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Abstract

Background: Although microarray-based studies have revealed global view of gene expression in
cancer cells, we still have little knowledge about regulatory mechanisms underlying the
transcriptome. Several computational methods applied to yeast data have recently succeeded in
identifying expression modules, which is defined as co-expressed gene sets under common
regulatory mechanisms. However, such module discovery methods are not applied cancer
transcriptome data.

Results: In order to decode oncogenic regulatory programs in cancer cells, we developed a novel
module discovery method termed EEM by extending a previously reported module discovery
method, and applied it to breast cancer expression data. Starting from seed gene sets prepared
based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10
principal expression modules in breast cancer based on their expression coherence. Moreover,
EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast
tumors. For example, our analysis revealed that the expression module regulated by the Polycomb
repressive complex 2 (PRC2) is downregulated in triple negative breast cancers, suggesting
similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We
also found that the activity of the PRC2 expression module is negatively correlated to the
expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-
driven EZH2 overexpression may be responsible for the repression of the PRC2 expression
modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits
in breast cancer cells.

Conclusion: These results demonstrate that the gene set-based module discovery approach is a
powerful tool to decode regulatory programs in cancer cells.
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Background

In the last decade, microarray technology has produced
exploding amounts of cancer transcriptome data; espe-
cially, breast cancer transcriptome has been intensively
profiled. Human breast tumors show diversity in their his-
tology, prognosis, and responsiveness to treatments. The
microarray technology has demonstrated that transcrip-
tomic diversity underlies phenotypic diversity, and
brought great progress in our molecular understanding of
breast cancer [1]. However, compared with the increasing
knowledge about the transcriptome, little is yet known
about regulatory programs generating the transcriptomic
diversity.

To decode gene regulatory programs controlling the breast
cancer transcriptome, we searched for cis-regulatory
motifs associated with tumor phenotypes in our previous
study [2]. One of the limitations of this method is that it
takes a supervised approach and requires sample informa-
tion. In this study, we introduce an alternative method
which focuses on expression modules and does not
require sample information. An expression module is
defined as a set of coexpressed genes controlled by a com-
mon regulatory mechanism. Although expression mod-
ules were originally visualized by clustering analysis of
microarray data [3], methods based only on expression
data are insufficient to reveal regulatory programs control-
ling such expression modules. Recently, approaches that
combine expression data and cis-regulatory information
have succeeded in identify gene regulatory programs of
lower organisms like Saccharomyces cerevisiae [4,5]. How-
ever, such module discovery approaches have rarely been
applied to cancer transcriptome data, although a number
of analyses based on prescribed sets of genes have also
been performed in order to analyze oncogenic regulatory
programs [6,7].

Our new computational method termed EEM (Extrac-
tion of Expression Modules) is constructed for extracting
expression modules in the cancer transcriptome. Our
approach is based on an integrative method by Bar-
Joseph et al. [5], which successfully identified yeast
expression modules by integrating ChIP-chip and
expression data. By combining with gene set-based
approaches [6,7], we extended their approach and made
it applicable to cancer transcriptome data. Starting from
seed gene sets predicted based on cis-regulatory ele-
ments, ChIP-chip data, and gene locus information, EEM
statistically evaluates their functionality and refines
them based on their expression coherence. We analyzed
breast cancer microarray data by EEM, and find 10
expression modules in the breast cancer transcriptome.
Our additional bioinformatics analysis validated the 10
expression modules and demonstrated their significance
in the pathophysiology of breast cancer.

http://www.biomedcentral.com/1471-2105/10/71

Methods

Methods Overview

The EEM algorithm discovers an expression module by
combining two types of data: seed gene sets and expres-
sion profile data. A set of genes whose expressions are
considered to be regulated by the same molecular mecha-
nism could be predicted based on various types of data,
and prepared as a seed gene set. EEM assesses functional-
ity of the seed gene set based on expression coherence. If
seed gene set functions as expression module, all genes in
it are ideally expressed coherently. Although a functional
seed gene set might include false positives, or non-func-
tional module genes in the biological context of interest,
at least a significant fraction of seed genes should behave
coherently in the expression data. This assumption is ver-
ified by the observation that putatively functional gene
sets often harbors a large cluster of genes which behave
coherently (see Additional File 1). EEM extracts only such
a coherently expressed gene subset, filtering out false pos-
itive or non-functional module genes. Taking a geometric
approach, EEM searches for the largest subset with a min-
imum degree of coexpression (specified by radius param-
eter r). Concurrently, EEM statistically evaluates the size of
the retrieved coherent subset using a Z score based on ran-
domization tests. If the Z score is greater than the prespec-
ified cutoff value, we conclude that the seed gene set
includes a functional expression module and the coherent
subset is extracted as an expression module. We observe
that the expression modules extracted by EEM are more
functionally enriched than seed gene sets. This observa-
tion would justify our refinement procedure (see Addi-
tional File 1).

