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Abstract

Background: Hypothesis generation in molecular and cellular biology is an empirical process in
which knowledge derived from prior experiments is distilled into a comprehensible model. The
requirement of automated support is exemplified by the difficulty of considering all relevant facts
that are contained in the millions of documents available from PubMed. Semantic Web provides
tools for sharing prior knowledge, while information retrieval and information extraction
techniques enable its extraction from literature. Their combination makes prior knowledge
available for computational analysis and inference. While some tools provide complete solutions
that limit the control over the modeling and extraction processes, we seek a methodology that
supports control by the experimenter over these critical processes.

Results: We describe progress towards automated support for the generation of biomolecular
hypotheses. Semantic Web technologies are used to structure and store knowledge, while a
workflow extracts knowledge from text. We designed minimal proto-ontologies in OWL for
capturing different aspects of a text mining experiment: the biological hypothesis, text and
documents, text mining, and workflow provenance. The models fit a methodology that allows focus
on the requirements of a single experiment while supporting reuse and posterior analysis of
extracted knowledge from multiple experiments. Our workflow is composed of services from the
‘Adaptive Information Disclosure Application’ (AIDA) toolkit as well as a few others. The output is
a semantic model with putative biological relations, with each relation linked to the corresponding
evidence.
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Conclusion: We demonstrated a ‘do-it-yourself approach for structuring and extracting
knowledge in the context of experimental research on biomolecular mechanisms. The
methodology can be used to bootstrap the construction of semantically rich biological models
using the results of knowledge extraction processes. Models specific to particular experiments can
be constructed that, in turn, link with other semantic models, creating a web of knowledge that
spans experiments. Mapping mechanisms can link to other knowledge resources such as OBO
ontologies or SKOS vocabularies. AIDA Web Services can be used to design personalized
knowledge extraction procedures. In our example experiment, we found three proteins (NF-Kappa
B, p21, and Bax) potentially playing a role in the interplay between nutrients and epigenetic gene

regulation.

Background

In order to study a biomolecular mechanism such as
epigenetic gene control (Figure 1) and formulate a new
hypothesis, we usually integrate various types of
information to distil a comprehensible model. We can
use this model to discuss with our peers before we test
the model in the laboratory or by comparison to
available data. A typical hypothesis is based on one’s
own knowledge, interpretations of experimental data,
the opinions of peers, and the prior knowledge that is
contained in literature. Many Web resources are available
for molecular biologists to access available knowledge,
of which Entrez PubMed, hosted by the US National
Center for Biotechnology Information (NCBI), is prob-
ably the most used by molecular biologists. The
difficulty of information retrieval from literature reveals
the scale of today’s information overload: over 17
million biomedical documents are now available from
PubMed. Also considering the knowledge that did not
make it to publication or that is stored in various types
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Cartoon model for the mechanism of chromatin
condensation and decondensation. Models for
condensation and decondensation of chromatin, a
determinant of transcriptional activity, involves enzymes for
histone acetylation (HAT) and histone deacetylase (HDAC),
DNA methylation, and methylation of histone H3K9 [47].
Cartoon representations are a typical means for scientific
discourse for molecular biologists.

