
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Sorting by reversals, block interchanges, tandem duplications, and
deletions
Martin Bader

Address: Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany

Email: Martin Bader - martin.bader@uni-ulm.de

Abstract
Background: Finding sequences of evolutionary operations that transform one genome into
another is a classic problem in comparative genomics. While most of the genome rearrangement
algorithms assume that there is exactly one copy of each gene in both genomes, this does not
reflect the biological reality very well – most of the studied genomes contain duplicated gene
content, which has to be removed before applying those algorithms. However, dealing with unequal
gene content is a very challenging task, and only few algorithms allow operations like duplications
and deletions. Almost all of these algorithms restrict these operations to have a fixed size.

Results: In this paper, we present a heuristic algorithm to sort an ancestral genome (with unique
gene content) into a genome of a descendant (with arbitrary gene content) by reversals, block
interchanges, tandem duplications, and deletions, where tandem duplications and deletions are of
arbitrary size.

Conclusion: Experimental results show that our algorithm finds sorting sequences that are close
to an optimal sorting sequence when the ancestor and the descendant are closely related. The
quality of the results decreases when the genomes get more diverged or the genome size increases.
Nevertheless, the calculated distances give a good approximation of the true evolutionary
distances.

Background
During evolution, genomes are subject to genome rear-
rangements, which are large scale mutations that can alter
the ordering and orientation (strandedness) of the genes
on the chromosomes or even change the genome content
by inserting, deleting, or duplicating genes. Because these
events are rare compared to point mutations, they can give
us valuable information about ancient events in the evo-
lutionary history of organisms. For this reason, one is

interested in the most "plausible" genome rearrangement
scenario between two genomes. More precisely, given two
genomes, one wants to find an optimal (shortest)
sequence of rearrangements that transforms this genome
into the other. In the classical approach, each gene has
exactly one copy in each genome, and only operations
that do not change the genome content are considered.
These "classical operations" are nowadays a well-studied
subject, where the most important operations are reversals

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S9 doi:10.1186/1471-2105-10-S1-S9

<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S9

© 2009 Bader; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S9
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
(also called inversions), where a section of the genome is
excised, reversed in orientation, and reinserted, and trans-
positions, where a section of the genome is excised and
reinserted at a new position in the genome. While the
problem of Sorting by reversals can be solved in polynomial
time [1-3], and the reversal distance can be determined in
linear time [4], the problem gets more complicated if one
also considers transpositions, and there are only approxi-
mation algorithms known [5-7]. To simplify the existing
algorithms, Yancopoulos et al. invented the double cut and
join operator, which can simulate reversals and block
interchanges (a more generalized form of a transposi-
tion), resulting in a simple and efficient algorithm [8].

However, restricting the genes to be unique in each
genome does not reflect the biological reality very well, as
in most genomes that have been studied, there are some
genes that are present in two or more copies. This holds
especially for the genomes of plants, and one of the most
prominent genomes is the one of the flowering plant Ara-
bidopsis thaliana, where large segments of the genome have
been duplicated (see e.g. [9]). There are various evolution-
ary events that can change the content of the genome, like
duplications of single genes, horizontal gene transfer, or
tandem duplications. For a nice overview in the context of
comparative genomics, see [10]. From an algorithmic
point of view, the existence of duplicated genes compli-
cates many existing algorithms, for example the problem
of sorting arbitrary strings by reversals [11] and the prob-
lem of sorting by reversals and duplications [12] have
been proven to be NP-hard. So far, most of the existing
algorithms restrict duplications to have a fixed length
[13], or simulate duplications by arbitrary insertions [14-
16]. Even with these restrictions, it is hard to solve most of
the problems exactly, and heuristics have to be used.

Related work
While genome rearrangement problems without duplica-
tions is a well studied subject, considering genomes with
duplicated genes is a rather new field of research. One of
the first works on this topic was done by Sankoff [17],
where the following problem was examined. Given two
genomes with duplicated genes, identify in both genomes
the "true exemplars" of each gene and remove all other
genes, such that the rearrangement distance between these
modified genomes is minimized. This approach mini-
mizes the number of classical rearrangement operations,
but not the one of duplications and deletions. In the work
of El-Mabrouk [18], for a given genome with duplicated
gene content, one searches for a hypothetical ancestor
with unique gene content such that the reversal and dupli-
cation distance towards this ancestor is minimized. Ber-
trand et al. [13] developed an algorithm for the following
problem. Given two genomes with duplicated gene con-
tent, find a hypothetical ancestor such that the sum of the

reversal and duplication distance of both genomes to this
ancestor is minimized. However, in this work, duplica-
tions are restricted to have the length of one marker, i.e. a
duplication can only duplicate segments that are identical
in the initial genomes. Therefore, this approach is disad-
vantageous if large segmental duplications happened dur-
ing evolution. Fu et al. extended this approach to the
greedy algorithm MSOAR for assigning orthologous
genes, which works well in practice [12,19]. Other
approaches [14-16] simulate duplications by arbitrary
insertions. Recently, Yancopoulos and Friedberg provided
a mathematical model of a genome rearrangement dis-
tance for genomes with unequal gene content [20], com-
bining the DCJ operator [8] with arbitrary but length-
weighted insertions and deletions. Another field of
research is the "Genome halving problem", where a rear-
rangement scenario consists of a whole genome duplica-
tion followed by a series of classical rearrangement
operations. It has been studied first for reversals and trans-
locations [21,22] and recently has been extended to the
double cut and join operator [23,24].