Employing this EEM algorithm, we systematically
searched for expression modules in the breast cancer tran-
scriptome (Figure 1). In our search, a collection of seed
gene sets are prepared based on cis-regulatory motifs,
ChIP-chip data, and gene locus information. Since genes
that possess a common cis-regulatory element in their pro-
moters could be regulated by a common transcription fac-
tor (TF), we can predict an expression module based on
the cis-regulatory motif. We searched human gene pro-
moters and its mouse homolog promoters for 200 motif
using PWMs obtained from the TRANSFAC and JASPAR
databases [8,9], and prepared 200 seed gene sets which
include genes with common motifs in their promoters.
We can also predict expression modules utilizing ChIP-
chip data, which provide direct evidence of TF binding in
the cis-regulatory regions. Published ChIP-chip results
[10-14] are collected to prepare seed gene sets. DNA copy
number alteration is known to have a significant effect on
the cancer transcriptome as well as transcriptional regula-
tion [15]. Hence, we also regarded it as one of expression
regulatory mechanisms in cancer cells. Genes residing in a
chromosomal region which is subjected to copy number
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Schema of systematic search for expression modules.
We prepared a collection of seed gene sets based on cis-reg-
ulatory motifs, ChIP-chip and gene locus information. We
next statistically evaluated whether each seed gene set
includes a significant large number of coherently expressed
genes in expression profile data. If such a coherently
expressed gene subset exists, we assumed it as an expression
module, and obtained its averaged expression profile as an
activity profile.

alteration could be expressed coherently, and viewed as
an expression module; taking sliding window approach,
we prepared seed gene sets which consist of genes residing
on the same chromosomal region. For each of the pre-
pared seed gene sets, we tested the presence of coherently
expressed gene subsets in breast cancer microarray data
[16]. If such coherently expressed genes exist, we then
extracted them as an expression module. Furthermore, the
average expression profile of the predicted expression
module can be considered as its activity in each of tumor
samples. The expression module activity profiles were
then analyzed using ordinary methods applied to gene
expression profile data like clustering and survival analy-
sis.

This approach is an extension of a module discovery
method, GRAM, which is developed by Bar-Joseph et al.
[5] for learning yeast expression modules from microarray
and ChIP-chip data. In the first step, GRAM uses ChIP-
chip data to find a small number of genes whose upstream
regions are bound by common TFs with high confidence.
In the second step, the microarray data is used to extract a
coherently expressed subset of these genes. Finally, the
resulting set is expanded by adding genes which are iden-
tified to be bound by the TFs with less strict criteria.
Although GRAM and another similar method [17] require
binding P values in ChIP-chip data, we relaxed this
requirement by taking a gene set-based approach.
Although gene set-based approaches are simpler than
direct integration of ChIP-chip and expression data, they
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have shown substantial successes in cancer transcriptome
analysis [6,7]. From ChIP-chip data, we prepared gene sets
as seed gene sets, by retrieving genes which have binding
sites within specified cis-regulatory regions and with P val-
ues below a specified threshold. In addition to ChIP-chip
data, our analysis utilized cis-regulatory motifs and locus
information to generate gene sets, because available
human ChIP-chip data are insufficient for comprehensive
analysis and they also provide clear evidence of transcrip-
tional regulation or genomic alteration. Although EEM
also takes a module discovery approach similar to GRAM,
there are some clearly different points. In contrast to
GRAM, EEM starts from a sufficient number of genes that
are predicted to be under common regulatory mecha-
nism, and refines them to produce a final expression mod-
ule utilizing expression profiles. In this process, EEM
evaluates statistical significance of the identified expres-
sion module by measuring how many of module genes
are coherently expressed in the expression data. This sta-
tistical evaluation based on the expression coherence is a
novel feature which is not implemented by other module
discovery methods.

EEM is also regard as one of gene set screening methods
like Gene Set Enrichment Analysis (GSEA) [18]. GSEA
screens for gene gets that have a significant bias in a
ranked list according to their differential expressions
between two sample groups, while our approach searches
for significant gene sets based on their expression coher-
ence. However, because GSEA takes a supervised approach
which uses sample labels, it potentially fails to identify
expression modules which do not correlate with sample
labels. By contrast, EEM realizes an unsupervised analysis,
which does not depend on sample information and can
search for expression modules more globally.