of databases and file systems, many scientists find it
increasingly challenging to ensure that all potentially
relevant facts are considered whilst forming a hypothesis.
Support for extracting and managing knowledge is
therefore a general requirement. Developments in the
area of the Semantic Web and related areas such as
information retrieval are making it possible to create
applications that will support the task of hypothesis
generation. First, RDF and OWL provide us with a way to
represent knowledge in a machine readable format that
is amenable to machine inference [1,2]. Ontologies have
become an important source of knowledge in molecular
biology. Many ontologies have been created and many
types of application have become possible [3], with the
life sciences providing a key motivation of addressing the
information management problem that arises from high
throughput data collection [4,5]. A downside to the
popularity of bio-ontologies is that their number and
size have become overwhelming when attempting to
discover the best representation for one’s personal
hypothesis. Moreover, building a biological ontology is
usually associated with a community effort where
consensus is sought for clear descriptions of biological
phenomena [6]. The question arises how an experimen-
tal biologist/bioinformatician can apply Semantic Web
languages when the primary aim is not to build a
comprehensive ontology for a community, but to
represent a personal hypothesis for a particular biomo-
lecular mechanism. Therefore, we explored an approach
to semantic modeling that emphasizes the creation of a
personal model within the scope of one hypothesis, but
without precluding integration with other ontologies.
Secondly, information retrieval and information extrac-
tion techniques can be used to elucidate putative
knowledge to consider for a hypothesis by selecting
relevant data and recognizing biological entities (e.g.
protein names) and relations in text [5,8]. For instance,
tools and algorithms have been developed that match
predefined sets of biological terms [7,8], or that use
machine learning algorithms to recognize entities and
extract relations based on their context in a document
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[9]. These techniques can also be used to extend an
ontology [10,11]. Several tools exist for text mining (See,
for instance [8]), but for a methodology to be attractive
to practitioners of experimental molecular biology we
would like a method that is more directly analogous to
wet laboratory experimentation. Workflow management
systems offer a platform for in silico experimentation
[12-14] where, for example, data integration [5,15], and
systematic large-scale analysis [16] have been imple-
mented. Workflows can also be shared on the web such
as accomplished in myExperiment [17]. In a workflow,
the steps of a computational experiment are carried out
by individual components for which Web Services
provide a common communication protocol [18]. We
adopted the workflow paradigm for the design and
execution of a reusable knowledge extraction experi-
ment. The main services in the workflow are from the
‘Adaptive Information Disclosure Application” toolkit
(AIDA) that we are developing for knowledge manage-
ment applications [19] and this document). The output
enriches a knowledge base with putative biological
relations and corresponding evidence. The approach is
not limited to text mining but can be applied to
knowledge extracted during any computational experi-
ment. The advantage of routinely storing extracted
knowledge is that it enables us to perform posterior
analysis across many experiments.

Results

We present the methodology in the following order: 1) a
description of representing prior knowledge through
proto-ontologies; 2) extension of the proto-ontologies
by a workflow that adds instances to a semantic
repository preloaded with the proto-ontologies; 3) a
description of how to query the knowledge base; 4) a
description of the toolkit that we use for knowledge
extraction and knowledge management. Data and
references are accessible from pack 58 on myExperi-
ment.org [20].

Model representation in OWL

Different types of knowledge

Step one of our methodology is to define machine
readable ‘proto-ontologies’ to represent our biological
hypothesis within the scope of an experiment. The
experiment in this case is a procedure to extract protein
relations from literature. Our approach is based on the
assumption that knowledge models can grow with each
experiment that we or others perform. Therefore, we
created a minimal OWL ontology of the relevant
biological domain entities and their biological relations
for our knowledge extraction experiment. The purpose of
the experiment is to populate (enrich) the proto-
ontologies with instances derived from literature. We

http://www.biomedcentral.com/1471-2105/10/S10/S9

also modeled the evidence that led to these instances. For
instance, the process by which a protein name was found
and in which document it was found. We find a clash
between our intention of enriching a biological model, and
the factual observations of a text mining procedure such as
‘term’, ‘interaction assertion’, or ‘term collocation’. For
example, it is obvious that collocation of the terms
‘HDAC1’ and ‘p53’ in one abstract does not necessarily
imply collocation of the referred proteins in a cell. In order
to avoid conflation of knowledge from the different stages
of our knowledge extraction process, we purposefully kept
distinct OWL models. This lead to the creation of the
following models that will be treated in detail below:

U Biological knowledge for our hypothesis (Protein,
Association)

Q Text (Terms, Document references)

0 Knowledge extraction process (Steps of the
procedure)

U Extraction procedure implementation (Web Service
and Workflow runs)

0 Mapping model to integrate the above through
references.

U Results (Instances of extracted terms and relations)

Biological model

For the biological model, we started with a minimal set of
classes designed for hypotheses about proteins and
protein-protein associations (Figure 2). This model con-
tains classes such as ‘Protein’, ‘Interaction’ and ‘Biological
Model’. We regard instances in the biological model as
interpretations of certain observations, in our case, of text
mining results. We also do not consider instances of these
classes as biological facts; they are restricted to a
hypothetical model in line with common practice in
experimental biology. The evidence for the interpretation
is important, but it is not within the scope of this model.
In the case of text mining, evidence is modeled by the text,
text mining, and implementation models.