To the best of our knowledge, the only approach that cre-
ates a rearrangement scenario between two genomes, con-
sisting of duplications of arbitrary length and classical
genome rearrangements, is the one of Ozery-Flato and
Shamir [25]. They use a greedy algorithm that starts with
one genome and in each step applies the simplest and
most evident operation that brings this genome closer to
the target genome. If there is no evident operation, the
algorithm aborts. Although this approach fails on compli-
cated rearrangement scenarios, they were able to find rear-
rangement scenarios for more than 98% of the karyotypes
in the "Mitelman database of chromosome aberrations in
cancer" [26].

Our contribution
In this paper, we will focus on the following problem.
Given an ancestral genome with unique gene content and
the genome of a descendant with arbitrary gene content,
find the shortest sequence of reversals, block inter-
changes, tandem duplications, and deletions that trans-
forms the ancient genome into the one of the descendant.
In contrast to most of the previous works, tandem dupli-
cations and deletions can be of arbitrary length. We devel-
oped a lower bound for the distance, and a heuristic
greedy algorithm based on this lower bound. The
approach can be extended to also include general duplica-
tions and insertions of single elements, as described in
Section "Discussion". Experimental results on simulated
data show that our algorithm works well in practice.
Page 2 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
Results
Preliminaries

A genome  = (1 ... n) is a string over the alphabet {1, ...,

n}, where each element may have a positive or negative

orientation (indicated by or). An augmented genome

is a genome where the element 0 = is added at the

beginning and the element n+1 = is added at the

end. As our algorithm works on augmented genomes, we
will use the term "genome" as short hand for augmented

genome. The genome is called the identity

genome id. The multiplicity of an element is the number of

its occurrences (with arbitrary orientation) in . Two con-

secutive elements i i+1 form an adjacency if i = and

i+1 = , or if i = and i+1 = . Otherwise, they

form a breakpoint. A segment i ... j (with i  j) of a genome

 is a consecutive sequence of elements in , with i as first

element and j as last element. A genome rearrangement

problem is defined as follows. Given two genomes ' and 
and a set of possible operations, where each operation is
assigned a weight, find a sequence of minimum weight

that transforms ' into . This minimum weight will be

denoted by d(', ). In our algorithm, we will restrict the
set of operations to reversals, deletions, tandem duplications
(all of weight 1), and block interchanges (of weight 2), as
defined in the next subsection. For simplification, we will

also assume that ' = id, i.e. we search for a sequence of

operations that transforms the identity genome into ,

and we write d() as short hand for d(id, ).

Operations
In our algorithm, we will restrict the set of operations to
the following four types of operations. A reversal rev(i, j)
(with 0 <i <j <n + 1) is an operation that inverts the the
order of the elements of the segment i ... j-1. Addition-
ally, the orientation of every element in the segment is
flipped. A block interchange bi(i, j, k, l) (with 0 <i  j  k  l
<n + 1) is an operation that changes the positions of the
segments i ... j-1 and k ... l-1 in . A tandem duplication
td(i, j) (with 0 <i <j <n + 1) is an operation that adds a
copy of the segment i ... j-1 before the element j. A dele-
tion del(i, j) (with 0 <i <j <n + 1) cuts the segment i ... j-1
out of .

We will use the double cut and join operator (short DCJ)
to simulate reversals and transpositions. A double cut and
join DCJ(i, j, x) (with 0 <i <j <n + 1 and x  {+, -}) cuts the
genome  before the elements i and j (i.e. we get the seg-
ments 0 ... i-1, i ... j-1, and j ... n+1), and rejoins the cut

ends in two new pairs. If x = +, we rejoin such that the ele-
ments i-1 and j-1 as well as the elements i and j-1
become adjacent. This is equivalent to a the reversal of the
segment i ... j-1, i.e. DCJ(i, j, +) = rev(i, j). If x = -, we
rejoin such that the elements i-1 and j as well as the ele-
ments i and j-1 become adjacent. This cuts the genome
into the linear genome 0 ... i-1 j ... n+1 and the circular
genome ... j-2 j-1 i i+1 This circular genome can be
absorbed by applying another DCJ with one cutting point
in the linear genome and the other cutting point in the cir-
cular genome. Depending on how we rejoin, those two
DCJs are equivalent to either two consecutive reversals or
to one block interchange. Thus, we can reduce the set of
operations to DCJs, tandem duplications, and deletions,
provided that we demand that circular genomes must be
absorbed in the next step.