As we mentioned above, our method finally produces
activity profiles of expression modules. Because microar-
ray data usually include expression profiles of thousands
of genes, it is difficult to understand the raw data intui-
tively. On the other hand, since our activity profiles con-
sist of those of a small number of expression modules,
they provide concise description of the transcriptome that
allows it to be understood more easily. This problem can
also be solved using dimension reduction approach of
gene expression data. Dimension reduction is originally
addressed by a study utilizing singular value decomposi-
tion [19], and can be performed by many other methods
[20-23]. However, because most of them are based on
purely mathematical framework, deduced components
do not necessarily have biological meanings and are often
difficult to understand biologically. By contrast, since
expression modules deduced by EEM are derived from
biologically meaningful seed gene sets, they can always be
associated with molecular mechanisms. By extracting
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module modules as biologically meaningful components
in expression data, EEM provides intuitively understanda-
ble views of transcriptomes.

EEM algorithm

Let E = {e,,....e,} be a set of gene expression profiles such
that each ¢; € E is a vector ¢; = (¢;3,...,¢;,,) Of values with e;
giving the expression of the i-th gene in the j-th condition
(or sample). Each ¢; € E then exists as a point in a contin-
uous m-dimensional gene expression space S . Although
the expression values can be obtained by any means, we
may assume they are from gene expression microarray
experiments. EEM operates on a subset E,; c E called the
seed gene set (we describe below how such seed gene sets
are obtained). For a given radius r and pointx € S, define

C.={e; € E, :d(e, x) <1}, (D)

where d is the Euclidean distance. We call C, the coher-
ently expressed gene set (or simply coherent set), and the
point x is called the center of C,. The objective of EEM is to
find maximal sized coherent set C; (and corresponding
center B) for the genes in E,,. We remark that the center B
may not necessarily correspond to any profiles in E,,. We
also call B the activity profile for genes in Cg. As stated
above, the distance measure we use to define a degree of
co-expression between genes is Euclidean distance. In
practice the expression profiles are normalized, so this is
equivalent to measuring similarity using Pearson correla-
tion. Our method is intended for large datasets (based on
microarray expression profiles), and employs a heuristic
modified from a previously proposed algorithm [5]. Sim-
ilar geometric optimization problems arise in the context
of clustering [24,25]. EEM attempts to find an optimal
center for E,, in two stages. The first stage identifies a can-
didate center B, from among the expression profiles in E,,.

For each ¢; € Ey;, the set C, is constructed (see Equation

1). The profile ¢; € E,, with maximal |C, | is retained as

e |
B;. The second stage uses B, to find an improved center.
Let T c E,, denote the set containing the 9 profiles in E,,
closest to B, along with B, itself (i.e. |T| = 10). For each tri-
ple {t,, t,, t;} < T, the mean profile t = (¢; + t, + t5)/3 is
constructed and C, is evaluated. The mean profile ¢ that
maximizes |C,| over all triples from T is retained and

returned by EEM as the optimal center B along with the
identity of genes in C, (see the Appendix section for a

pseudocode for this optimization procedure).
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EEM includes a critical step to estimate the statistical sig-
nificance of the size of the coherent set, given the full set
of expression profiles from the expression data set (recall
that the procedure described above operates on a subset
E,, c E defined by a seed gene set). This is accomplished
by sampling subsets of size k uniformly at random from
the full set E of expression profiles, where k = |E,,|. The
EEM optimization procedure (described above and sum-
marized as in the Appendix section) is applied to each
sampled subset to produce an empirical distribution for
the sizes of coherent sets derived from E. The mean and
standard deviation from this empirical distribution are
used to obtain a Z score for |Cy| corresponding to E,,, and
Z score threshold is used to determine whether a particu-
lar coherent set is significant. Our results are based on Z
scores estimated using 500 randomly sampled subsets of
expression profiles.

Preparation of Expression data

From GEO database, we downloaded Affymetrix Gene-
Chip data of 252 breast tumor samples [16] (the accession
number is GSE3494). Absolute expression values of a data
set were converted to the logarithmic scale and normal-
ized so that the mean is equal to 0 and the variance is
equal to 1 in each sample. The Probe set IDs were con-
verted to Ensembl gene IDs. In cases that one gene ID
matches multiple probe set IDs, the probe set which
shows the most variance among the samples was mapped
to the gene. A variation filter was then applied to the data,
and we obtained 5000 genes with the highest variance.
The expression profiles of the 5000 genes were normal-
ized across samples and subjected to the following analy-
sis.

Preparation of seed gene sets

Preparation based on cis-regulatory motifs

We prepared promoter data of human genes and mouse
genes from the Ensembl database (Release 44). Assuming
TSSs (transcription start sites) as gene starts registered in
Ensembl, a repeat-masked promoter sequence covering
the 500 bp upstream and 100 bp downstream of the TSS
for each gene was retrieved from the genome sequences.