Text model

A model of the structure of documents and statements
therein is less ambiguous than the biological model,
because we can directly inspect concrete instances such as
(references to) documents or pieces of text (Figure 3). We
can be sure of the scope of the model and we can be clear
about the distinction between classes and instances
because we computationally process the documents.
This model contains classes for documents, protein or
gene names, and mentions of associations between
proteins or genes.

Text mining model
Next, we created a model for the knowledge extraction
process. This model serves to retrieve the evidence for the
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Figure 2

Graphical representation of the biological domain
model in OWL and example instances. This proto-
ontology contains classes for instances that may be relevant
in hypotheses about chromatin (de)condensation. HDACI
and PCAF are example instances representing proteins
implied in models about this process and known to interact.
In this and following figures, red diamonds represent
instances, dashed arrows connected to diamonds represent
instance-of relations and blue dashed arrows represent
properties between classes or instances. Inverse relations
are not shown for clarity. Protein Association represents the
reified relation in which two (or more) proteins participate.
Instances of ‘BiologicalModel’ represent an abstraction of a
biological hypothesis that can be partially represented by
user queries, proteins provided by the user, and proteins
discovered by text mining.
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Graphical representation of proto-ontology for
entities in text and example instances. This proto-
ontology contains classes of instances for documents, terms,
and statements found in the text of the documents. The
latter relation is represented by ‘component of properties.
The instances represent concrete observations in text.
Properties such as ‘relates’ and ‘relatesBy’ represent their
interrelations. Example instances are shown for protein
names ‘HDACI’ and ‘p68’ and an assertion suggesting a
relation between these two proteins.
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population of our biological model (Figure 4). It
contains classes for information retrieval and informa-
tion extraction such as ‘collocation process’ and proper-
ties such as ‘discovered by'. We also created classes to
contain text mining specific information such as the
likelihood of terms being found in the literature. This
allows us to inspect the uncertainty of certain findings.
Because any procedure could be implemented in various
ways, we created a separate model for the implementa-
tion artifacts.

Workflow model

For more complete knowledge provenance, we also
created a model representing the implementation of the
text mining process as a workflow of (AIDA) Web
Services. Example instances are (references to) the AIDA
Web Services, and runs of these services. Following the
properties of these instances we can retrace a particular
run of the workflow.

Mapping model

At this point, we have created a clear framework for the
description of our biological domain and the documents
and the text mining results as instances in our text and
text mining ontologies. The next step is to relate the
instances in the various models to the biological domain
model. Our strategy is to initially keep the domain
model simple at the class and object property level,
and to map sets of instances from our results to the
domain model. For this, we created an additional
mapping model that defines reference properties
between the models (Figure 5). This allows us to see
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Graphical representation of the proto-ontology for
the text mining process. This proto-ontology contains
the classes for instances of the processes by which a
knowledge extraction experiment is performed. The darker
coloured classes represent restriction classes for instances
that have at least one ‘discoveredBy’ property defined.
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Graphical representation of the proto-ontology
containing the mapping properties between the
biological, text, and text mining models. The
‘reference’ properties connect the concrete observations
captured in the text model with the model representations in
the biological model. For instance, the discovered protein
name ‘HDACI!’ in the text mining model refers to the
protein labelled ‘HDACI’ that is a component of an instance
representing a chromatin condensation hypothesis.

that an interaction between the proteins labeled ‘p68’
and 'HDAC1' in our hypothetical model is referred to by
a mention of an association between the terms ‘p68" and
'HDAC1’, with a likelihood score that indicates how
remarkable it is to find this combination in literature.

In summary, we have created proto-ontologies that
separate the different views on biomolecular knowledge
derived from literature by a text mining experiment. We
can create instances in each view and their interrelations
(Figure 6). This allows us to trace the experimental
evidence for knowledge contained in the biological
model. In a case of text mining such as ours, evidence
is modeled by the document, text mining, and workflow
models. A different type of computational experiment
would require other models and new mappings to
represent evidence.

