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Abstract
Background: Quantitative trait loci analysis assumes that the trait is normally distributed. In
reality, this is often not observed and one strategy is to transform the trait. However, it is not clear
how much normality is required and which transformation works best in association studies.

Results: We performed simulations on four types of common quantitative traits to evaluate the
effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact
of sample size and genetic effects on normalization is also investigated. Our results show that rank-
based transformation gives generally the best and consistent performance in identifying the causal
polymorphism and ranking it highly in association tests, with a slight increase in false positive rate.

Conclusion: For small sample size or genetic effects, the improvement in sensitivity for rank
transformation outweighs the slight increase in false positive rate. However, for large sample size
and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively
modest.

Background
Genome-wide association (GWA) studies have been used
to identify over 200 potential causal loci in complex dis-
eases such as metabolic/cardiovascular disorder, autoim-
mune disorder, and cancer [1-6]. The approach requires a
stringent adherence to quality control, statistical analyses
and replication studies [7]. In quantitative trait loci (QTL)
analysis, there is an implicit assumption that the pheno-
type data follow a normal distribution. Violation of this
assumption can severely affect the power and type I error
[8].

In most cases, quantitative traits are not normally distrib-
uted and one strategy is to perform parametric transfor-
mation to approximate normality. In cases where the
traits are left-skewed, the appropriate transformation may

not be so straight-forward. Transformation is crucial for
meta-analyses, where two or more populations are com-
bined to improve statistical power. Preferably, the traits
are transformed similarly to enable comparison of genetic
effects. This may prove challenging when the traits from
different populations are not similarly distributed and
cannot be transformed in the same manner. Literature
search in this area shows evaluation of normalization
methods in pedigree studies [9-11], looking at the loga-
rithm, power, and rank-based transformations, and giving
mixed results. In Labbe and Wormald [10], Box-Cox and
log were compared and Box-Cox was found to perform
better. Peng et al [11] evaluated ENQT, a rank-based trans-
formation in variance components and semi-parametric
QTL models, showing ENQT improved power. For Diao
and Lin [9], the question was not which normalization
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worked best but whether the semi-parametric QTL per-
formed better than the variance-components models in
terms of power and type I error, as well as robustness to
outliers when the assumption of normality does not hold.
Nevertheless, Diao and Lin's simulations showed that
estimated and true transformations (i.e. which restored
normality) gave higher power and lower Type I error for
likelihood-ratio tests compared to the logarithm, the
square-root (a special case of Box-Cox) and untrans-
formed data.

In the absence of comprehensive study on various trans-
formation methods for association studies, it is difficult to
decide which transformation to apply. How much nor-
mality will suffice for the underlying assumption of asso-
ciation tests? In the context of sample size and genetic
effects, what are the effects of these methods? Although it
is generally accepted that deviation from normality can
reduce the power of the study, the effects of different nor-
malization methods are not clearly understood.

In this paper, we report the effects of these normalization
methods in basic quantitative association tests on simu-
lated data. Our objective was to quantify the effects of nor-
malization in GWA studies. Since a large sample is needed
to detect small effects, we also evaluated the effects of nor-

malization on varying sample sizes and genetics effects.
For simplicity, we limit our study on additive models. We
also approached the evaluation by emulating GWA stud-
ies, measuring performance of the normalization based
on the sensitivity of discovering causal single nucleotide
polymorphism (SNP) and its respective ranking in associ-
ation tests after Bonferroni corrections.

Results
To assess the effects of normalization, genotype data was
generated from a disease model with one causal SNP
allele using HAPSIMU [12]. For each sample size and
genetic effect, 120 datasets were generated. The average
minor allele frequency (MAF) for the causal SNP was
0.077. Four traits, 4 transformations, 4 samples sizes and
3 genetic effects were evaluated. Figure 1 shows the distri-
bution of genotype-specific traits in the simulated dataset
for sample size of 8000 and 0.01 phenotypic variance
explained (PV). Figure 2 shows the traits distributions of
an example data from this dataset after each transforma-
tion. Figure 3 shows the sensitivity of rank-based transfor-
mation for each sample size and PV. Table 1 shows the
sensitivity, false positive rate, and displacement of causal
SNP for PV of 0.01. The same trend was observed for other
PV of 0.02 and 0.2 (see Additional file 1). In GWA studies,
besides genome-wide significance p-value after multiple

Table 1: Performance of simulations with PV = 0.01 (small effects) for 4 sample sizes and 4 quantitative traits (normal, left-skew, right-
skew, bimodal) transformed using logarithm (log), inverse-logarithm (ilog), Box-Cox, and rank-based.