As cis-regulatory motif data, we prepared PWMs (position
weight matrices). The value f;, of a PWM represents the fre-
quency of nucleotide base b at the i-th position in a motif.
The frequencies of bases in each position are normalized
so that 2. ¢, 1, o ofin = 1. If fy = 0, we reassigned fy, = 0.001
to avoid errors in log calculations. We acquired a total of
601 PWMs, which consist of vertebrate 513 PWMs anno-
tated as "good" in TRANSFAC 10.1 [8] and 88 PWMSs from
JASPAR core [9]. We then removed extremely simple or
complex PWMs based on their information contents to
produce a set of total 511 PWMs whose information con-
tents range from 5 to 15. The information content R of a
PWM is defined as follows:
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w
R=2w- ZHi,
i=1

where w is the width of the motif, and H, is the informa-
tion entropy at the i-th position defined by

H;=- z fin 108, fip-

b=a,c,g,t

Since this set includes highly redundant PWMs, they were
subjected to clustering to reduce the redundancy. For clus-
tering, the dissimilarity between two PWMs A and B was
calculated based on the Kullback-Leibler divergence. At
every alignment offset, the PWMs were extended using a
column representing the uniform base frequency (f;, =
0.25 for all b) so that all position of two aligned motifs
were matched. As for this alignment step, we followed a
method used by Xie et al. [26] For every pair of the
extended PWMs, A' and B', whose length are w', the dis-
similarity D, .5 is calculated by:

, A’
w
N
Duw=Y, Y, (fi —fi)log ib,.
i=1 b=a,,g,c fib

We assumed the lowest score of D, as the dissimilarity
between A and B, D,;. Note that D,z = Dy, holds. Using
the partition around medoids algorithm, the 511 PWMs
are divided into 200 clusters. We used 200 medoids of the
clusters in the following analyses.

To predict expression modules, we searched promoter
sequences for TF binding motifs based on the log odds
ratio L between a PWM and background base frequency

bbg . Using the STORM program [27], we calculated log

odds ratio L, for every subsequence of each promoter s
(including the complementary strand), whose length is
equal to the width of the motif of interest, w:

In our analyses, fbbg is the base composition of each pro-

moter, and the maximum of L, in a human promoter
sequence was taken as the motif score Lhuman for the
sequence. For human genes whose mouse homolog is reg-
istered in Ensembl, Lmouse was also calculated. Lhuman and
Lmousewere then averaged to produce the final motif score
L. For human genes that do not have any homologs, we
used Lhuman a5 [, Among all genes analyzed, genes which
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score the 5% highest L were assumed as a seed gene set
regulated by the motif. For each of the 200 PWMs, we per-
formed this procedure to produce 200 seed gene sets.

Preparation based on ChlP-chip data

We obtained TF-bound gene sets identified in ChIP-chip
experiments; CREB1, FOXA2, HINF1, HNF4, HNF6 and
USF1 in hepatocyte [13], and NF B in U931 cells [11]. We
assumed genes which are bound by EED and SUZ12, and
trimetylated at histone H3 lysin-27 in ES cells [12] as a
PRC2-bound gene set. A p53-bound gene set was
obtained from [14]. For ER-bound genes, we analyzed
ChIP-chip results [10], and retrieved genes which are
bound by ER in their promoters (from the TSSs to 3 kbp
upstream), 5'UTRs or first introns with P values of < 10-50.

Preparation based on locus information

A sliding window was employed to prepare seed gene sets
consisting of genes that reside on the same chromosomal
region. A 10 Mb window was slid along each chromo-
some at interval of 1 Mb. At each position, if the window
includes more than or equal to 10 genes, we pooled them
in the gene set library and obtained 2766 seed gene sets.

Setting of parameters

The radius parameter

To specify the radius parameter r in EEM, we converted the
absolute distance to a relative distance for each expression
data set. Expression spaces specified by different data sets
have different dimensions and different densities of
points. Therefore, instead of the absolute distance, we
used a relative distance which practically acts as an equal
measure for different data sets. To convert the absolute
distance, dabsolute to such a relative distance, drelative, we

define coherent set C! for all ¢; € E, similarly to Equa-

tion 1:

Cl'={e,e E:d(e;, x)<T},

where r is a given radius parameter and pointx € S.The

all

maximal sized coherent set Cj" can also be found based

on the above-described algorithm for radius r = dabsolute,
drelative js then defined as follows:

g
|E|

In our analysis, we assumed r = 0.05 in the relative dis-

tance. It should be should noted that we also tried to use

r=0.03 and 0.10 and observed that the identified expres-

sion modules are essentially the same; although the

number of module genes increases as r increases, statisti-

relative __
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cal significance, activity profiles and enriched GO terms
were essentially unchanged. Exceptionally, we used a
larger radius for the PRC2 expression module (see Addi-
tional File 1).

The threshold of Z scores

We assumed that a seed gene set includes a functional
expression module, if its Z score is greater than a thresh-
old. In this paper, we set 4.0 as the threshold. The reason
why we set 4.0 as the threshold is that when we permuted
gene labels in microarray data, no expression modules
showed greater Z scores than 4.0. Therefore, we concluded
that this threshold is sufficiently conservative and the
resulting expression modules are expected to have high
accuracy.