Knowledge extraction experiment

The proto-ontologies form the basis of our knowledge
base. They provide the initial templates for the knowl-
edge that we wish to be able to interrogate in search of
new hypotheses. The next step is to populate the
knowledge base with instances. At the modeling stage
we already anticipated that our first source of knowledge
would be literature, and that we would obtain instances
by text mining. An element of our approach is to regard
knowledge extraction procedures as ‘computational

http://www.biomedcentral.com/1471-2105/10/S10/S9

experiments’ analogous to a wet laboratory experiments.
We therefore used the workflow paradigm to design the
protocol of our text mining experiment, here with the
workflow design and enactment tool Taverna [13,21]. A
basic text mining workflow consists of the following
steps: (i) Retrieve relevant documents from MedLine, in
particular their abstracts, (ii) Extract protein names from
the retrieved abstracts, and (iii) Present the results for
inspection. We implemented the text mining process as a
workflow (Figure 6). We added an additional sub-
workflow to process the input query in order to extract
known protein names from the input query and expand
the query with synonyms for known protein names. For
this, we employed a Web Service that provides UniProt
identifiers and synonyms for human, rat and mouse gene
names. These were derived from a combination of
several public databases [22]. The query is first split
into its individual terms with a service from the AIDA
Toolkit that wraps the Lucene tokenizer, and then all the
terms (tokens) from the original query are checked for
having a UniProt identifier by which they are identified
as referring to a known protein. The sub-workflow makes
the synonyms, UniProt identifiers, and the expanded
query available for the rest of the workflow. The
expanded query is the input for the next sub-workflow:
document retrieval. We applied the document search
service from the AIDA Toolkit, parameterized to use the
regularly updated MedLine index that is stored on our
AIDA server and updated daily. The output of this
retrieval service is an xml document that contains
elements of the retrieved documents, such as the
PubMed identifier, title, abstract, and the authors. We
then extract titles and abstracts for the next sub-
workflow: i.e. protein name recognition. Sub-workflow
3 employs the AIDA Web Service ‘applyCRF’ to recognize
protein (or gene) names in text. This service wraps a
machine learning method based on the ‘conditional
random fields’ approach [23]. In this case it uses a
recognition model trained on protein/gene names. We
added the aforementioned UniProt service again to mark
the extracted results as genuine human, rat, or mouse
protein/gene names. In a number of cases the workflow
produced more than one identifier for a single protein
name. This is due to the ambiguity in gene and protein
names. For instance, Tuason et al. reported 6.6%
ambiguous occurrences of mouse gene names in text,
and percentages ranging from 2.4% to 32.9% depending
on the organism [24]. The final step of our text mining
procedure was to calculate a likelihood score for the
extracted proteins to be found in documents retrieved
through the expanded input query. We used a statistical
method where the likelihood of finding a document
with input query (q) and discovered protein name (d) is

D )rQDexp:(Q*D)/Nr in

calculated by: —log(
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Knowledge extraction workflow. The knowledge extraction workflow has three parts. The left part executes the steps of
a basic text mining procedure: (i) extract protein names from the user query and add synonyms using the BioSemantics
synonym service, (ii) retrieve documents from MedLine with the AIDA document search service, (iii) extract proteins with the
AIDA named entity recognition service, (iv) calculate a ranking score for each discovery. The middle workflow converts the
results from the text mining workflow to RDF using the biological model and the text model as template. The workflow on the
right-side creates execution-level instances for the workflow components and couples these to the instances created in the
middle workflow. The blue rectangles represent inputs and outputs. The pink rectangles represent sub-workflows.

which Q, D, and QD are the frequencies of documents
containing q, d, and q and d, respectively; QD,,, is the
expected frequency of documents containing q and d
assuming that their co-occurrence is a random event; N is
the total number of documents in MedLine.

In parallel to the part of the workflow that performs the
basic text mining procedure, we designed a set of
‘semantic’ sub-workflows to convert the text mining
results to instances of the proto-ontologies and add these
instances to the AIDA knowledge base, including their
interrelations (steps s N in Figure 6). The first step of this