The breakpoint graph
Our main tool for visualization is the breakpoint graph.
This graph has been introduced by Bafna and Pevzner to
solve rearrangement problems on genomes without
duplicated genes [27]. We extend this graph such that it
can also be used for genomes with duplicated genes. The
breakpoint graph of a genome  can be constructed as fol-
lows. First, we write the set of vertices {+0, -1, +1, -2, +2,
..., -n, +n, -(n + 1)} from left to right on a straight line. Sec-
ond, we add a reality edge (+i, -(i + 1)) for each i  [0, n].
Third, we add a desire edge (v, v') for each i  [0, n], where
v = +i if i has a positive orientation, v = -i otherwise, and
v' = -i+1 if i+1 has a positive orientation, v' = +i+1 other-
wise. For better readability, we draw reality edges as
straight lines and desire edges as arcs. For an example, see
Fig. 1. In contrast to the original breakpoint graph, each
vertex can be the endpoint of several desire edges. In fact,
the number of desire edges connected to a vertex +x or -x
is exactly the multiplicity of the element x in . The multi-
plicity of an edge (v, v') is the number of desire edges
between v and v'. A desire edge (v, v) is called a loop. Let
S() denote the number of vertices with a loop. Two ver-
tices v, v' are in the same component of the graph if and
only if there is a path (consisting of reality edges and
desire edges) from v to v'. Let C() denote the number of
components in the breakpoint graph of . An edge is
called a 1-bridge if the removal of this edge increases C().
A pair of edges is called a 2-bridge if none of the edges is a
1-bridge and the removal of both edges increases C.

Note that two different genomes can have the same break-

point graph, like e.g. and . However,

this will not cause problems in our algorithm, because we
use the identity genome as ancestral genome, which has a
unique breakpoint graph.


x


x


0

n + 1
 

()
 
 
 

01 1nn +


x

x + 1
  

x x − 1
 

()
   
01213 ()

   
01213
Page 3 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
A lower bound

Instead of searching for a sequence of operations op1, ...,

opk that sorts id into , one can also search for the inverse

sequence that sorts  into id. This is more

convenient, as it is easier to track the changes in the break-
point graph caused by the performed operations (remem-
ber that the reality edges are defined as the adjacencies in
the identity genome). Thus, we only apply inverse opera-

tions, i.e. we sort a genome  into id by DCJs, inverse tan-
dem duplications, and inverse deletions. Note that the
inverse of a DCJ is still a DCJ, while an inverse deletion is
an insertion. To keep our original problem in mind, we
will use the term "inverse deletion" and not "insertion".

Lemma 1. The breakpoint graph of the identity genome has n
+ 1 components and no loops. No breakpoint graph has more
components. If a breakpoint graph has n + 1 components, it is
the breakpoint graph of the identity genome if and only if it has
no loops.

Proof. The first statement is easy to verify. As each vertex is
connected with another vertex by a reality edge, the maxi-
mum possible number of components in the breakpoint
graph is n + 1. If a genome is not the id, it must contain a
breakpoint. The desire edge corresponding to this break-
point either is a loop, or it connects two vertices that are
not connected by a reality edge. In the latter case, the
breakpoint graph contains a component with at least 4
vertices and therefore cannot have n + 1 components. �

We will now examine how an operation can change the
number of components and loops.

DCJ
A DCJ cuts the genome at two positions, and rejoins the
cut ends. This has the following effect on the breakpoint
graph. Two desire edges (u, v) and (w, x) are removed, and
w.l.o.g. the desire edges (u, w) and (v, x) are added to the
breakpoint graph. This can increase C by at most 1. If one
of the removed edges is a loop, all three vertices are in the
same component after the operation, i.e. C will not be
increased by this operation. As a DCJ removes only two
edges, S can be decreased by at most 2.

Inverse tandem duplication
An inverse tandem duplication deletes the following
desire edges. (a) Edges that are inside the duplicated seg-
ment. All these edges have a multiplicity  2, thus deleting
these edges neither changes C nor S. (b) The edge between
the last node of the segment and the first node of the copy.
This can increase C by 1, or decrease S by 1 (but not both).

Inverse deletion
An inverse deletion splits the genome at one position and
adds arbitrary elements. In the breakpoint graph, one
desire edge is removed and several desire edges are added.
Therefore, a deletion can increase C by at most 1 or
decrease S by at most 1. As C can only be decreased if the
removed edge is a 1-bridge, an inverse deletion cannot
increase C and decrease S.

Theorem 1. A lower bound lb() of the distance d() is

where Si is the number of vertices with a loop in component Ci.