True Positive Rate False Positive Rate Displacement

1000 2000 4000 8000 1000 2000 4000 8000 1000 2000 4000 8000

Normal 4.27 18.26 43.59 50.86 0.03 0.11 0.10 0.21 24.03 17.11 15.06 10.04
Left-skew 5.98 18.26 47.86 53.45 0.09 0.07 0.16 0.17 23.45 15.25 14.24 9.01
Right-skew 3.42 20.00 41.88 51.72 0.04 0.11 0.10 0.22 24.16 17.57 15.15 10.28
Bimodal 2.56 10.43 35.04 44.83 0.03 0.09 0.09 0.17 26.32 19.16 16.14 11.31

Normal - Log 5.98 18.26 47.86 53.45 0.09 0.07 0.16 0.17 23.45 15.25 14.24 9.01
Normal - ilog 7.69 27.83 50.43 57.76 0.17 0.21 0.18 0.37 21.91 15.87 13.51 9.55
Normal - boxcox 5.13 18.26 44.44 50.86 0.04 0.10 0.12 0.20 23.73 16.87 14.81 10.02
Normal - rank 14.53 36.52 57.27 65.52 0.08 0.17 0.24 0.44 18.97 12.50 11.65 6.65

Left-skew - log 7.69 22.61 50.43 56.03 0.10 0.07 0.22 0.20 23.08 14.50 13.44 8.16
Left-skew - ilog 5.13 19.13 45.3 54.31 0.05 0.09 0.15 0.19 23.46 16.08 14.43 9.58
Left-skew - boxcox 5.13 18.26 43.59 50.00 0.05 0.08 0.11 0.17 23.97 16.87 14.71 10.06
Left-skew - rank 14.53 36.52 57.27 65.52 0.08 0.17 0.24 0.44 18.97 12.50 11.65 6.65

Right-skew - log 5.13 16.52 41.88 49.14 0.04 0.08 0.12 0.17 23.99 17.09 14.83 10.21
Right-skew - ilog 3.42 22.61 43.59 51.72 0.05 0.11 0.10 0.23 23.98 17.63 15.17 10.41
Right-skew - boxcox 4.27 16.52 41.88 50.86 0.03 0.09 0.10 0.21 24.2 17.23 15.11 10.13
Right-skew - rank 14.53 36.52 57.27 65.52 0.08 0.17 0.24 0.44 18.97 12.50 11.65 6.65

Bimodal - log 4.27 13.91 41.88 47.41 0.08 0.05 0.13 0.15 25.32 16.84 14.91 10.35
Bimodal - ilog 2.56 11.30 35.90 45.69 0.04 0.10 0.08 0.19 26.25 19.35 16.26 11.35
Bimodal - boxcox 2.56 12.17 36.75 44.83 0.04 0.08 0.08 0.17 25.71 18.07 15.48 10.8
Bimodal - rank 14.53 36.52 57.27 65.52 0.08 0.17 0.24 0.44 18.97 12.50 11.65 6.65
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testing corrections, the ranking of the causal SNP is also
important. Preferably, the causal SNP should be ranked
high in the list. The displacement is the rank of the causal
SNP, minus 1, the expected rank.

Discussion
A GWA study is an expensive venture which requires care-
ful design and quality control. One such consideration is
normalization. Our simulation indicated that in studies
where the effects and sample size were large; transforma-
tion had little effect. Performance issues arise when the
genetic effect was less than moderate and sample size was
not large. In this case, the type of normalization became a
serious consideration with impacts on results.

The results showed that larger PV (more genetic effects)
and samples size generally gave higher sensitivity and

smaller displacement with a slight increase in false posi-
tive rate. When PV varied from 0.01 to 0.2, untransformed
normal distribution showed sensitivity of 4.27% to
50.86% (PV = 0.01), 13.27% to 64.96% (PV = 0.02), and
71.79% to 97.44% (PV = 0.2) for 1000 to 8000 samples
(see Table 1 and Additional file 1). When the phenotype
was rank transformed, the sensitivity ranged from 14.53%
to 65.52% (PV = 0.01), 27.43% to 76.07% (PV = 0.02)
and 75.21% to 100% (PV = 0.2) respectively. This is in
concordance with literature; with larger sample size and
genetic effects, the causal SNP is more likely to be discov-
ered. It also showed improved results with rank-based
transformation for all phenotypes, though the amount of
improvement depends on sample size and PV. The
improvement factor for sensitivity (i.e. sensitivityrank-based/
sensitivityuntransformed) varied from 2.43 to 5.67 (1000
samples), 1.83 to 3.50 (2000 samples), 1.2 to 1.63 (4000

Quantitative traits generated from HAPSIMU for 8000 samples and PV = 0.01Figure 1
Quantitative traits generated from HAPSIMU for 8000 samples and PV = 0.01. From top row: normal, left-skew, 
right-skew, and bimodal. First 3 columns show the distribution for each genotype (AA, AB, BB) and the last column show the 
overall distribution. Left-skew was generated using logarithm transformation, and right-skew and bimodal with beta transfor-
mation.
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samples), 1.23 to 1.46 (8000 samples) for PV = 0.01. For
PV = 0.2, the improvement factor ranged from 1.04 to
1.11 (1000 samples), 1.02 to 1.11 (2000 samples), 1.07
to 1.17 (4000 samples), and 1.03 to 1.06 (8000 samples).
The improvement factor tended towards 1 for PV = 0.2,
indicating that for larger genetic effects, transformation
was not so critical (the sensitivity improved marginally
but with a higher false positive). This trend was also
observed in the case of larger sample size regardless of the
distribution of original traits.