procedure is to initialize this knowledge base after which
the proto-ontologies are loaded into the knowledge
base, and references to the knowledge base are available
for the rest of the workflow. The next step is to add
instances for the following entities to the knowledge
base: 1) the initial biological model/hypothesis, 2) the
original input query, 3) the protein names it contains,
and 4) the expanded query. We assumed that the input
query and the proteins mentioned therein partially
represent the biological model; each run of the workflow
creates a new instance of a biological model unless the
input query is exactly the same as in a previous
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experiment. Figure 7 illustrates the creation of an
instance of a biological model and its addition to the
knowledge base, including the details for creating the
RDF triples in Java. All the semantic sub-workflows
follow a similar pattern (data not shown). The follow-
ing sub-worfklow adds instances for retrieved docu-
ments to the knowledge base; it only uses the PubMed
identifier. The sub-workflow that adds discovered
proteins is critical to our methodology. It creates
protein term instances from protein names in the Text
ontology to which it also adds the collocation relations
with the original query a and a ‘discovered_in’ relation
with the document it was discovered in. In addition, it
creates protein instances in the BioModel ontology and
a biological association relation to the proteins found
in the input query. Between term and protein instances
in the different ontologies it creates reference relations.
As a result, our knowledge base is populated with the
discoveries of the text mining procedure and their
biological interpretations still linked with the knowl-
edge they are interpretations of. The final sub-workflow
adds the calculated likelihood scores as a property of
the protein terms in the knowledge base. Finally, to be
able to retrieve more complete evidence from the
knowledge base, we extended our models and workflow
to accommodate typical provenance data (not shown).
We created an ontology with classes for Workflow runs
and Web Service runs. Using the same semantic
approach as above we were able to store instances of
these runs, including the date and time of execution.

http://www.biomedcentral.com/1471-2105/10/S10/S9

Querying the knowledge base

The result of running the workflow is that our knowl-
edge base is enriched with instances of biological
concepts and relations between those instances that
can also tell us why the instances were created. We can
examine the results in search of unexpected findings or
we can examine the evidence for certain findings, for
instance by examining the documents in which some
protein name was found. An interesting possibility is to
explore relations between the results of computational
experiments that added knowledge to the knowledge
base. To prove this concept we ran the workflow twice,
first with “HDAC1 AND chromatin” as input, and then
with “(Nutrition OR food) AND (chromatin OR
epigenetics) AND (protein OR proteins)” as input. We
were then able to retrieve three proteins that are
apparently shared between the two biological models
(see Figure 8 for the RDF query): NF-kappaB (UniProt
ID P19838), p21 (UniProt ID P38936), and Bax
(UniProt ID P97436). If we would like to investigate
the evidence by which these proteins were discovered we
designed a query that traces the chain of evidence
(Figure 9). It retrieves the process by which the name of
the protein was found, the service by which the process
was implemented and its creator, the document from
MedLine in which the protein name was discovered, and
the time when this discovery service was run. For
example, NF-KappaB was found on the 18" of Novem-
ber 2008 in a paper with PubMed identifier 17540846,
by a run of the ‘AIDA CRF Named Entity Recognition

Define_BioModel_ldentifier |

hiip #idf adaplivediscdosure orgfowl/BioAlDvim ybo

del/Proto-ontology/BioModel owtBiologicalModel

| BiologicaModelClass_from_ProtoOntology_BioMode! |

Figure 7

Example RDF conversion workflow. This workflow creates an OWL instance for a biological hypothesis in RDF ‘N3’
format, and adds the RDF triples to the AIDA knowledge base with the ‘addRDF’ operation of the AIDA repository Web
Service. The actual conversion is performed in the Java Beanshell ‘Instantiate_Semantic_Type’ of which the code is shown at
the bottom. The sub-workflow has the hypothesis instance as output for use by other sub-workflows in the main workflow.
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SELECT
FROM

label(comment), label{query1), label(query2)

{protein_instance} rdf:ype {bio:Protein} rdfitype {owl:Class},

{protein_instance} rdfs:comment {comment};
biosisModelComponentOfimodel1};
bio:isModelComponentOf{model2},

{representation 1} map:partially _represents {model1};
meth:has_query {query1},

{representation2} map:pariially _represents {model2};
meth:has_query {query2}

WHERE representation1 !=representation2

Figure 8

Pseudo RDF query for extracting proteins related to

two hypotheses. RDF queries are pattern matching

queries. This query returns proteins that were found by

mining for relations with two different hypotheses

represented by two different user queries. The result is a

table of protein descriptions and the two user queries.

component of
discovered by

Discovery
process run

implemented by

run at
Run
date & time

Figure 9

Graphical representation of a ‘chain of evidence
query’. This RDF query matches patterns in the RDF graph
created by the knowledge extraction workflow. The result is
a table of protein identifiers, protein names, the process by
which the proteins were found, the service that implemented
this process, the date and time it was run, its creator, and the
document that the service used as input and of which the
protein name was a component.

service’ based on ‘conditional random fields trained on
protein names’, created by Sophia Katrenko.