Proof. Operations that increase C() by 1 or decrease S()
by 1 decrease the lower bound at most by 1. For an oper-

op opk
− −1

1
1, ,

d lb n C
Si

Components

() () ()  ≥ = + − + ⎡
⎢⎢

⎤
⎥⎥∑1

2

The breakpoint graphFigure 1

The breakpoint graph. The breakpoint graph of . The edge (-3, +5) has a multiplicity of 2, all other

edges have a multiplicity of 1. The edge (+3, +3) is a loop. The breakpoint graph consists of three components, the edge (+1, -
3) is a 1-bridge, and the pair of edges (+3, +4), (-4, -5) is a 2-bridge.

+0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6

 = ()
         
01335435436
Page 4 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
ation that remove two loops, there are two cases. (a) It acts
on two loops of the same component Ci. This decreases Si
by 2 and the lower bound is decreased by 1. (b) It acts on
two loops in two components Ci and Cj. This can decrease
two of the summands by 1, but the components Ci and Cj
are merged and C is decreased by 1, thus the lower bound
is decreased by at most 1. �

The algorithm
The algorithm uses a greedy strategy to sort the genome.
In each step, it searches for operations that decrease the
lower bound, i.e. we search for operations that increase C
or decrease S, and check their effect on the lower bound.
If there is no such operation, we will use additional heu-
ristics to search for small sequences of operations that
bring us closer to our goal. The main idea behind these
heuristics is to reduce the number of missing elements
and duplicates and to create adjacencies.

Operations that decrease the lower bound

As a DCJ removes two desire edges and rejoins the end-
points with two new desire edges, it can only increase C if
the removed desire edges are a 2-bridge, or two 1-bridges
in the same component. If the DCJ rejoins the endpoints
such that we get a linear and a circular genome, we need a
lookahead to search for another DCJ that absorbs this
DCJ. Those two DCJs are directly merged into two revers-
als or one block interchange with a weight of 2. Inverse
tandem duplications can only remove one desire edge
with a multiplicity of 1 (the one between the duplicated
segments), thus an inverse tandem duplication can
increase C only if this edge is a 1-bridge. Additionally, one
has to check whether the segments on both sides of the
cutting point are identical. Inverse deletions just remove
one desire edge, thus also an inverse deletion can increase
C only if the removed edge is a 1-bridge. Additionally, one
has to check whether there is a segment that can be
inserted such that no desire edge in the inserted segment
merges two components. Although there is such a seg-
ment in most cases, practical tests have shown that it is
better to only insert segments that have no breakpoints,
i.e. we perform only an inverse deletion if the breakpoint

is of the form or with x <y. In summary, the main

task in finding operations that increase C is to find 1-
bridges and 2-bridges in the breakpoint graph, which can
be done very efficiently by following the algorithm
devised in [28].

Finding operations that decrease S is rather straightfor-
ward, as we just have to scan the breakpoint graph for
loops with a multiplicity of 1 and find the corresponding
position in the genome. An operation that decreases S can

be an inverse tandem duplication or an inverse deletion
that removes this loop, or a DCJ that removes two loops
with a multiplicity of 1, or a DCJ on a loop and another
desire edge of the same component.

Heuristics for the remaining cases
If there is no operation that decreases the lower bound,
one heuristic would be to decrease the number of dupli-
cated elements without increasing the lower bound. If
there are two consecutive copies of the same segment, we
can remove one of them by an inverse tandem duplica-
tion. As an inverse tandem duplication only removes
desire edges, it can never increase the lower bound. This is
different in the general case of an inverse duplication,
where the duplicated segments are separated by a non-
empty segment in the genome. In this case, the removal of
one of these segments (which can be simulated by a block
interchange and an inverse tandem duplication) creates a
new desire edge between the last element before the
removed segment and the first element after the removed
segment. If the corresponding vertices in the breakpoint
graph are in different components, or if they are identical
and the new desire edge would increase <Fences>QSi/
2<Fences>N of this component, the operation would
increase the lower bound, i.e. we cannot easily provide a
sequence of operations that removes one of the dupli-
cated segments and does not increase the lower bound.
However, the situation is different if we have at least three
copies of the segment.

Lemma 2. If there are three identical copies of a segment that
are maximal (i.e. they cannot be extended in any direction such
that still all three copies are identical), then there exists a
sequence of operations that removes two of these copies and does
not increase the lower bound.