Evaluation of obtained expression modules

Gene ontology analysis

We evaluated the enrichment of GO categories in each
identified expression module by using GO::TermFinder
[28]. The GOA file we used was obtained from EBI. To pre-
dict biological function for each expression module, we
also reported the GO category scoring the lowest P values
as the most enriched GO.

Survival analysis

Kaplan-Meier survival curves were obtained for two
patient groups with high or low activity of each identified
expression module. The cutoff of the high and low groups
was optimized to achieve the most significant P value in
the Kaplan-Meier analysis with at least 20% patients at
each group. Since the optimized P values in the Kaplan-
Meier analysis overestimate the significance, we reported
P values based on Cox regression analysis.

Network analysis
We evaluated enrichment of physically interacting gene
pairs in the expression modules based on PPI data

http://www.biomedcentral.com/1471-2105/10/71

obtained from the Human Protein Reference Database
(HPRD) [29]. To calculate a Z score for the number of
interacting pairs in an expression module, we randomly
sampled 500 gene sets with the same number of genes of
the considered expression module. After finding expres-
sion modules having the significant number of PPIs, we
constructed PPI subnetworks for elucidating molecular
circuits. The PPI subnetworks were constructed by the
interacting protein pairs and their first neighbor in PPI
data. The network visualization was performed using
CytoScape [30].

Results and discussion

Our systematic search identified 10 expression modules in
the breast cancer transcriptome (Table 1). Based on cis-
regulatory motifs, we identified expression modules regu-
lated by E2F, NFY, RUNX, IRF, and ETS family TFs. Here-
after, we use the TF name to refer to the family, e.g. the E2F
module will refer to the module associated with the E2F
family of TFs. ChIP-chip data led us to identify expression
modules regulated by the estrogen receptor (ER), Poly-
comb repressive complex 2 (PRC2), and NF B. In addition
to these transcriptional modules, incorporation of locus
information yielded two expression modules, which are
located on the 17q12 and 8q24 locus. The reproducibility
of these results was confirmed by analysis using other
independent microarray data [31] (see Additional File 1).

Each expression module consists of dozens of genes. We
performed Gene Ontology (GO) analysis to examine
whether the obtained expression modules are enriched in
genes involved in specific cellular activities (Table 1). The
GO analysis showed that most of the expression modules
deduced from cis-regulatory motifs and ChIP-chip data
contain a significant number of genes sharing common
GO terms, such as immune response and cell cycle. Thus,
these transcriptional modules have the potential to func-
tion for specific cellular activities.

Table I: Motif associated with histological grades or prognosis identified based on independent datasets

Module ID Size Z score The most enriched GO

P value for the most

Z score for nearest Z score for nearest or next to

enriched GO neighbor pair nearest pairs
ETS 47 10.0 immune response 4.55 x 013 10.9 9.85
IRF 47 7.59 immune response 6.19 x 10-12 N.S. 3.69
E2F 37 6.67 cell cycle 1.98 x 10-20 325 245
RUNX 34 5.57 immune response 2.57 x 101! 12.1 6.08
NFY 30 422 cell cycle 9.48 x |0-14 15.4 12.3
NF B 29 9.53 immune response I1.51 x 107 17.9 4.65

ER 17 9.45 - N.S. N.S.
PRC2 6l 5.87 multicellar organismal 4.90 x 107 N.S. 5.07
development
8q24 10 7.80 - N.S. N.S.
17ql12 I 7.78 - N.S. N.S.
N.S. denotes 'not significant'.
Page 6 of 12
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The EEM analysis predicted the activity profiles of the 10
expression modules; we performed hierarchical clustering
analysis of them as performed for ordinary gene expres-
sion profiles (Figure 2). We found that clustering of tumor
samples based only on these 10 expression modules suc-
ceeded in dividing samples into several subtypes that are
consistent with clinical information and gene expression
profiles. This observation suggests that a significant degree
of diversity of the breast cancer phenotypes can be
explained by only these 10 expression modules. In other
words, this result demonstrates that the EEM analysis suc-
cessfully reduced gene expression data of extremely high
dimension to the 10 components. We also performed sur-
vival time analysis and found expression modules associ-
ated with prognosis (Figure 3, see below).