The AIDA Toolkit for knowledge extraction and
knowledge management

The methodology that we propose enables a ‘do-it-
yourself’ approach to extracting knowledge that can
support hypothesis generation. To support this
approach, we are developing an open source toolkit
called Adaptive Information Disclosure Application

http://www.biomedcentral.com/1471-2105/10/S10/S9

(AIDA). AIDA is a generic set of components that can
perform a variety of tasks related to knowledge extrac-
tion and knowledge management, such as perform
specialized search on resource collections, learn new
pattern recognition models, and store knowledge in a
repository. W3C standards are used to make data
accessible and manageable with Semantic Web technol-
ogies such as OWL, RDF(S), and SKOS. AIDA is also
based on Lucene and Sesame. Most components are
available as web services and are open source under an
Apache license. AIDA is composed of three main
modules: Search, Learning, and Storage.

Search — the information retrieval module

AIDA provides components which enable retrieval from
a set of documents given a query, similar to popular
search engines such as Google, Yahoo!, or PubMed. To
make a set of documents (a corpus) searchable, an
‘index’ needs to be created first [25]. For this the AIDA’s
configurable Indexer can be used. The Indexer and
Search components are built upon Apache Lucene,
version 2.1.0 [26], and, hence, indexes or other systems
based on Lucene can easily be integrated with AIDA. The
Indexer component takes care of the preprocessing (the
conversion, tokenization, and possibly normalization)
of the text of each document as well as the subsequent
index generation. Different fields can be made retrieva-
ble such as title, document name, authors, or the entire
contents. The currently supported document encodings
are Microsoft Word, Portable Document Format (PDF),
MedLine, XML, and plain text. The so-called “Docu-
mentHandlers” which handle the actual conversion of
each source file are loaded at runtime, so a handler for
any other proprietary document encoding can be created
and used instantly. Because Lucene is used as a basis, a
plethora of options and/or languages are available for
stemming, tokenization, normalization, or stop word
removal which may all be set on a per-field, per-
document type, or per-index basis using the configura-
tion. An index can currently be constructed using either
the command-line, a SOAP webservice (with the limita-
tion of 1 document per call), or using a Taverna plugin.

Learning — the machine learning module

AIDA includes several components which enable infor-
mation extraction from text data in the Learning module.
These components are referred to as learning tools. The
large community working on the information extraction
task has already produced numerous data sets and tools
to work with. To be able to use existing solutions, we
incorporated some of the models trained on the large
corpora into the named entity recognition web service
NERecognizerService. These models are provided by
LingPipe [27] and range from the very general named
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entity recognition (detecting locations, person and
organization names) to the specific models in the
biomedical field created to recognize protein names
and other bio-entities. We specified several options for
input/output, which gives us an opportunity to work
with either text data or the output of the search engine
Lucene. We also offer the LearnModel web service whose
aim is to produce a model from annotated text data. A
model is based on the contextual information and uses
learning methods provided by Weka [28] libraries. Once
such a model is created, it can be used by the TestModel
web service to annotate texts in the same domain. In this
paper we use an AIDA service that applies a service for an
algorithm that uses sequential models, such as condi-
tional random fields (CRFs)/CRFs have an advantage
over Hiddem Markov Models because of their ability to
relax the independence assumption by defining a
conditional probability distribution over label sequences
given an observation sequence. We used CRFs to detect
named entities in several domains like acids of various
lengths in the food informatics field or protein names in
the biomedical field [9].

Named entity recognition constitutes only one subtask
in information extraction. Relation extraction can be
viewed as the logical next step after the named entity
recognition is carried out [29]. This task can be
decomposed into the detection of named entities,
followed by the verification of a given relation among
them. For example, given extracted protein names, it
should possible to infer whether there is any interaction
between two proteins. This task is accomplished by the
RelationLearner web service. It uses an annotated corpus
of relations to induce a model, which consequently can
be applied to the test data with already detected named
entities. The RelationLearner focuses on extraction of
binary relations given the sentential context. Its output is
a list of the named entities pairs, where the given relation
holds.