Proof. Let a be the vertex corresponding to the leftmost ele-
ment of the segment, and let b be the vertex corresponding
to the rightmost vertex of the segment. There are reality
edges (v1, a) and (b, w1), (v2, a) and (b, w2), and (v3, a) and
(b, w3) (from the elements enclosing the first, second, and
third copy of the segment). Because the segment is maxi-
mal, we can assume w.l.o.g. that w1  w2. As v1, v2, and v3
are all adjacent to a, they must be in the same component,
as well as w1, w2, and w3. By deleting the first two seg-
ments, we remove the desire edges (v1, a), (b, w1), (v2, a),
and (b, w2), and get the new desire edges (v1, w1) and (v2,
w2). If this merges two components, the new desire edges
are a 2-bridge, and we can apply a DCJ that replaces them
by the desire edges (v1, v2) and (w1, w2). If v1 = v2 this can
create a new loop. This loop can be removed by another
DCJ between the edges (v1, v2) and (v3, a) (note that v3 
v1 because the segments are maximal, and v1  a because
otherwise the loop was already there before the opera-
tion). In fact, the operations of the sequence can be


xy


yx
Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
arranged such that all DCJs are reversals, so we do not
have to find appropriate follow-ups. An illustration of the
sequence is depicted in Fig. 2. �

We will now examine what we can do with elements with
a multiplicity of at most 2. A first strategy would be to cre-
ate adjacencies wherever this is possible without creating
loops (note that creating adjacencies cannot decrease C).
As a precondition, there must be a reality edge (a, b) and
the desire edges (a, c) and (b, d) with c  d.

If there are no further adjacencies to create, and all ele-
ments have a multiplicity of at most 2, all the possible
cases for a reality edge and its adjacent desire edges are
depicted in Fig. 3.

Lemma 3. If all elements in  have a multiplicity  2, and
there is no DCJ that creates an adjacency without creating a
loop, then there is a reality edge with adjacent desire edges cor-
responding to Case A, B, or C in Fig. 3. For these cases, there
is an operation or a sequence of operations that removes this
configuration.

Proof. If a reality edge and its adjacent desire edges corre-
spond to Case D or E, then the reality edge starting at ver-
tex a must correspond to Case C (this follows from the
preconditions). Now, let us assume that all reality edges
correspond to one of the Cases F and G. The elements
adjacent to a reality edge of these cases occur either twice
in the genome, or they do not occur at all. As we work with
augmented genomes, there must be at least two elements
that occur exactly once in the genome and have a break-
point, otherwise the genome is the id. This is a contradic-
tion to our assumption, therefore there must be at least
one reality edge corresponding to Cases A, B, or C. We will
now provide sequences for these cases.

Case A

The genome is of the form , the element x -

1 is missing. Let y be the largest element <x that is not
missing. We apply an inverse deletion of the elements

 to between and , i.e.  becomes

. The desire edge (+a, -x) is removed,

the inserted desire edges are the edge (+a, -(y + 1)) and
some adjacencies. The reality edge (+(x - 1), -x) is split
from the component, the edge (+a, -(y + 1)) may merge
two components, so the overall number of components
cannot be decreased. As the element y + 1 was not present

 = ()ax

y + 1
 

x − 1
  

a

x

()
 

  ay x x+ −1 1

The remaining casesFigure 3
The remaining cases. The different configurations in which each vertex is adjacent to at most two desire edges, and no adja-
cencies can be created without creating a loop. In all cases, the picture shows a reality edge (horizontal line) and its adjacent
desire edges (all other lines).

x x

a a

B

x

a b

C

x

a

x

a

x

a

D E F

x

GA

Sequences for elements with multiplicity = 3Figure 2
Sequences for elements with multiplicity = 3. An
example for a sequence if an element × has a multiplicity  3.
First, we remove two of the copies of x by two block inter-
changes and inverse tandem duplications. If this merges two
components, the component can be cut by an additional
reversal. For other orientations of the element x, similar
sequences can be applied.

If merge of components,
apply reversal

w1

w2

w3

b−→x

v1

v3

a

v2

w1

w2

w3

b−→x

v1

v3

a

v2

w1

w2

w3

b−→x

v1

v3

a

v2

. . .−→c1
←−c2 . . .

←−
d1

−→
d2 . . .−→c3

−→x −→
d3

. . .−→c1
−→x −→

d1 . . .−→c2
−→x −→

d2 . . .−→c3
−→x −→

d3 . . .

2-bridge?

. . .−→c1

−→
d1 . . .−→c2

−→
d2 . . .−→c3

−→x −→
d3 . . .

Remove −→x by 2 block interchanges
+ inverse tandem duplications
Page 6 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
in the original genome, the edge (+a, -(y + 1)) cannot be a
loop.

Case B

x is in a duplicated segment, w.l.o.g. the segment is left-
maximal. We extend it to the right until it is also right-
maximal. Nevertheless, we will denote the leftmost vertex
of the duplicated segment by -x and the rightmost vertex

by +x, i.e. (the copies of x can

also have negative orientation). As the segment is right-

maximal, -b  -c or the segments have different orientation

and touch each other, i.e. . In the first

case, we remove the copy of x that is not adjacent to x - 1,
i.e. we remove the desire edges (+a, -x) and (+x, -c), and
create the new desire edge (+a, -c). If +a = -c, the loop can
be removed by a DCJ on this edge and the edge (+x, -b). In
the second case, we remove the copy of x that is not adja-
cent to x - 1, i.e. we remove the loop and the desire edge
(+a, -x), and we create the desire edge (+x, +a). In both
cases, the desire edge (+(x - 1), -x) is split from the com-
ponent, and adding one new desire edge can merge only
two components, so the overall number of components
does not decrease. Additionally, also S cannot increase.