Displacement of causal SNP decreased with increasing
sample size and PV. For PV = 0.01 and 1000 samples of
the untransformed trait, the causal SNP was ranked on

average 24.03 out of 100. This improved to 18.81 (PV =
0.02) and 5.03 (PV = 0.2). With rank-based transforma-
tion, the displacement improved: 18.97 (PV = 0.01),
16.38 (PV = 0.02), and 4.78 (PV = 0.2).

False positive rate is a concern in GWA studies. In our
study, the false positive rate increased with PV and sample
size. The simulation showed that rank-based transforma-
tion incurred a slightly higher false positive compared
with the other methods. We recognize that the false posi-
tive rate computed here was subjective, depending on the
99 non-causal SNPs in simulated data. Nevertheless, it
gave an indication of false positives amongst the different
settings in simulations; i.e. traits distribution, sample size,

Transformation distributions of an example data from the dataset of quantitative traits for 8000 samples and PV = 0.01Figure 2
Transformation distributions of an example data from the dataset of quantitative traits for 8000 samples and 
PV = 0.01. From top to bottom: normal, left-skew, right-skew, and bimodal. From left to right: after logarithm (log), inverse-
logarithm (ilog), Box-Cox (bc), and rank transformation.
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and genetic effects. Does this mean that rank transforma-
tion has no benefits? For small sample size and genetic
effects, the increase of sensitivity outweighs the slight
increase in false positive rate. For large sample size and
genetic effects, this is not true so caution is needed on
transformation. We propose no transformation in this
scenario.

Despite the concerns of rank-based transformation being
too 'perfect', results showed that it improved the sensitiv-
ity and ranking, both important in deciding genes or loci
of interest for fine-mapping. One of the reasons sensitivity
improved was due to the effects transformation had on
the distribution of each genotype. The transformation
attempted to keep the distribution of each genotype
within its respective tertile (3 genotypes) while maintain-
ing a variance of 1 (Figure 4). In the additive model, the
distribution of AA after rank-based transformation veered
towards the 33th percentile of the distribution and the BB's
distribution towards 67th percentile. The consistent vari-
ance of 1 in each genotype meant less overlap between the
distributions, accentuating the discriminating additive
signals in association test. This also explained why false
positive increased correspondingly since the same effects
would be applicable on non-causal SNPs.

It was noted in Figure 1 that the normally distributed trait
did not follow a perfect normal distribution. In transfor-
mation such as log or beta, as long as the original trait fol-
lowed a normal-like distribution, each trait would
transform accordingly to left-skew, right-skew, or bimodal
as intended. As for the effects of normality of the original
trait on results, we observed that generally the original
normal distribution did not perform as well as the rank
transformation, suggesting that a 'perfect' normal distri-

bution was desirable at least for small sample size and
genetic effects.

In the simulations, Box-Cox sometimes achieved a nor-
mal distribution (Figure 2) though not perfectly normal
like the rank-based transformation. However, its perform-
ance was still not comparable with the latter. In addition,
it was observed that although some distribution appeared
normal, rank-based transformation could still improve
sensitivity. This is interesting as it suggests that it is not
just sufficient to attain some form of normality for quan-
titative traits but to achieve a normality that increases the
additive discriminating signals. Transformation should
also be considered in the context of sample size and
genetic effects. In large sample size and more than moder-
ate effects, it may not be necessary to transform, thus
maintaining a lower false positive with comparable sensi-
tivity and displacement. For conditions other than this,
rank-based transformation tends to improve the perform-
ance regardless of the distribution.

In our literature review, the traits were usually generated
as non-normally distributed trait and not well defined
traits such as those in our study (left-skew, right-skew,
bimodal) where we could assess the effects of transforma-
tion on different distributions. This arises from the diffi-
culty of generating quantitative traits to meet these
distributions using genotype, especially using real geno-
type data. In Peng et al (2007), the normal trait was trans-
formed to meet certain skewness and kurtosis for their
evaluation. We adopted the same idea in our simulation
by transforming the trait after genotype has been gener-
ated. This approach has the advantage of allowing us to
use existing genotype data (simulated or actual) to study
effects of different trait distributions.