The other relevant area for information extraction is
detection of the collocations (or n-grams in the broader
sense). This functionality is provided by the Colloca-
tionService which, given a folder with text documents,
outputs the n-grams of the desired frequency and length.

Storage — the metadata storage module

AIDA includes components for the storage and proces-
sing of ontologies, vocabularies, and other structured
metadata in the Storage module. The main component,
also for the work described in this paper, is Repositor-
yWS, a service wrapper for Sesame - an open source
framework for storage, inferencing and querying of RDF
data on which most of this module’s implementation is
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based [30,31]. ThesaurusRepositoryWS is an extension of
RepositoryWS that provides convenient access methods
for SKOS thesauri. The Sesame RDF repository offers an
HTTP interface and a Java APIL In order to be able to
integrate Sesame into workflows we created a SOAP
service that gives access to the Sesame Java API. We
accommodate for extensions to other RDF repositories,
such as the HP Jena, Virtuoso, Allegrograph repositories
or future versions of Sesame, by implementing the
Factory design pattern.

Complementary services from BioSemantics applications

One of the advantages of a workflow approach is the
ability to include services created elsewhere in the
scientific community (‘collaboration by Web Services’).
For instance, in our BioAID workflows operations are
used for query expansion and validation of protein
names by UniProt identifiers. AIDA is therefore com-
plemented by services derived from text mining applica-
tions such as Anni 2.0 from the BioSemantics group [32].
The ‘BioSemantics’ group is particularly strong in
disambiguation of the names of biological entities such
as genes/proteins, intelligent biological query expansion
(manuscript in preparation), and provision of several
well known identifiers for biological entities through
carefully compiled sets of names and identifiers around a
biological concept.

User interfaces for AIDA

In addition to RDF manipulation within workflows as
described in this document, several examples of user
interactions have been made available in AIDA clients
such as HTML web forms, AJAX web applications, and a
Firefox toolbar. The clients access RepositoryWS for
querying RDF through the provided Java Servlets. The
web services in Storage have recently been updated from
the Sesame 1.2 Java API to the Sesame 2.0 Java API.
Some of the new features that Sesame 2.0 provides, such
as SPARQL support and named graphs, are now being
added to our web service API's and incorporated into our
applications.

Discussion

Our methodology for supporting the generation of a
hypothesis about a biomolecular mechanism is based on
a combination of tools and expertise from the fields of
Semantic Web, e-Science, information retrieval, and
information extraction. This novel combination has a
number of benefits. First, the use of RDF and OWL
removes the technical obstacle for making models
interoperable with other knowledge resources on the
Semantic Web although semantic interoperability will
often require an alignment process to take place for more
far reaching compatibility. The modeling approach that
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we propose is complementary to the efforts of commu-
nities such as the Open Biomedical Ontology (OBO)
community. This community’s stated purpose is to create
an ‘accurate representation of biological reality’ by
developing comprehensive domain ontologies and
reconciling existing ontologies according to a number
of governing principles [4]. Our ambitions are more
modest. We start with a minimal model to represent a
hypothesis, i.e. a particular model of reality. We define
our own classes and properties within the scope of a
knowledge extraction experiment, but because of the
modularity supported by OWL this does not exclude
integration with other ontologies. In fact, integration
with existing knowledge resources enables a comple-
mentary approach for finding facts potentially relevant
to a hypothesis. Clearly, in order to scale up our
methodology to represent knowledge beyond the experi-
ments of a small group of researchers, alignment with
standards would have to be considered. Upper ontolo-
gies can facilitate integration (for an example see [33]),
and we can benefit from the OBO guidelines and the
tools that have been developed to convert OBO
ontologies to OWL [33-35]. Another interesting possibi-
lity is the integration with thesauri based on the SKOS
framework [36]. Relations between SKOS concepts
(terms) are defined by simple ‘narrower’ and ‘broader’
relations that turn out to be effective for human
computer interfaces, and may be the best option for
labeling the elements in our semantic models. Instead of
providing a text string as a human readable label, we
could associate an element with an entry in a SKOS
thesaurus, which is a valuable knowledge resource in
itself. The SKOS format is useful as an approach for
‘light-weight’ knowledge integration that avoids the
problems of ontological over-commitment associated
with more powerful logics like OWL DL [37].