The E2F and NFY expression modules show similar activ-
ity profiles, which are activated in high grade breast
tumors and strongly correlated with poor prognosis. They
also share common modules genes and appear to cooper-
atively regulate the cell cycle. Similar expression profiles
shared by the RUNX ETS, IRF and NF B expression mod-
ules also suggest that these TFs regulate immune pathways
cooperatively. These results are consistent with those of

http://www.biomedcentral.com/1471-2105/10/71

previous studies [32-36]. As expected, the ER expression
module was found to be the most critical determinant of
tumor subtypes. Their activity profiles are strongly corre-
lated with ER status, demonstrating the validity of our
approach. The 17q12 and 8q24 expression modules are
derived from known amplified regions [15]. The 17q12
expression module contains the ERBB2 gene, while the
824 expression module contains genes residing near the
Myc locus. The 17q12 expression is an important determi-
nant of tumor subtypes and survival time. Although the
824 expression modules are not clearly associated with
any subtypes, its upregulation is related to poor progno-
sis.

Triple-negative breast cancers characterized by a lack of
the ER, progesterone receptor (PgR), and ERBB2 expres-
sion have attracted special attention in breast cancer
research. In addition to their aggressive phenotype, they
lack the benefit of specific therapy that targets these genes
and, therefore, are associated with short survival. The sam-
ple cluster enriched for triple negative cancers has charac-
teristic expression module activity profiles; the E2F and
NFY expression modules are upregulated, while the ER,
PRC2 and 17q12 expression modules are downregulated.

P

histological grade '@ HEITIL B1 00 NI DR RRIL 0 NINIEIED IPRD DIRIDEIEINEEIIN DN D il N1
p53 status I
ER status I N I [
PgR status I
nodal status [ I N N ===

expression subtype | SN 0 MR 7 10 NN 0
ERBB2 expression [ i m
NI i

1

EZH2 expression | )|

— =

PRC2
NFkB
ETS
IRF
RUNX
8g24
E2F
NFY
17q12

Figure 2

'I'1"I"I"l

i

Y o —I-I-

Clustering analysis of expression module activity profiles in breast tumors. Activity profiles of 10 expression mod-
ules extracted from breast cancer expression data were analyzed by hierarchical clustering. Red indicates increased activity and
blue indicates decreased activity. The upper color bars indicate clinical and gene expression information of each tumor sample;
histological grades (G|: red, G2: yellow G3: blue), p53 status (wildtype: red, mutant: blue), expression subtypes, ER, PgR and
nodal status (positive: red, negative: blue), ERBB2 and EZH2 expression (increased expression: red, decreased expression:
blue). The expression subtypes are based on the five major branches in the clustering dendrogram of the gene expression pro-
files. In the upper dendrogram, red branches represent a sample cluster which is enriched for triple negative breast tumors.
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Figure 3
Survival time analysis of expression module activity
profiles in breast tumors. Associations between survival
time of patients and expression module activities were evalu-
ated. Kaplan-Meier curves for two patient groups with differ-
ent activities of each expression module were displayed using
a color code (high survival rate: red, low survival rate: blue).
P values are calculated for coefficients in Cox regression
analysis.

Among them, the PRC2 expression module is especially
intriguing. PRC2 is an epigenetic gene silencer, which
plays a critical role in the maintenance of stem cells. They
have also been reported to be implicated in neoplastic
development. The PRC2 expression module was derived
from gene sets bound by EED and SUZ12 and tri-
metylated at histone H3 lysin-27 in ES cells [12]. There-
fore, our observation suggests similarity of transcriptional
programs in both stem cells and the aggressive breast can-
cer. Triple-negative breast cancers are known to have
poorly differentiated phenotype histology, which might
be maintained by a PRC2-directed regulatory program.
Recently a drug targeting PRC2 is developed [37]; PRC2
could be a therapeutic molecular target in triple negative
breast cancers. Furthermore, we found that EZH2, a com-
ponent of PRC2, belongs to the E2F expression module
[38], while its expression is inversely correlated with pro-
files of the PRC2 expression module. This finding suggests
that E2F-driven EZH2 overexpression is important for
repression of the PRC2 expression modules in triple neg-
ative tumors. It should be noted that another independent
study employing bioinformatics has also recently shown
that PRC2 target genes are downregulated in malignant
breast tumors, supporting our finding [39].

Inspection of individual genes in each expression module
provided insights into regulatory networks in breast
tumors. For example, our result suggests that auto-regula-
tory designs are prevailing in mammalian transcriptional
networks. The E2F expression module contains three E2F
family genes: E2F1, E2F7, and E2F8. The ER expression

http://www.biomedcentral.com/1471-2105/10/71

module also harbors ER itself and its interacting co-factor,
FOXA1 [40]. Furthermore, RUNX3, one of the RUNX fam-
ily genes, belongs to the RUNX expression module (see
Additional File 1).

To obtain further insights into regulatory networks, we per-
formed network analysis using protein-protein interaction
(PPI) data in the HPRD [29]. Previous studies have demon-
strated a significant correlation between yeast PPI and tran-
scriptional networks [41,42]. This observation prompted us
to examine whether human expression modules identified
by EEM also tend to contain genes involved in the same pro-
tein complex. We calculated the Z score for the count of
module gene pairs which interact directly (nearest neighbor
pairs), and those which interact directly or via the next node
of each (nearest or next-to-nearest neighbor pairs) (Table 1).
This analysis showed that the transcriptional modules that
were identified based on cis-regulatory motifs or ChIP-chip
data harbor a statistically significant number of physically
interacting pairs, revealing a tight coupling of transcriptional
and PPI networks in mammalian cells.