Case C

The genome is of the form . We

remove the second copy of x. This removes the desire
edges (+b, -x) and (+x, -d) and adds the desire edge (+b, -
d). If this has merged two components, then (+a, -x) and
(+b, -d) are 1-bridges with disjoint endpoints (remember
that there is no desire edge from vertex +(x - 1)), so a DCJ
on these two edges splits the component again. If +b = -d,
we have a loop, so we will not apply this sequence.
Instead, we use the symmetrical case in which we remove
the first copy of x. If both +b = -d and +a = -c, we can
remove the loop (+b, -d) by applying a DCJ on it and the
desire edge (+a, -x). Note that there is the possibility that
the first DCJ creates a circular genome that cannot be
absorbed in the next step. In this case, we can apply the
sequence for Case A twice, i.e. we add the same elements
before both copies of x. �

Completeness of the algorithm
Whenever the algorithm cannot apply an operation that
decreases the lower bound, it searches for sequences that
remove duplicated segments, for operations that create
adjacencies, and for sequences according to the cases A to
C in the previous subsection. Then, one of these

sequences is selected and applied to the genome. The
pseudocode of the algorithm can be seen in Fig. 4.

To prove the completeness of the algorithm, we need the
following lemma.

Lemma 4. Let m() be the number of missing elements in ,
let r() the number of elements that have to be removed from
 (i.e. r() = || + m() - (n + 2)), and let a() be the number
of adjacencies in . Then, (): = a() - 2·(m() + r()) is
maximal if and only if  = id.

Proof. Let  be a genome such that () is maximal. If
m() > 0 we could transform  by adding all missing ele-
ments without increasing r() or decreasing a(). This
would be a contradiction to the fact that () is maximal,
therefore m() = 0. Now, let us assume that r() > 0, and
let x be the smallest element that is duplicated. As x - 1 has
a multiplicity of 1, there is at least one copy of x that has
a breakpoint. Removing this copy decreases r() by 1 and

 = −()
   x xb axc1

 = −()
  x xxa1

 = ()
axc bxd

Table 1: Estimating . Changes of m(), r(), a(), and  () by
applying the different sequences of operations described in this
section. Case C' is the case where we cannot solve Case C
directly and have to apply the sequence for Case A twice.l
denotes the length of inserted or removed segments. Note that
for all sequences,  > 0.

Sequence m() r() a() ()

Inverse Tandem Duplication 0 -l  -l  l
Segments with multiplicity  3 0 -2l  -2l - 1  2l - 1
Creating adjacencies 0 0  1  1
Case A -l 0 l 2l
Case B 0 -l  -l  l
Case C 0 l  -l  l
Case C' -l l 2l 2l

The algorithmFigure 4
The algorithm. The algorithm in pseudocode.

while π �= id do
Find all operations that decrease lb(π)
if operation found then

apply an operation that maximizes τ(π)
else

find inverse tandem duplications
find sequences for segments with multiplic-
ity ≥ 3
find operations that create adjacencies
find sequences for cases A, B, C
apply a sequence that maximizes τ(π)

end if
end while
Page 7 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
a() by at most 1, while m() remains unchanged. This
would increase (), and lead to a contradiction. There-
fore,  is the genome without duplicated or missing ele-
ments with the maximum number of adjacencies, i.e.  =
id. �

We are now ready to prove the following theorem.

Theorem 2. The algorithm terminates after a finite number of
steps. When the algorithm terminates, the genome  is trans-
formed into id.

Proof. As none of the operations and sequences of opera-
tions discussed above increases the lower bound, and the
lower bound is minimized for id, only a finite number of

operations that decrease the lower bound can be applied.
As we have shown in the last subsections, the algorithm
always finds a sequence of operations as long as   id.
Table 1 shows the changes of () when applying these
sequences. As all sequences increase (), only a finite
number of those sequences can be applied between two
operations that decrease the lower bound. Therefore, the
algorithm must terminate, and  is transformed into
id. �

Testing

We used simulated data to assess the performance of our
algorithm. We generated test cases by creating the identity

genome id of size n and applying random sequences of n

PerformanceFigure 5
Performance. Performance of our algorithm on simulated data. In each diagram, the x-axis corresponds to the sequence
weight used to obtain the test case, while the y-axis corresponds to the weight of the reconstructed sequence. Each value is
the average of 10 created test cases.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16 18 20