A second benefit of our methodology comes from the
implementation of the knowledge extraction procedure
as a workflow. The procedure for populating an ontology
is similar to the one previously described by Witte et al.
[38], but our implementation allows the accumulation
of knowledge by repeatedly running the same workflow
or adaptations of it. This enables us to perform posterior
analyses over the results from several experiments by
querying the knowledge base, for instance in a new
workflow that uses the AIDA semantic repository service.
Moreover, the approach is not limited to text mining. If
one considers text documents as a particular form of
data, we can generalize the principle to any computa-
tional experiment in which the output can be related to a
qualitative biological model. As such, this work extends
previous work on integration of genome data via
semantic annotation [39]. In this case the annotation is
carried out by a workflow. Considering that there are
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thousands of Web Services and hundreds of workflows
available for bioinformaticians [17], numerous exten-
sions to our workflow can be explored. In addition, the
combination with a semantic model allows us to collect
evidence information as a type of knowledge provenance
during workflow execution. In this way, we were able to
address the issue of keeping a proper log of what has
happened to our data during computational experimen-
tation, analogous to the lab journal typically required in
wet labs [40]. Ideally, the knowledge provenance
captured in our approach would be more directly
supported by existing workflow systems. However, this
is not yet possible. There seems to be a knowledge gap
between workflow investigators and the users from a
particular application domain with regard to prove-
nance. We propose that workflow systems take care of
execution level provenance and provide an RDF interface
on which users can build their own provenance model.
In this context, it will be interesting to see if we will be
able to replace our workflow model and link directly to
the light weight provenance model that is being
implemented for Taverna 2 [41]. A third benefit is that
the application of Semantic Web, Web Services, and
workflows stored on myExperiment.org, allow all
resources relevant to an experiment to be shared on the
web, making our results more reproducible. We would
like to increase the ‘liquidity’ of knowledge so that
knowledge extracted from computational experiments
can eventually fit into frameworks for scientific discourse
(hypotheses, research statements and questions, etc.)
such as Semantic Web Applications in Neuromedicine
(SWAN) [42]. If it is to be global, interoperability across
modes of discourse would require large scale consensus
on how to express knowledge provenance, not only
about knowledge produced from computational experi-
ments but also from manual or human assertions. Some
groups are attempting to address various aspects of this
problem, such as the Scientific Discourse task force [43]
in the W3C Semantic Web Health Care and Life Sciences
Interest Group [44], the Concept Web Alliance [45] and
the Shared Names initiative [46].

Conclusion

In this paper we demonstrate a methodology for a ‘do it
yourself” approach for the extraction and management of
knowledge in support of generating hypotheses about
biomolecular mechanisms. Our approach describes how
one can create a personal model for a specific hypothesis
and how a personal ‘computational experiment’ can be
designed and executed to extract knowledge from
literature and populate a knowledge base. A significant
advantage of the methodology is the possibility it creates
to perform analyses across the results of several of these
knowledge extraction experiments. Moreover, the
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principle of semantic disclosure of results from a
computational experiment is not limited to text mining.
In principle, it can be applied to any kind of experiment
of which the (interpretations of) results can be converted
to semantic models, almost as a ‘side effect’ of the
experiment at hand. Experimental data is automatically
semantically annotated which makes it manageable
within the context of its purpose: biological study. We
consider this an intuitive and flexible way of enabling
the reuse of data. With the use of Web Services from the
AIDA Toolkit and others, we also demonstrated the
exploitation of the expertise of computational scientists
with diverse backgrounds, i.e. where knowledge sharing
takes place at the level of services and qualitative models.
We consider the demonstration of e-Science and
Semantic Web tools for a personalized approach in the
context of scientific communities to be one of the main
contributions of our methodology. In summary, the
methodology provides a basis for automated support for
hypothesis formation in the context of experimental
science. Future extensions will be driven by biological
studies on specific biomolecular mechanisms such as the
role of histone modifications in transcription. We also
plan to evaluate general strategies for extracting novel
ideas from a growing repository of structured knowledge.
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