annotation. In this analysis
the test set consists of enzymes with known annotation
and therefore it was necessary to reject predictions that
simply accessed the annotation of any of these test pro-
teins. As the number of proteins with well-characterised
active site information is limited, removing these proteins
from the set that PDBSiteScan compares to will obviously
reduce the prediction power of the method. If tested on
proteins outside of this set (i.e. proteins with uncharacter-
ised functional sites) the prediction accuracy may
increase.

Q-SiteFinder identifies energetically favourable methyl
binding sites by calculating the interaction energy
between the protein and a methyl probe and then ranking

clusters of probes by their total interaction energy. Similar
to the electrostatics-based method of SitesIdentify, Q-Site-
Finder is essentially a cleft-finding algorithm. Despite sim-
ilar approaches the uniform charge method of
SitesIdentify achieves a 10% higher relative recall rate
than Q-SiteFinder. Both Q-SiteFinder and SitesIdentify
performed better than the other cleft-finding method,
PASS, which also selects for cleft depth. Since SitesIdentify
implicitly detects the atom density around a cleft rather
than the cleft geometry itself, it suggests that this may be
a contributing factor to the increased accuracy over PASS.

It is interesting that whilst SitesIdentify (charge-based)
and Crescendo use very different approaches they give
very similar accuracies on this dataset, suggesting that
both conservation and geometrical information are
equally useful in identifying functional sites. The combi-

Table 2: Prediction accuracies achieved for each functional site prediction method.

Method Absolute Recall Rate Relative Recall Rate Average Distance between Predicted and Real Centroid 
(Å)

SitesIdentify
Uniform charge method 47.6% 63.0% 11.2
Conservation method 56.9% 74.7% 9.4

Consurf 58.6% 78.2% 8.2
Crescendo 46.9% 63.8% 10.3
FOD 39.7% 56.1% 10.6
QSiteFinder 40.1% 53.0% 13.0
PDBSiteScan 28.1% 38.4% 15.5
PASS 36.6% 49.3% 14.8
Thematics 35.8% 48.9% 13.5

The absolute and relative recall rates achieved along with the average distance between real and active site centroids for each method.

Comparison of distances between the real centroid and the predicted centroid for each methodFigure 5
Comparison of distances between the real centroid and the predicted centroid for each method. The cumulative 
percentage of the set that have differences between the real and predicted active site centroids at each distance are shown for 
each method.
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nation of both of these approaches in the conservation-
based method of SitesIdentify further improves the accu-
racy achieved by either one alone.

Conclusion
Here we present a functional site prediction tool, SitesI-
dentify. We have shown that this tool compares favoura-
bly to other available functional site prediction tools in a
comparison of methods on a non-redundant set of 237
enzymes with annotated active sites. The combination of
structure-based and conservation-based approach in this
tool produces accurate results, whilst a non-conservation
based approach is also available for proteins that perhaps
occupy remote fold-space and have no closely related
homologues. Such methods are useful for identifying
functional sites, and therefore informing about potential
protein function, for structures of uncharacterised pro-
teins.

Availability and Requirements
Project name: SitesIdentify

Project home page: http://www.manchester.ac.uk/bioin
formatics/sitesidentify/

Operating system(s): Platform independent

Programming language: PHP, Perl, Fortran, Jmol, Javas-
cript.

Other requirements: e.g. Javascript enabled web browser

License: Free for all users

Any restrictions to use by non-academics: None

Authors' contributions
TB carried out the comparison analysis, created the web-
server application and wrote the manuscript, whilst JW
supplied electrostatics code, PC and RG supplied conser-
vation calculation code and PC and SB provided some
website code. JW and AJD directed the design of the appli-
cation and critically revised the manuscript. All authors
read and approved the final version.

Additional material

Additional file 1
SitesIdentify source code. Compressed file containing the source code for 
SitesIdentify.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-379-S1.gz]

Additional file 2
Non-enzyme ligand binding comparison. A table showing the prediction 
accuracies achieved for each functional site prediction method on 13 non-
redundant non-enzyme structures with bound ligands from the Q-Site-
Finder test set (Laurie and Jackson, 2005).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-379-S2.doc]

Comparison of distances between the real centroid and the predicted centroid for Consurf and SitesIdentify run on monomer structuresFigure 6
Comparison of distances between the real centroid and the predicted centroid for Consurf and SitesIdentify 
run on monomer structures. The cumulative percentage of the set that have differences between the real and predicted 
active site centroids at each distance are shown for both methods.
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