ca

lc
ul

at
ed

 o
pe

ra
tio

ns

performed operations

n = 20

created sequence
lower bound

calculated sequence

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

ca

lc
ul

at
ed

 o
pe

ra
tio

ns

performed operations

n = 50

created sequence
lower bound

calculated sequence

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

ca

lc
ul

at
ed

 o
pe

ra
tio

ns

performed operations

n = 80

created sequence
lower bound

calculated sequence

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

ca

lc
ul

at
ed

 o
pe

ra
tio

ns

performed operations

n = 100

created sequence
lower bound

calculated sequence
Page 8 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
operations for different values of n and  (namely n 
{20, 50, 80, 100} and  from 0.1 to 1 in steps of 0.1). For

each value of n and , we created 10 test cases. The opera-
tions of the sequences are independently distributed, with
tandem duplications and deletions having a probability

of , reversals having a probability of , and block inter-

changes having a probability of (thus the expected

numbers of DCJs, tandem duplications, and deletions are
equal). Once the type of an operation was determined, the
operation was selected uniformly distributed among all
operations of this type. As long deletions can cancel the
effects of previous operations, deletions were restricted to
have a length of at most 0.1 times the current genome
length. To keep the size of the genome approximately con-
stant, also tandem duplications were restricted to have a
length of at most 0.1 times the current genome length.

We then calculated the lower bounds of the test cases, and
used our algorithm to reconstruct the sequence of opera-
tions. The results of these experiments can be seen in Fig.
5. On average, our algorithm finds good sequences
(mostly with less operations than used to create the test
case) as long as the lower bound is close to the number of
operations used to create the test case. As this coherence
lessens for increasing values of n and , the length of the
calculated sequences increases. However, even for higher
values of n and , the calculated distances are still a good
approximation for the original distance. If one examines
the frequency of the different types of operations, the
number of performed duplications and block inter-
changes approximately fits the expected values. The algo-

rithm tends to overestimate the number of reversals and
underestimate the number of deletions, especially for
higher values of n. For details, see Fig. 6.

Discussion
In the following, we will discuss how the set of operations
could be extended.

Duplications
While our algorithm only considers tandem duplications,
one might also be interested in including arbitrary dupli-
cations. This would be rather easy if tandem duplications
have weight 1, and all other duplications have weight 2,
since the general case of a duplication can change the
lower bound by at most 2. However, weighting all dupli-
cations equally is a more complicated subject. If all dupli-
cations have weight 2, this could be disadvantageous in
detecting tandem duplications, as an inverse tandem
duplication can decrease the lower bound by at most 1.
On the other hand, if all duplications have weight 1,
duplications would be favored over DCJs. This could lead
to sequences of many small duplications, instead of first
merging the segments and then just applying one big
duplication.

Insertions
Insertions of single elements could be easily included in
our algorithm, because the inverse of this operation
decreases the lower bound by at most 1. Insertions of arbi-
trary length are more complicated. On the other hand,
allowing insertions of arbitrary length are neither biolog-
ically meaningful nor do they make sense in combination
with arbitrary deletions, because one could solve every
sorting problem by just one deletion and one insertion
step. Thus, further research in including insertions should
also include a reasonable length depending weighting of
the insertions.

Conclusion
We presented an algorithm that works well for smaller
genomes and distances. Although our results are promis-
ing, this algorithm should be seen as a first step in han-
dling duplications of arbitrary length. Further research
could improve the algorithm itself by finding closer lower
bounds and better heuristics, or extend the algorithm such
that it considers more different operations (as described
in Section "Discussion") and can also handle multichro-
mosomal genomes.

Competing interests
The author declares that they have no competing interests.

Authors' contributions
MB designed the algorithm, implemented it, performed
the tests, and drafted this manuscript.

1
3

2
9

1
9

Frequencies of the operationsFigure 6
Frequencies of the operations. The relative frequencies
of the different operations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

expected n = 20 n = 50 n = 80 n = 100

fr
eq

ue
nc

y

Dup
Del
Rev

BI
Page 9 of 10
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/10/S1/S9
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
The author thanks Sophia Yancopoulos, who suggested to investigate
whether duplications and DCJs can be combined into one algorithm. This
initial idea and further invaluable discussions with her and Michal Ozery-
Flato laid the foundation for this work.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics
Conference (APBC) 2009. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Hannenhalli S, Pevzner P: Transforming cabbage into turnip:

polynomial algorithm for sorting signed permutations by
reversals. Journal of the ACM 1999, 46:1-27.

2. Tannier E, Bergeron A, Sagot MF: Advances on sorting by revers-
als. Discrete Applied Mathematics 2007, 155:881-888.

3. Han Y: Improving the efficiency of sorting by reversals. In Proc
International Conference on Bioinformatics and Computational Biology
CSREA Press; 2006:406-409.

4. Bader D, Moret B, Yan M: A Linear-Time Algorithm for Com-
puting Inversion Distance between Signed Permutations
with an Experimental Study. Journal of Computational Biology
2001, 8:483-491.

5. Hartman T, Shamir R: A Simpler and Faster 1.5-Approximation
Algorithm for Sorting by Transpositions. Information and Com-
putation 2006, 204(2):275-290.