Finally, by extracting expression module genes and interacting
partners from the PPI data, we depicted molecular circuits in
breast tumors based on multiple lines of evidence: PPI, expres-
sion coherence, cis-regulatory motifs and ChIP-chip data (Fig-
ure 4). These network views revealed that E2F regulates cell
cycle hub genes, such as CDC2 and Cycdlins, in cooperation
with NFY. The transcriptional sub-network involving RUNX,
ETS, IRF, and NF B regulates immune circuits involving vari-
ous chemokines and chemokine receptors, some of which
have been reported to be involved in tumor growth, invasion,
and metastasis [43]. For example, a recent study showed that
CCL5 can induce metastasis of breast tumors [44]. Consistent
with a previous report [45], EEM predicted that ETS, IRF and
NF B transcriptionally control CCL5, suggesting that these TFs
are responsible for CCL5-matiated metastasis. Human breast
tumors are histologically complex and contain a variety of cell
types in addition to the carcinoma cells. Hence, the transcrip-
tional programs controlling these immune circuits could oper-
ate not in the carcinoma cells themselves, but in the tumor
microenvironment. Indeed, CCL5 was reported to be secreted
from mesenchymal stem cells. Also, many other module
genes are known to be specifically expressed in immune cells
such as lymphocytes and macrophages. On the other hand,
we could also identify the IRF expression module in the tran-
scriptome of breast cancer cell lines (see Additional File 1).
Thus, the IRF expression module may function in the carci-
noma cells. Recently, global expression profiling of distinct
cell population in breast tumors has been attempted [46]. We
expect that application of EEM to such data will clearly show
cell type specific regulatory programs.

Previously, Segal et al. [47] also reported expression mod-
ules in cancer transcriptome. However, their method
identifies functional modules based on relative up or

Page 8 of 12

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:71

A KNTC2

PPP1CA TR

HIST1 NEK2\>;DZL1 A %ﬂnsmm 1
TAC ccpess
HRF ~
RACGARIN TRURKa RAD5Y N WHA
URKE ~—FJ|cocE

IF2 \\.,,. b ATNLRO AL ,l
—

g ORC24
| i S y/ RCRCIL
7 ‘, DCC1>2] ZBRC3L
:".> » g"‘ ICM6
9 Y (REBBEZ;

ooy SN TRIMY? CEND1
SpCNA '«\a"‘_

33
cAim. SrEiI\RE=SS
"o / HEK PBK z
GADDMEPES cN , SCBESKPZEDK
TSCTCHTZZ DK3
ITPRLPINI J CN

GAuD” RUNX2 ! JUTI X B
PKMYiEF2 AR "?D R

“oczic )
PIMAPCZ]C dais

HERCS

B TNFSF13
DPP\ / N
IGFBP: TNFRSFR3C
cL NG
CICRQ'#'APFB( lt’i’zme' RS8R
cciapzc [PARC e
.
cEriSSE
PFN
ccL4
/ N
2 B
APBBLIP ‘
(2N
S CR1
. X 23000 \ O] .
Gy | SNCPEN e oA e
— cR
=) S AR\ IYAL
NCF ‘ e SSELLT q
§ S‘{‘v N
TS A
\ @ GNBZ'\r 4\ STATEC Do
'TGByog AT
B0 RKCB2RVILZ Jus

SSISTPIP1 CD .
.chgggﬂm A
USPE > -,y
- A
Kcosreﬂgz %% @" 'RA;‘EL&RAP K1
TL = FYB
DOCK: @ N CPZASA?AVI—-

& ﬂ 'ty P7 '~" \
Yo
i Y oRRaT

coNR 4,;‘5 PXND3E AP Bilce:

N
CD79; m '\.AgL BLNK

5F3§).|c IDZS Wlé\MKl
sLA AB2pTPREAC

Figure 4

PPI and transcriptional sub-networks in breast
tumors. (A) The E2F and NFY expression modules and an
overlapping PPl sub-network. (B) The ETS, IRF, NF B, and
Runx expression modules and an overlapping PPl sub-net-
work. For clarity, we displayed nodes which have more than
one links. Red, yellow and blue nodes denote transcriptional
regulators, regulated genes, and their interacting partners,
respectively. Red links denote transcriptional regulations
predicted by our analysis, and blue links denote PPIs regis-
tered in the HPRD.