Conclusions
The four quantitative traits investigated here are common
distributions described by several statistical empirical dis-
tributions. Simulations were done on common factors
affecting results of GWA study, such as normalization,
sample size, and genetic effects. The simulation showed
that rank-based transformation gave the best performance
in terms of sensitivity and displacement regardless of the
distribution of the trait. This is however accompanied by
a slight increase in false positive rate. The positive effect of
rank-based transformation decreased with increasing
sample size and genetic effects. For large sample size and
genetic effects, normalization is not recommended.

Methods
The normalization methods investigated were: logarithm,
Box-Cox, inverse-logarithm (i.e. log [-[xi-min(x)]] where xi
is the quantitative trait for sample i), and rank-based
transformation [11]. Ranking of SNPs and its p-value

Effects of PV and sample size for rank-based transformationFigure 3
Effects of PV and sample size for rank-based transfor-
mation. The larger the genetic effects and sample size, the 
higher the sensitivity.
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from associative tests after multiple test corrections were
used for performance assessment. Motivation for the
inverse-logarithm transformation came from one of our
quantitative traits where the data contained negative val-
ues and was highly skewed to the left, where neither loga-
rithm nor Box-Cox would normalize it appropriately. All
the transformations were provided or coded in Matlab.

HAPSIMU simulates from a model where the effects of the
allele are additive based on the phenotypic variance
explained (PV) and frequency (f) of the disease suscepti-
bility allele. It utilizes informative marker loci from the
ENCODE regions genotyped in CEPH and YRI. A nor-

mally distributed trait is generated for each of the geno-
types (AA, AB, BB). To avoid confounding factors such as
polygenic effects and population admixture, one causal
SNP was generated out of 100 SNPs in a homogenous
population of YRI for our simulations. We noted that 100
SNPs is not representative of GWAS data, neither is one
causal SNP the realistic scenario. However, given that
most complex diseases are polygenic model involving
probably thousands of causal SNPs, the scenario of 1
causal out of 100 SNPs can be reasonably extrapolated to
a GWAS dataset of few thousands causal SNPs; a reasona-
ble representation of a polygenic, additive disease model.
The settings for HAPSIMU are shown in Figure 5. 120 sets

Genotype distribution of the 4 quantitative traits for 8000 samples and PV = 0.01Figure 4
Genotype distribution of the 4 quantitative traits for 8000 samples and PV = 0.01. (a) normal, (b) left-skew, (c) 
right-skew, (d) bimodal after each transformation of logarithm (log), inverse-logarithm (ilog), Box-Cox (bc), and rank-based. 
Rank-based transformation adjusts the distribution of each genotype to within its tertile while maintaining consistent variance 
of 1.
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of data were generated to evaluate the sensitivity and rank-
ing of causal SNP. We also investigated the effects of nor-
malization versus sample size and PV of causal SNP,
generating datasets for 1000, 2000, 4000, and 8000 sub-
jects, with PV of 0.01, 0.02, and 0.2. The PV can be seen as
having small to large effects on the quantitative traits. In
total, 1440 datasets comprising of 100 SNPs (1 causal)
was generated.

Quantitative traits generated by HAPSIMU are normally
distributed with mean and standard deviation determined

by PV and f. To investigate various trait distributions such
as left- and right- skew as well as bimodal, traits were log
and beta transformed. Four traits were obtained after
HAPSIMU (i.e. normal, left-skew, right-skew, bimodal),
and each of these traits was transformed using logarithm,
inverse-logarithm, Box-Cox, and rank-based, i.e. total of
20 traits. Quantitative traits were tested using the com-
mon GWAS software Plink [13] which implemented the
likelihood ratio test and Wald test. It generated an output
file with extension .qassoc that comprised of estimated

Parameters setup for HAPSIMU simulationFigure 5
Parameters setup for HAPSIMU simulation. The mean and variance in disease model were based on one of the quanti-
tative traits (spherical equivalent) in a myopia project. Population homogeneity was maintained by setting a high proportion of 
YRI in final population.
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regression coefficient, standard error, and asymptotic p-
value. The p-value was used for assessment.

Criteria for performance assessment were based on (1)
displacement ranking of causal SNP out of the 100 SNPs,
where expected rank was 1 (i.e. displacement is 0), and
(2) Bonferroni corrected p-value for significant associa-
tion was <5 × 10-4. Significant causal SNPs were consid-
ered true positives while significant non-causal SNPs were
false positives. Sensitivity or True Positive Rate (TPR) was
computed for the 120 datasets using TP/(TP+FN)*100
where TP, FN were true positive and false negative respec-
tively from the confusion table tabulated from 120 data-
sets. False Positive Rate (FPR) or Type I error was
computed as FP/(FP+TN)*100 where FP and TN were
false positive and true negative from the confusion table.
Since there was only one causal SNP, false negative was
either 1 or 0 for each simulation, so sensitivity was synon-
ymous with power.
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