6. Elias I, Hartman T: A 1.375-Approximation Algorithm for Sort-
ing by Transpositions. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2006, 3(4):369-379.

7. Hartman T, Sharan R: A 1.5-Approximation Algorithm for Sort-
ing by Transpositions and Transreversals. Journal of Computer
and System Sciences 2005, 70(3):300-320.

8. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block inter-
change. Bioinformatics 2005, 21(16):3340-3346.

9. Blanc G, Barakat A, Guyot R, Cooke R, Delseny M: Extensive
Duplication and Reshuffling in the Arabidopsis Genome. The
Plant Cell 2000, 12:1093-1101.

10. Sankoff D: Gene and genome duplication. Current Opinion in
Genetics and Development 2001, 11:681-684.

11. Christie D, Irving R: Sorting Strings by Reversals and by Trans-
positions. SIAM Journal on Discrete Mathematics 2001,
14(2):193-206.

12. Chen X, Zheng J, Fu Z, Nan P, Zhong Y, Lonardi S, Jiang T: The
assignment of orthologous genes via genome rearrange-
ment. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 2005, 2(4):302-315.

13. Bertrand D, Lajoie M, El-Mabrouk N, Gascuel O: Evolution of Tan-
demly Repeated Sequences Through Duplication and Inver-
sion. In Proc 4th RECOMB Comparative Genomics Satellite Workshop
Volume 4205. Lecture Notes in Computer Science, Springer-Verlag;
2006:129-140.

14. El-Mabrouk N: Sorting Signed Permutations by Reversals and
Insertions/Deletions of Contiguous Segments. Journal of Dis-
crete Algorithms 2001, 1:105-122.

15. Marron M, Swenson K, Moret B: Genomic Distances under Dele-
tions and Insertions. Theoretical Computer Science 2004,
325(3):347-360.

16. Swenson K, Marron M, Earnest-DeYoung J, Moret B: Approximat-
ing the True Evolutionary Distance Between Two Genomes.
ACM Journal of Experimental Algorithmics (to appear) 2008.

17. Sankoff D: Genome Rearrangement with Gene Families. Bio-
informatics 1999, 15:909-917.

18. El-Mabrouk N: Reconstructing an ancestral genome using
minimum segments duplications and reversals. Journal of Com-
puter and System Sciences 2002, 65:442-464.

19. Fu Z, Chen X, Vacic V, Nan P, Zhong Y, Jiang T: A Parsiomony
Approach to Genome-Wide Ortholog Assignment. In Proc
10th Annual International Conference on Research in Computational
Molecular Biology Lecture Notes in Computer Science, Springer-Verlag;
2006:578-594.

20. Yancopoulos S, Friedberg R: Sorting genomes with insertions,
deletions and duplications by DCJ. In Proc 6th Annual RECOMB
Satellite Workshop on Comparative Genomics Lecture Notes in Bioinfor-
matics, Springer-Verlag, vol 5267; 2008:170-183.

21. El-Mabrouk N, Nadeau J, Sankoff D: Genome Halving. In Proc 9th
Annual Symposium on Combinatorial Pattern Matching Volume 1448. Lec-
ture Notes in Bioinformatics, Springer-Verlag; 1998:235-250.

22. El-Mabrouk N, Sankoff D: The reconstruction of doubled
genomes. SIAM Journal on Computing 2003, 32(3):754-792.

23. Warren R, Sankoff D: Genome Halving with Double Cut and
Join. In Proc 6th Asia Pacific Bioinformatics Conference World Scientific;
2008:231-240.

24. Mixtacki J: Genome Halving under DCJ revisited. In Proc 14th
Annual International Computing and Combinatorics Conference Volume
5092. Lecture Notes in Computer Science, Springer-Verlag; 2008:276-286.

25. Ozery-Flato M, Shamir R: On the frequency of genome rear-
rangement events in cancer karyotypes. Proc 1st RECOMB Sat-
ellite Workshop in Computational Cancer Biology 2007:17.

26. Mitelman F, Johansson B, MF , Eds: Mitelman Database of Chromosome
Aberrations in Cancer 2008 [http://cgap.nci.nih.gov/Chromosomes/
Mitelman].

27. Bafna V, Pevzner P: Genome Rearrangements and Sorting by
Reversals. SIAM Journal on Computing 1996, 25(2):272-289.

28. Nagamochi H, Ibaraki T: A linear time algorithm for computing
3-edge-connected components in a multigraph. Japan Journal
of Industrial and Applied Mathematics 1992, 9:163-180.
Page 10 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10743557
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related work
	Our contribution

	Results
	Preliminaries
	Operations
	The breakpoint graph
	A lower bound
	DCJ
	Inverse tandem duplication
	Inverse deletion

	The algorithm
	Operations that decrease the lower bound
	Heuristics for the remaining cases
	Case A
	Case B
	Case C

	Completeness of the algorithm
	Testing

	Discussion
	Duplications
	Insertions

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