down-regulation of module genes in each sample, which
contrasts with our method that takes into account expres-
sion coherence across all samples. In this study, our
method succeeded in reducing the expression profiles of
thousands of genes to the activity profiles of 10 expression
modules which explains a significant degree of diversity of
the breast cancer phenotypes. It should be noted that the
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expression module activity profiles show some similarity
with oncogenic pathway activity profiles depicted by Bild
et al. [48]. Their Bayesian regression-based method learns
signatures that can predict pathway activities of clinical
tumor samples from microarray experiments using cell
line models. By contrast, our method searches for coex-
pressed gene sets under common regulatory mechanisms
using prescribed gene sets. Hence, these two methods are
considered to be complementary to each other. In addi-
tion to clustering analysis, we applied survival analysis to
the expression module activity profiles and succeeded in
identifying expression modules associated with progno-
sis. While a number of studies have identified signature
genes associated with prognosis in breast cancer [6], the
result suggested that our approach is also useful to search
for such signature genes. Based on EEM-deduced expres-
sion modules, we also predicted transcriptional regulatory
networks in breast tumors. Although some previous stud-
ies have addressed reverse engineering problems of regu-
latory networks in cancer cells [49], they are only based on
correlation or conditional independence of expression
profiles. On the other hand, our method incorporates evi-
dence of direct TF regulation. Collectively, we can say that
EEM is a powerful module discovery method that pro-
vides various types of information essential for a deeper
understanding of cancer transcriptomes.

As well as these notable advantages, our approach has sev-
eral limitations. EEM assumes that module genes behave
coherently across all samples. However, because gene reg-
ulatory programs are usually functional in specific con-
texts, it might be more appropriate to assume that module
genes are assumed to behave coherently in only a subset
of samples. Under the current assumption, we might fail
to find tumor subtype-specific expression modules. It is
also probable that different genes in a common module
are controlled by different modes of a regulatory program
(e.g., it is known that some TFs act as both activators and
repressors, depending on target genes). Although current
version of EEM cannot detect expression modules which
show such complex patterns of expression profiles, future
studies will improve the algorithm to overcome these lim-
itation. Also, it should be noted that EEM uses the size of
a coherent subset as an index of expression coherence. We
use the arbitrary parameter r to specify the minimum
degree of coexpression of coherent gene subsets. It is pos-
sible that EEM misses tightly coexpressed small modules
or loosely coexpressed large modules, depending the val-
ues of r. In such a case, optimization of r based on Z scores
will improve results. Recently, another gene set screening
method based on a different index of expression coher-
ence [50] was also reported. Comparison of different
coherence indexes should be addressed in future studies.

To search for expression modules utilizing EEM, we pre-
pared a collection of seed gene sets based on cis-regulatory
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motifs and ChIP-chip data. Therefore, comprehensiveness
of our method depends on coverage of these data.
Although a large number of motifs are already registered
in databases, the quality and coverage seem to be incom-
plete. However, because several promising methods that
are suitable for high-throughput determination of TF
binding specificity have been devised [51,52], more accu-
rate and comprehensive data of regulatory motifs are
expected to be available soon. Furthermore, instead of
ChIP-chip, a more high-throughput and cost-effective
alternative, the ChIP-Seq technique has recently emerged
[53,54]. It is expected that a great deal of TF binding site
data will be produced by ChIP-Seq in the next decade.
These increasing amounts of data will enable more global
analysis in the near future. In this study, we assumed that
each expression module is regulated by a single TF. How-
ever, combinatorial regulations by multiple TFs are
known to be essential in mammalian regulatory networks.
Combinatorial analysis will be enabled by constructing
expression modules based on cis-regulatory information
about multiple TFs. We will focus on this problem in
future studies.

Conclusion

We apply a new gene-set based module discovery method,
EEM, to breast cancer microarray data, and revealed 10
principal expression modules in the breast cancer tran-
scriptome. The subsequent analyses of expression module
activity profiles and predicted regulatory networks dem-
onstrated their importance in the pathophysiology of
breast cancer. We believe that our method will be a pow-
erful tool to decode gene regulatory programs in cancer
transcriptomes.
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Appendix

A pseudocode for the optimization procedure in EEM is as
follows:

1: comment: E,, is the set of expression profiles for a seed
gene set (i.e. some subset of available genes).

2: comment: r is the given radius value.
3: Cp, <O
4:foralle; € E, do

5: C, < {eeEydee)<r}
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@

if |C, | >|Cp, | then

7: B, <e¢
8: Cp, <= C,,
9: endif
10: endfor
11: Gy

12: T <= {B, and the 9 profiles in Cj closest to B, }

13: for all triples {t,, t,, t;} c T do
14: t<=(t, ty t5)/3
15: C,<={e; € E\,: d(e;, t) <r}

16: if |C| > |Cy| then

17: B<t
18: Gp<=C,
19: end if
20: end for

21: return (B, Cy)
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